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Nanoscale objects often behave differently than their “normal-sized” counterparts. Sometimes it is enough to be small in just one
direction to exhibit unusual features. One example of such a phenomenon is a very specific in-plane magnetic anisotropy observed
sometimes in very thin layers of various materials. Here we recall a peculiar form of the free energy functional nicely describing
the experimental findings but completely irrelevant and thus never observed in larger objects.

1. Intriguing Experimental Observations

In [1] we find the experimentally observed in-plane magnetic
anisotropy energy (MAE) diagrams for multilayer structure
Cr(4)/Fe(2)/Cr(dCr)/Fe(4)/Cr(2), where numbers are thick-
nesses of components, expressed in nm. The thickness of
the middle Cr layer, dCr, was varied in few nm range, and
the complete structures were deposited on Si(100) substrate,
covered with natural SiO2 layer 1.5–2.0 nm thick. The sub-
strate was not perfectly flat—as a result of ion beam erosion
it was covered with quite well-ordered ripples (see atomic
force microscopy (AFM) images of the substrates, Figure 1
in [1]). The metallic layers were deposited using molec-
ular beam epitaxy (MBE) technique. Their transmission
electron microscopy (TEM) cross-sections revealed mostly
amorphous structure with small inclusions of polycrystalline
character. The values of MAE were derived from hysteresis
loop area observed while exciting field was oriented along
successive in-plane directions.

In principle, samples of this kind should not exhibit any
in-plane magnetic anisotropy. This is indeed the case when
the substrate is flat (see Figure 4(a) in [1]). On the rippled
substrate, however, this is no longer true and the sample
exhibits peculiar twofold in-plane anisotropy (coercive field,
Figure 4(b) in [1], MAE—in Figure 4(c)). It is peculiar since
it is not the uniaxial anisotropy: four maxima are visible
instead of just two.

2. The Surface Magnetic Anisotropy
of a Cylinder

Consider the static configuration of individual spins located
on a surface of a long (ideally: infinitely long), hollow
ferromagnetic cylinder. In absence of any external field, one
may expect that individual spins may adopt one of the two
stable configurations:

(i) they all may be aligned with C∞ symmetry axis of a
cylinder. This is the lowest exchange energy configu-
ration;

(ii) they all may be oriented perpendicularly to the
above symmetry axis. Now the exchange energy is
no longer at its global minimum. Nevertheless, such
a configuration is stable since it realizes a local
minimum of exchange energy.

In the second case we may again distinguish two cases: either
individual spins are aligned with local C2 symmetry axis
(there are infinitely many of them, each perpendicular to
C∞) thus pointing inwards or outwards of a cylinder and
being perpendicular to the cylinder’s surface, or they can be
perpendicular to the local C2 axis (laying on the cylinder’s
circumference), making a ring-shaped configuration and
producing no net magnetization. It is easy to see that both
of those configurations are energetically equivalent, since the
angle between any two neighboring spins is exactly the same.
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Here we concentrate only on this part of magnetostatic
energy which originates from Heisenberg-type exchange in-
teractions between spins. For a pair of nearest neighbor (nn)
spins, say i and j, we have

E = −2J
−→
S i · −→S j = −2JS2 cosϕij , (1)

where J is an exchange integral, ϕij is the angle between spins,

i and j, and S = |−→S i| = |−→S j|. As the angle ϕij between
neighboring spins is small, then the following approximation
is valid:

cosϕij ≈ 1− ϕ2
i j

2
= 1− 1

2

(
δ

ρ

)2

, (2)

where δ is the spacing between nn spins, and ρ is the cylinder
radius.

Full magnetostatic energy of a sample is of course the
sum, running over all the pairs of nn, of expressions like (1).
Anisotropy characterizes differences of free energy between
various directions of an external field, so any constant terms
are meaningless and may be dropped. In our case such a term
is “1” in (2). After this is done, the exchange energy for a
single nn pair of spins reads

E ≈ J
S2δ2

ρ2
. (3)

As the sum of expressions of type (1) is hard to treat
analytically, we replace it with appropriate integral; that is,
we assume the continuous distribution of interacting spins
but we do not approximate anything else. Particularly, we
do not make use of approximation (2). This way we have to
integrate proper expression along the elliptical path, being
a trace of a cylinder’s cross-section by a plane parallel to the
external magnetic field. The final result for the surface part of
the free magnetostatic energy density, Es, already presented
some time ago in [2], reads

Es = Ks |cos θ|. (4)

Here Ks is the surface anisotropy constant, and θ denotes the
angle between the direction of sample’s magnetization and
easy direction C∞, as one might expect Ks ∝ J/ρ2—in full
accordance with simplified approach, sketched in (3).

A comment is in order in this place. Magnetocrystalline
anisotropy energy density is always expressed by even powers
of cos θ and is always a smooth function of the external
field orientation. Here we have cos θ in first power, and,
additionally, the energy density is not a smooth function.

3. Experimental Confirmation

Formula (4) has been first derived to interpret ferromagnetic
resonance (FMR) spectrum of Co68Mn7Si10B15 glass-coated
amorphous single microwire with diameter roughly equal
to 16.5 μm. The spectrum, taken at fixed frequency and
containing more than one absorption line, could not be
described (modeled) satisfactorily with conventional two-

and fourth-order uniaxial anisotropies alone [3]. Unfortu-
nately, even the inclusion of the surface anisotropy term (4)
into the full expression for the free energy density did not
help much. This applies also to further experiments, per-
formed on similar but thinner wires, down to the diameter of
6 μm. Some qualitative features of the spectra (e.g., broaden-
ing and distortion of absorption lines at special orientations),
however, could be attributed to the presence of a nonsmooth
surface anisotropy term. Nevertheless, it had to be concluded
that the wire’s diameter was most likely big to clearly observe
the surface anisotropy contribution. By the way, due to
the presence of a glassy cover, other effects, notably the
magnetostriction of the inhomogeneously stressed sample,
were dominating in this experiment.

The definitive confirmation of validity of formula (4)
appeared only recently, when paper [1] was published.
Its authors admit the discrepancy between their model of
magnetic anisotropy arising at the interface between two
magnetic layers and the experimental data. Specifically,
they expected a quadratic sinusoidal angle dependence but
observed additional peaks at ϕ = 90◦ and ϕ = 270◦;
see Figure 1 in this paper. Their model mimics quite well
the major part of data and curves presented in Figure 4(c)
[1] but fails to explain the presence of those mysterious
“additional peaks.”

4. Discussion

Rippled surfaces are well known in experimental practice.
Some studies were already performed aiming to gain the full
control on ripple formation process on various substrates:
sapphire [4], silicon [5, 6], ZnO [7], or to investigate the
influence of ripples on various physical properties, most
notably the magnetic anisotropy, exchange bias [8], or
morphology of magnetic domains. Recently many papers are
devoted to rippled surfaces of diluted magnetic semiconduc-
tors (DMSs), with (Ga, Mn) As being probably the most
frequently studied substance in this class [9, 10]. The active
area of research, both theoretical [11, 12] and experimental
[13], are competing anisotropies, uniaxial and tetragonal,
present in thin layers of this compound.

The rippled surfaces were approximated in the literature
in many ways, usually as a train of sinusoidal waves as a
periodic series of Gaussian-shaped peaks, or as a periodic
set of flat islands. Here we propose yet another approach,
namely, the rippled surface may be seen as being built by
many identical, infinitely long-half cylinders, aligned parallel
to each other. Obviously, the period of such a structure is
equal to 4ρ, where ρ is, as previously, the individual cylin-
der’s radius. Additionally, we neglect eventual interactions
between cylinders.

We test our theory, given in Section 2. Using scanned data
from [1], we try to fit them to the expression

E(θ) = a + Ks |cos θ| + Kucos2θ, (5)

that is, taking into account only the surface anisotropy and
conventional uniaxial anisotropy. The constant a is irrelevant
but has to be fitted in order to simulate experimental data
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Figure 1: MAE for the sample 2.0 nm thick. In addition to the
best fitted line (blue) shown is the “pure” uniaxial part (scaled) of
anisotropy. Note the remarkable difference between the two near
ϕ = 90◦ and ϕ = 270◦. 156 measurements.

correctly. It is therefore not reported in Table 1, where the
results for two available samples, with different thicknesses t,
are shown. The ripple’s period was reported in [1] as being
equal to 22 nm, so the estimated mean radius of curvature
is 5.5 nm. This should be compared with the diameter of
microwires used in [2]. Looking at relation (3), it is easy to
see why the surface anisotropy term could not be detected
in earlier experiments: now the squared radius of curvature
is some 3.0 × 105–2.25 × 106 times lower, and so many
times the expected magnitude of the effect should increase.
The reported uncertainties for both anisotropy constants, Ks

and Ku, are most likely seriously underestimated, some 2-3
times, by our quick and dirty fit. It is quick and dirty because
the fitting procedure has no information concerning the
uncertainties of individual measurements and, consequently,
treats all the data as being exact. Even the discretization
errors, being a result of manual scanning procedure, go
unattended.

Despite these deficiencies, the trend is clear: the mag-
nitudes of both anisotropy constants slightly decrease with
increasing sample’s thickness. The decrease of Ks probably
has its roots in decreasing height of ripples, while their
period stays unchanged during sample growth; hence, the
curvature radius ρ effectively increases. This is probably also
the reason for evidently “rounded” shape of peaks visible
in Figure 2. This feature may be also explained by finite
lengths of individual cylinders, their misalignment, or even
weak, but long-range, interactions between them. Since it is
not so clearly visible in Figure 1, then we should attribute
it to broadening of height (and, consequently, of curvature
radii) distribution while the sample gets thicker. On the other
hand, the drop in value of ordinary uniaxial anisotropy Ku
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Figure 2: Same as Figure 1, but for sample 5.2 nm thick. 297 data
points. For clarity, the “classical” uniaxial anisotropy term is not
shown.

Table 1: Fitted parameters of expression (5).

t (nm)
Ks

(kJ/m3)
σ(Ks)

(kJ/m3)
Ku

(kJ/m3)
σ(Ku)

(kJ/m3)
|Ks/Ku|

2.0 −180 6 202 5 0.891

5.2 −161 4 184 3 0.875

originates most likely from the strain relaxation far from
possibly mismatched substrate.

It is doubtful whether the presence of sharp, non-
differentiable features, existing in reality on any experimental
curve will ever be possible to convincingly demonstrate
using the data alone. Fernandez-Outon and O’Grady [14]
show, using symmetry arguments, that angular variation of
many magnetic properties may be described either as even
or as odd series of cos θ. Similar ideas, related to variation
of coercivity or exchange bias field, were presented even
earlier [15]. Here we show one more possibility: the surface
anisotropy is described by a single | cos θ| term, rather hard
to approximate by only few terms of even cosine series.

It remains to be explained why Ks in Table 1 is expressed
in kJ/m3 rather than in kJ/m2. This is intended, as it
illustrates convincingly (in last column) comparable shares
of both types of anisotropy in free energy (not its density!).
In fact, what we present there is the quantity Ks =
K ′s /t, where K ′s is the true surface anisotropy, expressed in
kJ/m2, as it should, and t is the sample thickness. Taking
this into account, we have K ′s (2.0 nm) = −0.36 erg/cm2

and K ′s (5.2 nm) = −0.84 erg/cm2, respectively. One may
wonder why the two estimates differ so much. It is less
surprising when we compare the samples’ thickness (2.0
and 5.2 nm)—in both cases smaller than the radii (5.5 nm)
of our hypothetical half cylinders. This means that our
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cylinders must be far from perfect; they are most likely
flattened, what certainly affects their curvature radii, ρ.
Nevertheless, the values of Ks decrease with sample thickness,
as expected. Published values of |K ′s | are scarce, ranging from
0.032 erg/cm2 to as high as 1.17 erg/cm2 for Fe deposited on
GaAs [16]. Our result is of the same order of magnitude.

Let us now estimate the exchange energy per single Fe–Fe
pair. The density of elementary cells on (001) surface of α-Fe
is n = 1/a2 ≈ 1.214 × 1019 m−2, where a = 2.870 Å is α-Fe
lattice constant. Therefore, the exchange energy, Eex, per a×a
square element of a surface is K ′s /n, that is, −2.965 × 10−23 J
for thinner, and −6.853 × 10−23 J for thicker sample. From
formula (3) we get J = Eex(ρ/(Sδ))2, that is, −3.937× 10−21 J
and −9.099 × 10−21 J, respectively, when S = 2.22 [μB] and
δ = a

√
3/2 ≈ 0.215 nm. Those values should still be divided

by the number of nn Fe pairs (4) residing in a said a × a
surface element. This is because the nearest neighbor for any
given Fe surface atom is the one laying deeper, inside the
elementary cell—as pure iron has bcc structure. This fact has
been already accounted for by expressing δ (nn spacing) as an
appropriate fraction of the lattice constant. Finally we obtain
J(2.0 nm) = −0.98×10−21 J and J(5.2 nm) = −2.28×10−21 J.
For comparison, [17] quotes J = −1.21 × 10−21 J for pure
α-iron. The correspondence is amazingly good, especially
that our model completely neglects RKKY-type exchange,
certainly present there, and the estimate is made as if the
surface was perfectly flat.

5. Conclusions

The surface anisotropy form, presented here, seems to
explain the observed features of magnetic anisotropy energy
simply formidably. The shape of angular dependence of MAE
is reproduced much better than by any other model. The
deduced values of nn exchange coupling strength are in good
agreement with those obtained independently. Moreover,
they are in full accordance with intuitive understanding,
what makes the surface layer: no more than two crystal
planes are involved. Consequently, the surface layer thickness
is lower than the size of a unit cell. Yet, such effect can
be easily observed only at nanoscale, that is, in samples
thin enough. Only then its magnitude is comparable with
ordinary uniaxial anisotropy (see the last column of Table 1).
One may expect that, at least in the case of iron, a ∼500 nm
layer is thick enough to effectively mask surface anisotropy
effects.

It is amazing that our original, idealized model of non-
interacting, infinitely long-half cylinders, works so well. It
is likely that the presence of elongated, but finite length
structures, present on nominally flat surfaces, even those
obtained by MBE technique, is sufficient to generate this
form of anisotropy. On the other hand, it is doubtful whether
it will ever be used to determine some parameters that it
depends on. It is because the presented surface anisotropy
term is rather sensitive to the fine details of a surface. Those
are probably easier to investigate using one of microscopic
techniques. Nevertheless, using its peculiar angular behavior
and treating it as a “background” of known shape, one

should be able to determine important material’s parameters
with better accuracy than it was possible earlier.

The presence of nonnegligible surface anisotropy, gen-
erated by surface curvature, in addition to the edge-related
effects, will affect the operation of future spintronic devices.
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[2] M. W. Gutowski, R. Żuberek, and A. Zhukov, “Novel sur-
face anisotropy term in the FMR spectra of amorphous
microwires,” Journal of Magnetism and Magnetic Materials,
vol. 272-276, no. 1, pp. e1145–e1146, 2004.

[3] R. Żuberek, M. Gutowski, H. Szymczak, A. Zhukov, and J.
Gonzalez, “FMR study of amorphous Co68Mn7Si10B15 glass-
coated microwires,” Physica Status Solidi A, vol. 196, no. 1, pp.
205–208, 2003.

[4] H. Zhou, Y. Wang, L. Zhou et al., “Wavelength tun-
ability of ion-bombardment-induced ripples on sapphire,”
http://arXiv.org/abs/cond-mat/0608203/.

[5] S. A. Mollick and D. Ghose, “Formation of ripple pattern
on silicon surface by grazing incidence ion beam sputtering,”
http://arxiv.org/abs/0904.1311/.

[6] S. Bhattacharjee, P. Karmakar, A. K. Sinha, and A. Chakrabarti,
“Projectile’s mass, reactivity and molecular dependence on ion
nanostructuring,” http://arxiv.org/abs/1008.0958/.

[7] S. Bhattacharjee, P. Karmakar, V. Naik, A. K. Sinha,
and A. Charkrabarti, “Ripple topography on thin ZnO
films by grazing and oblique incidence ion sputtering,”
http://arxiv.org/abs/1102.3309/.

[8] M. O. Liedke, B. Liedke, A. Keller et al., “Induced anisotropies
in exchange-coupled systems on rippled substrates,” Physical
Review B, vol. 75, no. 22, Article ID 220407, 2007.

[9] K. Y. Wang, A. W. Rushforth, V. A. Grant et al., “Domain
imaging and domain wall propagation in (Ga, Mn)As thin
films with tensile strain,” Journal of Applied Physics, vol. 101,
no. 10, Article ID 106101, 2007.

[10] S. Piano, X. Marti et al., “Surface morphology and magnetic
anisotropy in (Ga; Mn) As,” http://arxiv.org/abs/1010.0112/.

[11] A. N. Bogdanov, I. E. Dragunov, and U. K. Rossler, “Reorien-
tation, multidomain states and domain walls in diluted mag-
netic semiconductors,” Journal of Magnetism and Magnetic
Materials, vol. 316, no. 2, pp. 225–228, 2007.
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