
Systems Research Institute, Polish Academy of Sciences

Łukasz Bolikowski
ICM, University of Warsaw

Methods of Semantic Drift Reduction

in Large Similarity Networks

Ph.D. Thesis

Supervisor: Prof. Marek Niezgódka
ICM, University of Warsaw

Warsaw, December 2009

Abstract

We have investigated the problem of clustering documents according to their seman-

tics, given incomplete and incoherent hints reflecting the documents’ affinities. The

problem has been rigorously defined using graph theory in set-theoretic notation. We

have proved the problem to be NP-hard, and proposed five heuristic algorithms which

deal with the problem using five quite different approaches: a greedy algorithm, an

iterated finding of maximum cliques, energy minimization inspired by molecular me-

chanics, a genetic algorithm, and an adaptation of the Girvan-Newman algorithm. As

a side effect of the fourth heuristic, an efficient and aesthetically appealing method of

visualization of the large graphs in question has been developed.

The approaches have been tested empirically on the network of links between arti-

cles from over 250 language editions of Wikipedia. A thorough analysis of the network

has been performed, showing surprisingly large semantic drift patterns and an uncom-

mon topology: a scale-free skeleton linking tight clusters. It has been demonstrated

that, using a blend of the proposed approaches, it is possible to automatically detect,

and to a large extent eliminate, the semantic drift in the network of links between the

language editions of Wikipedia. Last but not least, an open-source implementation of

the proposed algorithms has been documented.

To my wife Duygu and my son Leon

Contents

1 Introduction 1

1.1 Background . 1

1.2 Notation and Definitions . 9

1.3 Problem Statement . 11

1.4 Key Contributions . 12

1.5 Thesis Structure . 13

2 Literature Review and State of the Art 15

2.1 Computational Problem . 15

2.2 Models of Network Dynamics . 15

2.3 Power-Law Distributions . 17

2.4 Social Networks . 17

2.5 Cliques and Cores . 18

2.6 Genetic Algorithms . 18

2.7 Molecular Dynamics and Visualization . 19

2.8 Wikipedia in Academic Studies . 20

2.9 Translation as an Equivalence Relation . 20

3 Case Study: Semantic Drift in Wikipedia 22

3.1 Research Material . 22

3.2 Basic Properties . 24

3.3 Component Sizes . 26

3.4 Node Degrees and Clustering Coefficients 27

3.5 Skeleton Extraction . 28

3.6 Summary . 33

4 Theoretical Results 34

4.1 Computational Complexity of the Researched Problem 34

4.2 “Greedy” Approach . 37

4.3 “Cliques” Approach . 39

4.4 “Spatial” Approach . 46

v

CONTENTS

4.5 “Genetic” Approach . 48

4.6 “Girvan-Newman” Approach . 50

4.7 Summary . 53

5 Experimental Results 54

5.1 Methodology . 54

5.2 Results . 55

6 Summary, Conclusions and Outlook 65

6.1 Summary . 65

6.2 Conclusions . 67

6.3 Outlook . 67

A Implementation 70

A.1 Technical Background . 70

A.2 Database Import Process . 74

A.3 Software Design and Implementation . 75

B Glossary and Symbols 80

B.1 Glossary . 80

B.2 Symbols . 81

Acknowledgements 82

Bibliography 83

vi

List of Figures

1.1 RDF data sets in the Linking Open Data project 3

1.2 Illustration of semantic drift in a semantic relation 5

1.3 Screenshot of a Wikipedia page with interlanguage links 7

1.4 Example of a κ-partite graph . 10

1.5 Two examples of graph partitions . 11

1.6 Example of a truncated graph . 12

3.1 Component sizes of the coherent components in A and C 24

3.2 Component sizes of the incoherent components in A and C 25

3.3 Number of English pages in the incoherent components of A and C . . . 25

3.4 Degree distributions for A and C (left panel) and their skeletons (right

panel) . 28

3.5 Distribution of clustering coefficient values 29

3.6 Illustration of the skeleton extraction procedure 31

3.7 Skeleton of a medium-sized incoherent component 32

4.1 Transformation from 3-Terminal Cut to Minimum Partition 36

4.2 Examples of complete and incomplete graphs 39

4.3 Undesired start for finding maximum clique 41

4.4 A typical setting in the second pass of the “clique” heuristic 43

5.1 A test case that is difficult for G-N and BET 58

5.2 A test case properly solved by G-N and BET 60

5.3 Illustration of an impact of edge weighting on node partitioning 62

5.4 Sample medium-size semantic drift pattern 63

5.5 Sample small-sized semantic drift pattern 64

A.1 UML class diagram of network storage . 76

vii

List of Tables

1.1 Sizes of 10 largest language editions of Wikipedia 8

3.1 Power-law distribution of component sizes 27

4.1 Space and time complexities of the proposed algorithms 53

5.1 Average weights of cuts returned by the proposed algorithms 55

5.2 Fraction of cases for which a given algorithm yields the best cut 56

5.3 Average running times (in milliseconds) of the proposed algorithms . . . 56

5.4 Cut weights for the largest connected components (sizes over 1000) 59

viii

List of Algorithms

3.1 FindSkeleton . 30

4.1 GreedyMerge . 38

4.2 GreedyCut . 38

4.3 SimpleMaxClique . 40

4.4 CliquesCut . 40

4.5 FirstPass . 42

4.6 FindHeaviest . 42

4.7 SecondPass . 43

4.8 FindClosest . 44

4.9 GeneticCut . 49

4.10 GirvanNewmanCut . 52

4.11 BetweennessCut . 52

ix

Chapter 1

Introduction

In the opening chapter, we shall present the framework of our research. First, we shall

briefly sketch the background of the research. Next, we shall introduce the essential

notation and formulate the research problem. Finally, we shall state the key contribu-

tions, and outline the thesis structure.

1.1 Background

Let us take a look at a couple of topics that are relevant to our research problem. We

wish to present the research problem in the wider context of the global knowledge

infrastructure.

This section is structured as follows. We start with a short summary of a potential

as well as challenges of the information revolution in general and the Semantic Web in

particular. Next, we identify a class of semantic networks that exhibit a common prob-

lem, namely, the problem of semantic drift. Having done that, we describe one notable

example of the networks in question: the so-called interlanguage links in Wikipedia.

1.1.1 Information Age

Approximately 1.5 billion people1 enjoy instant access to approximately 240 million

sites2 on the Internet. Access to information is easier than it was ever before, and the

present times have been dubbed the Information Age.

New content is either transferred from physical media, such as books, journals,

paintings, audio recordings, etc. in the process known as digitization, or it is born-

digital. There are countless ongoing digitization projects, including: Google Books

1Source: Internet World Stats, http://www.internetworldstats.com/
2Source: Netcraft, http://news.netcraft.com/archives/2009/06/17/june_2009_web_server_survey.html

1

CHAPTER 1. INTRODUCTION

Library, JSTOR, Project Gutenberg, Times Online, and World Digital Library. To illus-

trate the scale of the efforts and their significance, let us mention that: Times Online

provides on-line access to all the issues from 1785 to 19853, JSTOR contains over 32

million pages of documents from over four centuries4, while World Digital Library

“makes available on the Internet, free of charge and in multilingual format, significant

primary materials from cultures around the world”5. The latter is not an exception:

digitized content is often available for free, often under liberal copyright licenses. For

example, Deutsche Fotothek has released over 250 thousand photos under the Creative

Commons BY-SA 3.0 license.

Articles in most, if not all, of the contemporary peer-reviewed journals are born-

digital, meaning they are created as digital documents in the first place, skipping the

process of digitization. Some of the journals, such as First Monday, don’t even have a

printed version. As in the case of digitized works, many of the journals are so called

“Open Access journals”, i.e., are available online free of charge. However, the Web

does not simply mimic the forms of information exchange known from the pre-digital

times. Wikipedia, “the free encyclopedia that anyone can edit”, with over 10 million

articles in over 250 languages in an excellent example of a novel form of knowledge

communication.

1.1.2 Semantic Web

The unprecedented supply of information creates unique opportunities, but also brings

new challenges. The first problem that a novice web user faces is: how to find valuable

information in the ocean of documents, articles, blog notes, and other web pages.

Google and other search engines implement heuristics (such as Google’s PageRank)

which do a remarkably good job finding the pages relevant to the user’s query. One

of the next steps is to index knowledge instead of data: harvest and infer semantic

relationships between entities, allowing users to formulate more precise queries [9].

The Semantic Web, in short, is an attempt to encapsulate the available knowledge in

the form of subject-predicate-object triples and process the knowledge to users’ benefit.

The triples represent relations between entities represented by well-defined resource

identifiers (URI). This data model is known as Resource Description Framework (RDF).

There are several established vocabularies, called ontologies, which define relation-

ships within a given domain. For example Dublin Core allows to express properties of

documents, such as: “X is the author of Y”, “X is the title of Y”, or “X was referenced

by Y”. Friend of a Friend, or FOAF, expresses relations between people and people’s

properties, such as: “X’s e-mail address is Y”, “X knows Y”, or “X is interested in Y”.

3Source: Times Online, http://archive.timesonline.co.uk/
4Source: JSTOR, http://www.jstor.org/page/info/about/archives/facts.jsp
5Source: World Digital Library, http://project.wdl.org/

2

CHAPTER 1. INTRODUCTION

Figure 1.1: RDF data sets that have been published and interlinked by the Linking Open Data project as of July
2009. Each bubble represents an RDF data set, each connection represents semantic links between the sets. Colors
represent topics. (author: Anja Jentzsch, license: CC-BY-SA 3.0)

Concurrently, there are efforts to extract knowledge (structured information) from

the existing data sources. One such project, DBpedia [5] “harvested” Wikipedia and ex-

tracted 274 million relations between 2.6 million entities corresponding to theWikipedia

articles.

Last but not least, there are query languages, such as SPARQL, which provide

access to the inferred knowledge. Sir Tim Berners-Lee, the father of both the World

Wide Web and the Semantic Web, argues that the possibility of combining knowledge

(structured information) obtained from several sources will further revolutionize the

way we access information on the Web [10]. Continuing the previous example: a user

can ask, in a single query, for e-mail addresses of authors of documents that referenced

a given document. Such query would include verbs defined in both Dublin Core and

Friend of a Friend ontologies. Another example: a single SPARQL query in DBpedia

returns a list of German musicians born in Berlin before 1900. Let us note that none of

the above queries are feasible using the “traditional” search engines.

3

CHAPTER 1. INTRODUCTION

1.1.3 Same knowledge, many locations

In a typical setting, the same knowledge is stored in a number of independent repos-

itories. For example, a scholarly article’s metadata is stored in a number of virtual

libraries, a word is defined in a number of dictionaries, a movie’s details are presented

in a number of movie databases, a big city, a notable event, or a famous person is

described by a number of encyclopedias.

A repository may provide links to other repositories covering the same domain.

For example: in DrugBank, a drug database, each entry contains references to corre-

sponding entries in other databases from the domain, such as PharmGKB or RxList.

In Wikipedia, each article in a given language edition features a list of corresponding

articles in the other language editions.

The correspondence relations mentioned above may be generalized to a semantic

relation: “X corresponds to Y”, or in other words: “X is equivalent to Y”. This relation

satisfies the properties of the set-theoretical equivalence relation. Let us recall that

the set-theoretic equivalence relation ≡ is a relation that satisfies the following three

properties:

1. reflexivity: ∀X X ≡ X

2. symmetry: ∀X,Y (X ≡ Y)⇒ (Y ≡ X)

3. transitivity: ∀X,Y,Z (X ≡ Y) ∧ (Y ≡ Z)⇒ (X ≡ Z).

Examples include relations such as: “X is a homologue of Y” (among biological se-

quences) or “X is a synonym of Y” (among words).

However, in the case of independent knowledge databases, the equivalence relation

“X corresponds to Y” is necessarily stored without coherence constraints, i.e., neither

symmetry nor transitivity can be guaranteed. Lack of these constraints may lead,

among other things, to a semantic drift.

1.1.4 Semantic drift

As it was noted above, an actual representation of an equivalence relation in a dis-

tributed knowledge database may substantially differ from its idealized model. Gen-

erally speaking, two classes of problems are prone to emerge (cf. Figure 1.2): missing

links and excess links. The first class contains triples that are not present, although

the relation between the corresponding entities holds while the other class contains

triples that are present, although the relation between the corresponding entities does

not hold.

The are numerous reasons why the actual triples do not correctly reflect the in-

tended relation. It may be due to: concurrent edits by editors whose interpretations of

4

CHAPTER 1. INTRODUCTION

Figure 1.2: Illustration of semantic drift in a semantic relation, showing potential discrepancy between an “ideal”
relation and its actual representation. The bullets represent entities, and segments represent relations between
them. Sample equivalence relationship between entities is presented in the left panel. When the relationship is
stored without enforcing data coherence (due to distributed storage, lack of co-ordination between the editors, etc.),
then the stored relation may look as in the right panel. Note that non-equivalent entities are connected by a series
of links which are believed to represent an equivalence relation.

the relation are incompatible, a mistake during data entry, relocation of an entry which

used to be a target of a reference, etc.

What are the consequences of the abovementioned problems? A missing link causes

that the equivalence between two entities is not reflected in the system and thus not

visible to a potential user. An excess link causes that non-equivalent entities are treated

in the system as if they were equivalent. A series of excess links escalates the problem,

creating a semantic drift. The effect may be compared to the children’s game of “Bro-

ken telephone”: a series of inexact relays of a message may cause a great discrepancy

between the message sent by the first child and the message received by the last.

There are two simple solutions, which may, to a certain extent and under certain

conditions, alleviate the problems in question.

The first solution is to switch to another relation, which binds an entity to the

equivalence class of the original relation. A contrived example: instead of a relation

“X lives in the same city as Y”, one may introduce a relation “X lives in Y” and infer

that “X lives in the same city as Y” holds whenever there exists Z such that X lives in

Z and Y lives in Z. Cities, which were the equivalence classes of the original relation,

are now referenced directly. This trick does not work, however, when the equivalence

class in not a tangible entity. For example: word meanings, which are the equivalence

classes of the “X is a synonym of Y” relation, are not necessarily easily represented by

an entity. Moreover, it is often not a viable option in the case of distributed storage of

the triples in question, since it would require a certain level of centralization: a master

repository, or at least a centralized identification of the represented concepts would

5

CHAPTER 1. INTRODUCTION

have to be agreed upon by the participating partners. Digital Object Identifier (DOI),

a de facto standard of identifying contemporary scholarly articles, is an example of a

successful adoption of such a scheme.

Another solution, which may work in certain cases, is to perform symmetric and

transitive closure of the triples at hand. It is likely to reduce the problem of the missing

links, but on the other hand, it propagates false information conveyed by excess links.

None of the above simple solutions, however, is satisfactory in general, and a more

robust approach is called for.

1.1.5 Wikipedia

Throughout this thesis, Wikipedia will serve as the testing ground of the approaches

developed. Therefore, let us present a brief overview of the technical aspects of

Wikipedia that are relevant to our research.

Wikipedia is a free online encyclopedia that anyone can edit. The name is a port-

manteau of the words “wiki” (a kind of collaborative online edition) and “encyclope-

dia”. Wikipedia textual content is licensed under GNU Free Documentation License6.

Wikimedia Foundation regularly publishes database dumps of all its projects, thus

providing an excellent research material for various large network analyses. Our ex-

perimental results are based on two sets of database dumps: the semantic drift analysis

in Chapter 3 is based on all the 262 language editions of Wikipedia as of August 27.

2008, while the experimental results in Chapter 5 are based on all the 265 language

editions as of October 12, 2009.

In this short overview, we would like to focus on articles, categories, page redirects

and interlanguage links, which are the building blocks of the researched network. It

should be stressed that this is in no way a comprehensive description of the entire

Wikipedia project or the software engine running it, as we deliberately omit most of

their prominent features.

Each language edition of Wikipedia is powered by MediaWiki, a wiki engine. Con-

tent managed by MediaWiki is organized into pages, which are (within a language

edition) uniquely identified by their titles. Each page resides in exactly one namespace,

which may be thought of as its type. The main namespace, also referred to as article

namespace, contains most of the textual content of a language edition. Approx. 84.8%

of all the pages in all the language editions of Wikipedia are located there, and referred

to simply as articles. The second most popular namespace (approx. 13.8% of all the

pages) is the category namespace. A category is a sort of tag, and each article may be-

long to zero, one or more categories. To give an example from the English edition: the

“London” article is, among others, in the categories “Capitals in Europe” and “Host

cities of the Summer Olympic Games”. From now on, we focus our attention on the

6Full text of the license: http://www.gnu.org/copyleft/fdl.html

6

CHAPTER 1. INTRODUCTION

Figure 1.3: Screenshot of a Wikipedia page with interlanguage links. In the language editions using left-to-right
scripts (such as the English edition using Latin alphabet) the interlanguage links are located on the left side of a
page (highlighted in red).

pages in the two most popular namespaces mentioned above.

MediaWiki has a page aliasing mechanism through which any reference to page A

is interpreted as a reference to another page B. This way, it is possible to refer to a page

by using any of the titles associated with it. Policies of the English edition list a number

of purposes for page redirects7, which can be roughly divided into two groups. The

first one includes cases of alternative spellings, common misspellings, or alternative

terms for the page’s subject – shortly, the cases when the two titles are semantically

equivalent. For example, the pages “JFK” and “35th President of the United States”

in the English edition are both redirects to the “John F. Kennedy” article in the same

edition. The other group contains redirects from A to B, where B covers A, but has

a broader meaning. In such cases it is advised that the redirect leads to the relevant

section of B (should a relevant section exist). Example (English edition): “One pair”,

“Three of a kind” and “Straight flush” are all redirects to corresponding sections of the

“List of poker hands” article. However, redirects to page sections are relatively rare

and account for approx. 1.77% of all the redirects in all the language editions.

MediaWiki engine provides a means of indicating that a given page has a corre-

7See: http://en.wikipedia.org/wiki/Wikipedia:Redirect

7

CHAPTER 1. INTRODUCTION

Articles Categories

Language Pages IL Links Pages IL Links

English 2 502 189 4 763 819 389 987 608 787

German 791 848 3 331 290 55 323 417 800

French 687 290 3 398 456 96 073 482 098

Polish 552 267 2 834 358 37 814 284 455

Dutch 513 295 2 927 619 37 202 238 934

Japanese 512 872 2 170 917 51 284 407 294

Italian 506 223 2 986 566 51 948 195 548

Portuguese 469 382 2 697 324 48 389 256 680

Spanish 389 929 2 542 999 61 377 376 110

.

Total 11 510 142 89 339 694 1 724 088 13 902 852

Table 1.1: Number of articles, categories, and corresponding outgoing interlanguage links for 10 largest language
editions of Wikipedia (ordered by the number of articles). Based on the database snapshots available on August 27,
2008.

sponding one in another wiki (possibly, but not necessarily, powered by MediaWiki).

In Wikipedia, this functionality is primarily used to present corresponding articles or

categories in other language editions (see Figure 1.3). Such relations are formally called

interlanguage links, but often referred to as interwiki links 8.

The intended meaning of an interlanguage link (ILL), placed on page A and point-

ing to page B in a different language edition, is that A and B are on the same subject,

i.e., semantically equivalent. Example: English article entitled “London” contains,

among others, an interlanguage link to the French article entitled “Londres” and to the

Finnish article entitled “Lontoo”. From now on, for the sake of brevity, we shall prefix

all the titles with language codes, e.g.: “en:London”, “fr:Londres”, “fi:Lontoo”. Let us

point out a couple of important consequences of placing interlanguage links on pages.

Firstly, the links stored that way are necessarily directed: “en:London”→ “fr:Londres”

and “fr:Londres” → “en:London” are two separate links, and technically, one does

not imply the other. Secondly, since the links are stored across many autonomous

databases, no coherence checks can be performed. Thus, neither symmetry nor transi-

tivity of the links is guaranteed. Moreover, queries for incoming interlanguage links

are not feasible.

Therefore, the interlanguage links in Wikipedia serve as an excellent example of

an equivalence relation that is stored without coherence constraints. Huge amount of

available data and free, easy access to it were the key reasons of picking Wikipedia’s

ILLs as the experimental data for this thesis.

8Technically, “interwiki link” is a broader term, including links to wikis other than just the other
language editions of Wikipedia, but practically it is synonymous with “interlanguage link”

8

CHAPTER 1. INTRODUCTION

1.2 Notation and Definitions

Let us first introduce a set-theoretic notation for graphs, which will be used throughout

this work. Readers unaccustomed with the graph theory may want to consult the

classic introductory book by Bondy and Murty [13].

We focus our attention on undirected, vertex-colored, edge-weighted graphs. Such

graph are defined as a quadruple G = 〈V, E, κ, µ〉, where:

• V is a set of vertices;

• E ⊆
{

e ∈ 2V
∣

∣|e| = 2
}

is a set of undirected edges;

• κ : V → K is a function representing colors of vertices;

• µ : E→ R+ is a function representing weights of edges.

Occasionally, unweighted graphs are investigated as well. In these cases, it is assumed

that µ ≡ 1, and such a graph is denoted by a triple G = 〈V, E, κ〉.
We say that a graph G is κ-partite iff no two vertices of the same color are connected

by an edge:

∀v,w∈V κ(v) = κ(w)⇒ {v,w} /∈ E (1.1)

At times we reference algorithms that only accept κ-partite graphs on input. In those

cases, a trivial transformation that removes all the edges connecting vertices of the

same color (thus yielding a κ-partite graph) becomes handy. To put it in set-theoretic

terms, the transformation creates a graph:

G′ = 〈V, E′, κ, µ|E′〉 (1.2)

where:

E′ =
{

{v,w} ∈ E
∣

∣κ(v) 6= κ(w)
}

(1.3)

Let neighborhood of a vertex v ∈ V in graph G be defined as:

ǫ(v) :=
{

w ∈ V
∣

∣{v,w} ∈ E
}

(1.4)

Let a partition (or clustering) π of a graph G be defined as any function π : V → 2V

satisfying the following properties:

∀v∈V v ∈ π(v) (1.5)

∀v,w∈V π(v) = π(w) ∨ π(v) ∩ π(w) = ∅ (1.6)

∀v 6=w∈V π(v) = π(w)⇒ κ(v) 6= κ(w) (1.7)

The first two conditions simply state that π splits V into disjoint subsets that sum up

to V. The third condition states that any subset must contain at most one vertex of

each color. The set of all the possible partitions of a graph G will be denoted by P(G).

9

CHAPTER 1. INTRODUCTION

Figure 1.4: Example of a κ-partite graph. The one on the right side is a κ-partite graph, while the one on the
left side is not; neither is coherent. The graph on the right was obtained from the graph on the left through the
transformation described in the text. Note: in order to improve legibility of b/w printouts, in this figure, as well
as in all the following ones, node colors are paired with their shapes, and thus: triangle = cyan, square = magenta,
pentagon = green, hexagon = gray, octagon = yellow, pentagram = red, hexagram = blue.

Note that a partition π is unambiguously represented by its range:

Π =
⋃

v∈V

π(v) (1.8)

The two forms (π and Π), being equivalent, are used interchangeably. This should not

lead to confusion, since one of the forms is a function, while the other is a set.

We say that an edge e = {v,w} ∈ E is incoherent with a partition π ∈ P(G) iff

π(v) 6= π(w). In other words, an edge is incoherent with a partition iff it connects

two different subsets of the partition. Let IG(π) denote the set of all the edges of G

incoherent with π:

IG(π) :=
{

{v,w} ∈ E
∣

∣π(v) 6= π(w)
}

(1.9)

Next, we say that a partition π ∈ P(G) is incoherent iff IG(π) 6= ∅. In other words,

a partition of a graph is incoherent if there is at least one edge in the graph incoherent

with the partition. Let us define a function ‖ · ‖G on π quantifying its incoherence with

G as the sum of weights of all the edges incoherent with π:

‖π‖G := ∑
e∈IG(π)

µ(e) (1.10)

Finally, we say that a graph G is coherent iff there is at least one coherent partition

of the graph. There is an alternative characterization of a coherent graph, one that

doesn’t use the concept of coherent partitions: a coherent graph is such that each of its

connected components contains at most one vertex of any given color.

10

CHAPTER 1. INTRODUCTION

Figure 1.5: Two examples of graph partitions. The partitions are marked by dotted lines. Bold edges represent cuts
associated with the partitions. In each of the graphs, the sum of weights of the bold edges is the measure (cost) of
the partition, and thus, by definition, the measure of the cut.

A graph G is said to be complete iff it is coherent and addition of any new edge

renders it incoherent. Alternatively: in a complete graph each connected component is

a clique and contains at most one vertex of any given color.

A natural partition πG of a coherent graph G is a partition that assigns to each

vertex v the set of vertices of the connected component of G containing v. Thus, a

natural partition is always coherent.

For any partition π of graph G = 〈V, E, κ, µ〉, a truncated graph is defined as:

G|π := 〈V, E′, κ, µ|E′〉 (1.11)

where:

E′ :=
{

{v,w} ∈ E
∣

∣π(v) = π(w)
}

(1.12)

Therefore, for any partition π the truncated graph G|π is coherent. In other words, a

truncated graph G|π is created by removing all the edges incoherent with π.

For a given graph G and a set of edges F ⊆ E, if 〈V, E \ F, κ, µ|E\F〉 is coherent, then
F is called a cut with weight ‖F‖G := ∑F µ(F). It is worth to notice that for a given

graph G, each partition π has a corresponding cut IG(π) and ‖π‖G = ‖IG(π)‖G. We

say that a cut F is locally-minimal iff no proper subset of F is a cut.

1.3 Problem Statement

Putting the formal notation aside for a moment, we want to find a coherent graph that

is the “closest” to the graph at hand. A coherent graph is, by definition, one in which

11

CHAPTER 1. INTRODUCTION

Figure 1.6: Example of a truncated graph. The graph G′ on the right side is a truncated graph, obtained from the
graph G and the partition π presented on the left side. All the edges incoherent with π (bold edges on the left side)
were removed, and the resulting graph (on the right) is coherent, while the original graph (on the left) is not.

no two vertices in the same connected component have the same color. “Closeness” is

measured by the sum of weights of edges that have to be removed in order to transform

one graph to another.

Let us express the above using the nomenclature introduced in Section 1.2. The

research problem is:

Problem 1.1 (Minimum Partition) Given a graph G = 〈V, E, κ, µ〉, find a partition π such

that ‖π‖G is minimal.

An alternative, equivalent formulation of the problem asks for a cut, rather than a

partition:

Problem 1.2 (Minimum Cut) Given a graph G = 〈V, E, κ, µ〉, find a cut F such that ‖F‖G
is minimal.

Note that transitive closure of a coherent graph models an equivalence relation.

Thus, we are effectively looking for a way to transform a relation to an equivalence

relation in two steps: edge removal (which is difficult) and edge addition (which is

trivial).

1.4 Key Contributions

The thesis presents a number of novel results:

12

CHAPTER 1. INTRODUCTION

1. We give a comprehensive description of the topology of so-called interlanguage

links in Wikipedia. The network possesses an interesting and uncommon topol-

ogy: its connected components are scale-free skeletons of tight clusters. Sizes of

the connected components in the network have power-law distribution, and the

largest connected component is roughly three orders of magnitude larger than

expected.

2. We establish the computational complexity of the research problem. We show

that the problem is NP-complete by constructing a polynomial-time reduction

from a known NP-complete problem.

3. We propose five algorithms that return approximate solutions to the research

problem. The algorithms use five quite different techniques:

• a greedy algorithm;

• an iterated finding of the maximum clique;

• a numerical minimization of a multi-dimensional potential;

• a genetic algorithm;

• an adaptation of the Girvan-Newman algorithm for finding community struc-

ture.

4. As a side effect of one of the algorithms, we propose a method of visualizing the

networks in question.

5. We carry out a quantitative evaluation of the proposed algorithms, with respect

to both the quality of results and the running time. Our experimental data is the

network of interlanguage links in Wikipedia.

6. We document the architecture of an open-source software package containing a

data import module, implementations of all the proposed algorithms, a visualiza-

tion module and a result export module. We have used the software to evaluate

the proposed algorithms, and to generate edit recommendations that we have

subsequently presented to the Wikipedia community.

1.5 Thesis Structure

The thesis is organized as follows:

Chapter 1 introduces the research problem together with its background, presents a nota-

tion used throughout the work, states the key contributions and outlines the structure. In the

beginning, we show the wider context of the problem, the paradigm shift in knowl-

edge exchange and the semantic networks. Moving on, we focus on one particular

13

CHAPTER 1. INTRODUCTION

challenge faced by a class of semantic networks, namely, semantic drift. We show that

the network of so-called interlanguage links in Wikipedia is a good illustration of the

issue. Next, we decide on the vocabulary and symbols that are used in the thesis.

Having done that, we formally state the computational problem. Finally, we state the

key contributions and outline the structure of the thesis.

Chapter 2 summarizes the state of the art in the areas related to the research problem. In

particular, we give a survey of similar computational problems, present advances in

the understanding of topology and dynamics of social networks, and report state of

the art in the techniques on which the algorithms presented in this thesis are based.

Next, we give an account of various academic studies focusing on Wikipedia. Finally,

we briefly delineate the limits of a translation process from the linguistic point of view.

Chapter 3 gives a thorough description of the interlanguage links in Wikipedia – a notable

network to which the research problem applies. We present the topology, quantify the scale

of semantic drift, and calculate several characteristics of the network. We successfully

explain certain anomalies in the aggregated indicators, and present an algorithm that

extracts a meaningful top-level structure of the network.

Chapter 4 presents the theoretical results: the computational problem is shown to be NP-

complete, and five algorithms yielding approximate solutions are presented. The algorithms

attack the computational problem from several sides, employing: a greedy strategy, a

heuristic for the Maximum Clique problem, a numerical minimization of a potential,

a genetic algorithm framework, and an algorithm reconstructing community structure.

Chapter 5 presents the experimental results: the proposed algorithms are evaluated on the

network of interlanguage links in Wikipedia. We compare both the results and the running

times of the proposed algorithms on over 86 thousand problem instances divided into

three categories according to their size.

Chapter 6 gives a summary of the thesis, draws conclusions, and presents outlook. We

recapitulate the main results and contributions of the thesis. Next, we draw conclu-

sions from the results obtained. Finally, we list possible extensions of this thesis and

directions of further research.

Appendix A documents technical details of processing the experimental data. We describe

the the design of MediaWiki engine that powers all the language editions of Wikipedia.

Next, we document the data import process and outline the design of a software pack-

age implementing the approaches proposed in this thesis.

Appendix B lists symbols and terms occurring in this thesis.

14

Chapter 2

Literature Review and State of the Art

2.1 Computational Problem

To our best knowledge, the main computational problem introduced in Chapter 1 has

not yet been a subject of any academic study. However, a number of similar problems

in surprisingly diverse contexts were studied.

Dahlhaus et al. [25] have established the computational complexity of a similar

problem, called Multiterminal Cut Problem, which in turn generalizes the classic prob-

lem of finding the maximum flow and the minimum cut in a network [41]. The Mul-

titerminal Cut problem asks for the cheapest way of separating a given set of nodes

(terminals) in a network from one another. The authors show that the problem is

NP-hard.

Problems similar to the one researched in this thesis also surface in the context of

automatic optimization of work scheduling in distributed computing [95], also known

as the Index Domain Alignment problem [63, 14], and in the context of decomposing

an electrical network into groups of components [64]. He et al. have shown [53] NP-

hardness of a problem called Minimum Orthogonal Partition, which differs from

our research problem in one point only: it imposes a certain restriction on the cardi-

nality of partitions. The restriction is natural in the context of distributed computing,

as it expresses the fact that there is always a limited number of processors available.

2.2 Models of Network Dynamics

Several models of network dynamics exist in the literature. Let us recall three such

models, arguably the most important ones, each named after its authors: Erdős-Rényi,

Barabási-Albert, and Watts-Strogatz. In each case, the model is a procedure that creates

an unweighted, undirected graph by random addition of edges or links, and statistical

properties of the resulting graphs are investigated.

15

CHAPTER 2. LITERATURE REVIEW AND STATE OF THE ART

Erdős and Rényi [36, 37] examined random graphs constructed in the following

way: first, n vertices are created, and then m edges out of
n(n−1)

2 are chosen at random

with equal probabilities. They found that for a number of fundamental structural

properties there is a so-called “threshold function” A(n) such that, if limm,n→+∞
m

A(n)
=

0 then the the property occurs with probability 0, and if limm,n→+∞
m

A(n)
= +∞ then

the the property occurs with probability 1. In particular, a giant component will almost

certainly appear in a graph iff limm,n→+∞
m
n > 1. Vertex degrees in the Edrős-Rényi

model follow the Poisson distribution.

Watts and Strogatz [104] proposed a different model. This time, n nodes and

m ≫ n log n edges initially formed a regular ring lattice. Next, each edge was rewired

with probability p. Statistical properties of characteristic path length and clustering

coefficient were studied as functions of p. It was observed that while p = 0 gives a

perfectly ordered network and p = 1 a perfectly random one, the intermediate states

yield so-called “small-world” networks, echoing the famous “small-world” experiment

conducted by Milgram1 [98].

Barabási and Albert [6, 2] take a different approach, based on the “rich-get-richer”

observation that in the real world situations a vertex with higher number of incident

edges is more likely to attract new edges. In their model, the constructed graph ini-

tially consists of m0 vertices and no edges. In each step, a new vertex is added and

connected to m < m0 vertices already present. The probability of connecting to a given

vertex is proportional to the vertex’ degree. Barabási and Albert show that this model

yields a so-called “scale-free” network in which the vertex degrees follow power-law

distribution.

The network of interlanguage links in Wikipedia studied in this thesis does not fit

any of the above three models. However, as it is shown in Chapter 3, skeletons of

individual connected components are indeed scale-free.

The proposed models attracted a lot of attention and their properties were further

studied. Dorogovtsev and Mendes [29] offer a continuous approach to the evolution of

scale-free networks, Barabási et al. [7], Dorogovtsev et al. [27], as well as Ravasz et al.

[88] show that certain deterministic fractal-like structures exhibit properties similar to

those of random scale-free networks. Robustness and error tolerance of the networks

was studied by Albert et al. [86], Callaway et al. [19], Dorogovtsev et al. [28], as well

as Duch and Arenas [31]. Finally, Bollobás [11] gives a thorough account of the results

in the theory of random graphs.

1Stanley Milgram is famous for two experiments: the “small-world” experiment and a study of
obedience [68]. The latter is arguably even more popular, and usually referred to simply as “the Milgram
experiment”. The results of the former, on the other hand, were immortalized by a Broadway play “Six
Degrees of Separation” by John Guare, which was in turn adapted for a film starring Stockard Channing,
Will Smith, Donald Sutherland and Sir Ian McKellen.

16

CHAPTER 2. LITERATURE REVIEW AND STATE OF THE ART

2.3 Power-Law Distributions

A power-law distribution is a probability distribution such that P(x) ∝ x−γ. We

have already referenced this relation (also known as “Zipf’s law” or “Pareto distri-

bution”) while describing the degree distributions in scale-free networks (cf. Section

2.2). Power-law distributions are encountered2 in extremely diverse settings, for ex-

ample: the distribution of bank assets [85], frequency of Japanese family names [70],

number of firm bankruptcies in a given day [56], weather persistence [18], city sizes

[67], occurrences of DNA base pair sequences [66], number of sent e-mails [34], and

occurrences of numbers in the Web [30] all follow the power law. For an excellent de-

scription of the distribution and numerous examples of its occurrences, see Newman

[75] and Clauset et al. [23].

In Chapter 3 we discover another occurrence of a power-law distribution.

2.4 Social Networks

Another important class of problems deals with so-called community detection in so-

cial networks. For an excellent introduction to the field of social network analysis, see

Wasserman and Faust [103].

Although the graphs researched in the community detection problems are not

vertex-colored, which is a crucial property in our research, it is nevertheless fitting

to become familiarized with the results in this field, and certain results can and will be

reused in our research.

We are particularly interested in a community detection algorithm by Girvan and

Newman [48]. The algorithm utilizes a concept of edge betweenness that quantifies the

importance of each edge in the graph. The concept is derived from a similar ver-

tex measure known as betweenness centrality, proposed independently by Freeman [43]

and Anthonisse [4]. Brandes developed an elegant algorithm for fast calculation of

betweenness centrality [15]. Newman and Girvan [77] show that two betweenness

measures: one motivated by resistor networks, the other by random walks, are equiv-

alent and, in the same paper, introduce the important notion of modularity.

The list of articles researching methods of identifying communities in social net-

works is much longer. M. E. J. Newman, a very prolific researcher in the field of social

network analysis, investigates scientific collaboration network [71, 72], offers certain

improvement over the original Girvan-Newman algorithm [74], reviews existing com-

munity detection algorithms [73], rewrites in terms of eigenvalues and eigenvectors

the problem of finding the maximal modularity and comes up with a fast and accurate

algorithm [76].

2To be more precise: data from diverse settings fit well to power-law distributions. In a typical case,
we cannot be certain that a given set of values is drawn from a power-law distribution.

17

CHAPTER 2. LITERATURE REVIEW AND STATE OF THE ART

Newman and Park [78] show properties of social networks, such as assortative

mixing, that are absent in other types of networks. Clauset et al. [22] show yet another

algorithm and evaluate it on the network of purchases on Amazon, the algorithm is

further discussed by Gulbahce and Lehmann [50]. Radicchi et al. [87], Flake et al. [40],

Capocci et al. [21] show other community identification methods. Finally, Danon et al.

[26] compare the performance of community structure identification algorithms .

Note: various centrality measures are related to the robustness and error tolerance

analyses referenced in Section 2.2.

2.5 Cliques and Cores

Seidman [93] proposed a notion of k-core, that is, a group of nodes such that each of

them is connected to at least k other. Since then, a number of techniques improving

the original idea appeared, such as k-cliques [81] or k-dense method [90].

The Maximum Clique problem for a weighted graph searches for a clique S such

that its sum of weights is maximal. An excellent review of the problem, its formula-

tions, complexity, bounds, exact solutions, heuristics, and applications is carried out in

Ref. [12]. The problem itself is one of the classic problems in computer science. It was

among the 21 problems proved to be NP-complete by Karp in his famous paper [58].

A heuristic returning approximate solutions of the Maximum Clique problem is

the crucial part of an algorithm proposed in Section 4.3.

2.6 Genetic Algorithms

Genetic Algorithm (GA) is an optimization technique inspired by the natural selection

process [55, 49]. The approach has been successfully used in various settings, includ-

ing: phylogeny [62, 54], drug design [108], and protein folding [100].

The goal of GA is to find a global minimum (or a sufficiently deep local minimum)

of a function f : X → R+. There are numerous flavors of GA, and hence it is more

suitable to call it a “technique” or “framework”, rather than an algorithm per se. For

the sake of brevity, we shall present a single algorithm to illustrate the idea behind

GA, which is very similar to the “Classical Simple Genetic Algorithm” as described by

Vose [101]. The reader should bear in mind that virtually any element of the described

algorithm may be replaced by a more complex counterpart. For an enhanced treatment

of GA, see Refs. [49, 69].

In its very simple form, a genetic algorithm requires two problem-specific inputs: a

bijective encoding ǫ : X → {0, 1}M and a fitness function φ : {0, 1}M → R+, satisfying

φ(ǫ(·)) ≡ f (·). The algorithm may be summarized as follows:

18

CHAPTER 2. LITERATURE REVIEW AND STATE OF THE ART

1. Draw N codes e ∈ {0, 1}M uniformly at random, and store them in G1. This is

the first generation of candidates.

2. Given a generation Gi, randomly choose N pairs of candidates (a candidate may

be chosen more than once) in such a way that during each random draw, the j-th

candidate (Gi
j) is chosen with probability:

φ(Gi
j)

∑k=1..N φ(Gi
k)

This formula gives preference to the candidates that yield higher values of φ.

Such a selection process is called the roulette-wheel selection. The chosen pairs of

candidates will be the parents of the next-generation candidates.

3. For each chosen candidate, for each bit in its code, flip the bit of with (a very low)

probability p. This step is called mutation.

4. For each pair of parent candidates (g′, g′′), draw a number k ∈ [1,M − 1] uni-
formly at random. Produce a child by so-called crossover operation in the follow-

ing way: concatenate the first k bits of the first parent with the M− k last bits of

the second parent. This step creates N new candidates which constitute the next

generation (Gi+1).

5. Find the candidate in Gi+1 with the best fitness. If the value of the best fitness

has not changed in S iterations: stop. Otherwise, go back to step 2.

The algorithm proposed in Section 4.5 is a variation of GA.

2.7 Molecular Dynamics and Visualization

The problem of aesthetic drawing of large graphs has been thoroughly studied since at

least 1980s. One of the first feasible solutions was proposed by Eades [32], and refined

by Fruchterman and Reingold [45] and Kamada and Kawai [57].

A large portion of currently employed methods, as well as the classic ones cited

above, share a common idea: define a potential function assessing the quality of ver-

tex arrangements, and find a sufficiently good local minimum of the potential. The

potential is a balance of harmonic and repulsive terms.

The algorithm for node placement presented in Section 4.4 also belongs to this

category.

19

CHAPTER 2. LITERATURE REVIEW AND STATE OF THE ART

2.8 Wikipedia in Academic Studies

In the recent years, Wikipedia has been increasingly a subject of scientific study, both

qualitative and quantitative. On the qualitative side, its collaborative nature is of in-

terest to sociologists [17, 51, 92], the way it revolutionizes access to knowledge attracts

epistemologists [97, 109, 91, 65], the contributors’ motivations have been studied by

psychologists [8, 80]. Qualitatively, its content serves as an excellent example of a

large, complex network [111]. The exponential growth of the number of contribu-

tors and text content [3] has been described in terms of the preferential attachment

mechanism [20], the dynamics of user contributions (social interactions, conflict pat-

terns) have been thoroughly measured and visualized [96, 16, 79], several linguistic

corpora, taxonomies and ontologies have been extracted based on the contents of in-

dividual Wikipedia language editions3, a number of bilingual dictionaries have been

built based on the interlanguage links [35, 99], and methods of content enrichment have

been proposed [1]. The above examples are by no means an exhaustive list. Wikipedia

maintains a handy list of scholarly articles, theses, and books in which Wikipedia is

studied4.

In this thesis, we investigate yet another interesting aspect of the network in ques-

tion: the topology of so-called interlanguage links. As far as we know, there were no

earlier studies of this structure, quite possibly due to a false premise that its topology

is trivial.

2.9 Translation as an Equivalence Relation

The question whether the approaches presented in this thesis may be applied to multi-

lingual dictionary-like resources (such as the interlanguage links in Wikipedia) appears

to be a facet of a profound problem in linguistics. The limits of a translation process,

and properties of a hypothetical “largest common denominator” of all the natural lan-

guages have been long studied by the linguists.

Let us start with a couple of examples of linguistic findings that outline the limits

of a translation process and at the same time demonstrate the extraordinary diversity

of spoken languages. The only colors that exist in the vocabulary of every language

are black, white and (with certain disclaimers) red [106]. In the Iquito language, spatial

relationships are expressed relative to the river (“upriver”, “downriver”, “away from

the river”), rather than relative to the position of the sun (“east” or “south”) [33]. The

Piranã language has no numerals, there are only expressions “small quantity” and

“large quantity” [39, 42].

3See the list of papers accepted to the Language Resources and Evaluation Conference 2008, available
here: http://www.lrec-conf.org/lrec2008/List-of-accepted-papers.html

4See: http://en.wikipedia.org/wiki/WP:ACST

20

CHAPTER 2. LITERATURE REVIEW AND STATE OF THE ART

On the bright side, Wierzbicka identifies the basic concepts common to all lan-

guages and defines the more sophisticated ideas using the basic vocabulary [106, 105,

107].

Moving on to the realm of multilingual online dictionaries and wikis, a project

called OmegaWiki5 is an attempt to create a multilingual dictionary. Much care is given

to precision: OmegaWiki distinguishes between a language-neutral meaning (“defined

meaning”) and its manifestation in particular languages (“expression”). Much care

is given to minimizing semantic drift, and there are a number of relations between

defined meanings, such as: “narrower term” or “broader term”.

In contrast to OmegaWiki, the interlanguage links in Wikipedia are clearly a sec-

ondary functionality. There are, however, a number of bots constantly checking the

interlanguage links, in particular maintaining symmetry and transitivity of the links.

There are also analysis tools providing users and bots with useful hints regarding the

interlanguage links. For example, Interwiki Link Checker6 compiles a list of pairs of

articles in different languages with the same titles — potential candidates for estab-

lishing an interlanguage link. Interwiki Conflict Resolver7 compiles a list of articles

accessible from a given initial one, and presents it to user, sorted by languages. User

can group the articles into subjects by assigning group numbers to articles. Let us note

that there is an implicit assumption in all the tools: one that the interlanguage links

should form an equivalence relation.

5See: http://www.omegawiki.org/
6See: http://de.wikipedia.org/wiki/Benutzer:Flacus/Wikipedia_Interwiki-Link-Checker/en
7See: http://en.wikipedia.org/wiki/User:Yurik/Interwiki_Conflict_Resolver

21

Chapter 3

Case Study: Semantic Drift in

Wikipedia

In this chapter we shall describe the topology of so-called interlanguage links inWikipedia.

This network is as an excellent illustration of the class of networks researched in this

thesis. We shall begin by defining the researched networks, and then we shall describe

various properties of the networks: starting with the basic ones, and moving on to dis-

tributions of component sizes, node degrees and clustering coefficients. Next, we shall

present a method of extracting the “skeleton” of the researched networks and analyze

its properties. Finally, we shall summarize our findings.

3.1 Research Material

Let us begin by defining the research material, that is, the networks of interlanguage

links in Wikipedia that are be investigated in this chapter.

3.1.1 Two Networks

It is convenient to describe the properties of the network of interlanguage links in

graph-theoretic terms. For that reason, let us introduce two undirected graphs, A
and C, that will be analyzed throughout this chapter1. Vertices of one of the graphs

represent articles, while vertices of the other represent categories. In each case, a

vertex also represents all the redirects to the represented page. Two vertices v1, v2 are

connected by an edge iff there exists an interlanguage link v1 → v2 or v2 → v1 (possibly

leading to a relevant redirect). Each vertex has a color assigned to it: it is the language

1We consider the following pairs of terms to be synonyms: “graph”–“network”, “vertex”–“node”,
“edge”–“link”. Also, “node” will be used interchangeably with either “article” or “category” (depending
on the context).

22

CHAPTER 3. CASE STUDY: SEMANTIC DRIFT IN WIKIPEDIA

of the article or category representing it. Due to the nature of the interlanguage links,

it is guaranteed that no two vertices having the same language assigned are connected

by an edge. Throughout the rest of the chapter, A will denote the article network, and

C – the category network.

While building the two graphs, we have processed a total of 11 510 142 articles,

8 057 367 article redirects, and 89 339 694 article interlanguage links, as well as 1 724 088

categories, 5 630 category redirects and 13 902 852 category interlanguage links from

all the 262 language editions of Wikipedia (cf. Table 1.1). This initial phase required

approx. 10 GB of RAM. Next, all the connected components of the two graphs have

been identified and each component has been stored separately. This way, all the

subsequent calculations could be done sequentially, component-by-component, with a

relatively small memory footprint.

3.1.2 Limitations

It should be kept in mind that a number of technical limitations might have influ-

enced the results presented further in this chapter. Firstly, redirects to article sections

are treated as redirects to the articles themselves. Also, in the case of redirects to

pages representing a broader meaning, the relevant sections often do not exist, and

the redirects point to the whole page instead. Thus, a redirect usually gives no hint

whether the relation between the connected meanings is “equivalence” or “generaliza-

tion”. In consequence, interlanguage links leading to “generalizing” redirects represent

“generalization” instead of intended “equivalence”. For example, the combination:

“en:Mother-in-law”
I
−→ “ru:Tëshcha”

R
−→ “ru:Rodstvo”

I
−→ “en:Kinship” is reflected in

the constructed graph as: “en:Mother-in-law” – “ru:Rodstvo” – “en:Kinship” (
R
−→ de-

notes a redirect and
I
−→ an interlanguage link; actual Russian titles were transliterated

according to the BGN standard).

Secondly, the database snapshots provided by MediaWiki are not taken at the same

instant: each language edition is dumped individually at a different time. There is

over a month of difference between the timestamps of the earliest and the latest dump.

That way, some coherent modifications spanning multiple language editions may seem

incoherent when analyzing the dumps together.

Finally, some extremely rare cases – technically possible, but discouraged by the

Wikipedia policies – are simply ignored. These include: interlanguage links to non-

existent pages, more than one interlanguage link from a given page to a given language

edition, circular redirects, interlanguage links from a given page to another page in the

same language edition.

23

CHAPTER 3. CASE STUDY: SEMANTIC DRIFT IN WIKIPEDIA

1e+00 1e+02 1e+04 1e+06

2
5

10
20

50
10

0
20

0

Rank

C
om

po
ne

nt
 s

iz
e

1 100 10000

2
5

10
20

50
10

0

Rank

C
om

po
ne

nt
 s

iz
e

Figure 3.1: Component sizes of coherent components in the article network A (left) and the category network C
(right), plotted against their ranks. Both plots have log-log scales. The influence of mass-produced date-related
topics on the shapes of the distributions is discussed in the text.

3.2 Basic Properties

Let us proceed to study the properties of two networks of interlanguage links: one

connecting the articles (A), and the other connecting the categories (C). In both cases

we will treat the networks as undirected graphs, assuming a link a− b iff there is an

interlanguage link a→ b or b← a.

Network A consists of 11 510 142 nodes and 89 339 694 links. Approx. 42% of the

nodes are isolated, and the remaining nodes are grouped into 1 223 183 connected

components. Network C consists of 1 724 088 nodes and 13 902 852 links, approx. 51.5%

of the nodes are isolated, and the rest are grouped into 118 039 connected components.

We will say that a connected component is coherent when no two pages are in the

same language2, and that it is complete when it contains all the possible links (i.e., is a

clique). There are 59 323 incoherent components in A and 6 152 incoherent components

in C. In both cases it is approx. 5% of all the non-singleton connected components.

Completeness is correlated with coherence: for example in the case of A, 63% of the

coherent components are complete, and 99% contain at least half of all the possible

links. On the other hand, none of the incoherent components are complete, and only

about 61% contain at least half of all the possible links.

2We use the terms “node” and “page” interchangeably. Both are equivalent to “article” in the context
of network A, and to “category” in the context of network C.

24

CHAPTER 3. CASE STUDY: SEMANTIC DRIFT IN WIKIPEDIA

1 10 100 1000 10000

1e
+

01
1e

+
02

1e
+

03
1e

+
04

1e
+

05

Rank

C
om

po
ne

nt
 s

iz
e

1 5 10 50 100 500 5000

5
10

20
50

20
0

50
0

Rank
C

om
po

ne
nt

 s
iz

e

Figure 3.2: Component sizes of the incoherent components in the article network A (left) and the category network
C (right), plotted against their ranks. Both plots have log-log scales. The so-called “king effect” [61] is discussed
in the text.

1 10 100 1000 10000

1
5

10
50

50
0

Rank

N
um

be
r

of
 E

ng
lis

h
no

de
s

1 5 10 50 100 500 5000

1
2

5
10

20

Rank

N
um

be
r

of
 E

ng
lis

h
no

de
s

Figure 3.3: Number of English pages in the incoherent components in the article network A (left) and the category
network C (right), plotted against their ranks. Both plots have log-log scales.

25

CHAPTER 3. CASE STUDY: SEMANTIC DRIFT IN WIKIPEDIA

3.3 Component Sizes

Three component size vs. rank plots for A and C are presented. Sizes of the coher-

ent components are plotted in Figure 3.1 and sizes of the incoherent components are

plotted in Figure 3.2. For the incoherent components of each network, the number of

English pages in the case of incoherent components (a coarse measure of the number

of topics mixed in a component) is plotted in Figure 3.3. In each of the plots, both

scales are logarithmic.

The plotted points are (piecewise) well approximated by straight lines, which indi-

cates that a component’s size s is a power-law function of its rank r, namely: s ∼ r−γ.

Let us take a closer look at the obtained distributions. In the case of the coherent

components of A (left panel of Figure 3.1) there are two clear regimes. Most of the

top 2 200 or so components (the first regime), each covered by at least 75 language

editions, contain articles on the years of the current era and centuries. Such articles are

easy to create in an automated way, and it is easy to maintain the interlanguage links

to corresponding articles in the other language editions (easy maintenance explains

why the components are coherent). An informal competition among the language

editions for the largest number of articles might be an additional motivation for the

mass-creation of the date-related pages.

Similarly, two regimes in the component size distribution of C (right panel of Figure
3.1) can also be observed, although the transition between them is smoother than in

the previous case. Date-related topics account for about 75% of the top 5 000-6 000

components (each containing at least 26-28 nodes). Among these are categories for

years, decades, centuries, births and deaths in a given year, and (for the recent times)

films and video games in a given year. Other prominent categories are: countries

(including “History of . . . ” and “Geography of . . . ” as separate categories), and users

speaking a given language on a given level.

Moving on to the sizes of incoherent components, we note that the largest in A
(left panel in Figure 3.2) is well above the best-fit line (γ ≈ 0.587). This anomaly is an

example of the so called “king effect”, discovered by Laherrère [61] while analyzing

the sizes of the world’s oilfields: the largest element is much larger than a log-log

regression would predict. The same component is a clear outlier in the distribution of

the number of English articles in components (left panel in Figure 3.3)3.

Figure 3.2 and Table 3.1 show that semantic drift is a serious problem both in A and

C. To give a perspective: the largest component consists of 72 284 articles, including

3 184 articles in English, while in theory each component should contain at most one

article in English, and its size should be bounded by the number of language editions,

i.e., about 250. It contains articles on such a diverse subjects as: “Abelian group”,

3It is not clear whether the largest component is about to become the so-called “giant component”
or its larger-than-expected size is a mere fluctuation. The answer depends on the choice of a model
governing the network’s growth, which is outside the scope of this analysis.

26

CHAPTER 3. CASE STUDY: SEMANTIC DRIFT IN WIKIPEDIA

Range Fit results

size ranks γ R2

Articles (C) [75,∞) (−∞, 2 173] 0.120 0.9852

Articles (C) (−∞, 75) (2 173,∞) 0.544 0.9664

Articles (I) [15,∞) (−∞, 23 463] 0.587 0.9889

Articles (E) (−∞,∞) (−∞,∞) 0.469 0.9690

Categories (C) (−∞, 27] [5 638,∞) 0.196 0.9811

Categories (C) (27,∞) (−∞, 5 638) 0.970 0.9855

Categories (I) (−∞, 20] [2 472,∞) 0.493 0.9897

Table 3.1: The power law applied to the component sizes of the article and category networks. “C”, “I” and “E”
refer to Figures 3.1, 3.2, and 3.3 (respectively). It is tested whether the relation between a component size s and its
rank r is indeed s ∼ r−γ. The last column denotes adjusted R2 – a measure of correlation.

“Beekeeping”, “Chinese poetry”, and “Districts of Luxembourg”. The second largest

component in terms of the total number of articles contains 7 004 nodes, while the

second largest in terms of the number of English articles contains 221 nodes.

Table 3.1 presents the parameters of the best fits corresponding to the lines in Fig-

ures 3.1, 3.2, and 3.3.

3.4 Node Degrees and Clustering Coefficients

The left panel of Figure 3.4 presents the node degree distribution in both researched

networks (note that both axes are logarithmic). The median node degree is 6 in A and

12 in C. There are two anomalies in the distribution in the case of the article network:

a plateau spanning degrees 74-93, and a peak at degrees 117-119. Both phenomena

have plausible explanations. The plateau is a result of articles where the subject is on

years of the current era. Some editions contain articles on all the 2000+ years, others

only on the more recent years. For example, there are approx. 88 language editions

covering year 1709, 82 covering year 1209 and 74 covering year 509. The articles on a

given year are usually forming a clique, thus each article has degree equal to one less

than the size of the clique. As a consequence, we observe that an increased number

of nodes with degrees 74-93 relates to a high number of cliques of sizes 75-94. On the

other hand, the peak at degrees 117-119, relates to articles on days of the year. There

are approximately 120 language editions where such articles are present, and these

editions usually contain articles on all the 366 days. Most of the groups of articles

are connected in cliques, hence a peak in the degree distribution. The article with

the highest degree (337) is “ca:Llista de personatges de la Mitologia Egípcia” which

contains short descriptions of various gods of the Egyptian mythology. A number of

pages on articles in other languages, including 42 from the English edition, contain

27

CHAPTER 3. CASE STUDY: SEMANTIC DRIFT IN WIKIPEDIA

1 2 5 10 20 50 100 200

1e
+

00
1e

+
02

1e
+

04
1e

+
06

Degree

C
ou

nt

1 2 5 10 20 50 100 200

1e
+

00
1e

+
02

1e
+

04
1e

+
06

Degree

C
ou

nt

1 2 5 10 20 50 100

1
10

0
10

00
0

Degree

C
ou

nt

Figure 3.4: (Left) Degree distribution for the article network (blue stars) and category network (red circles). Log-
log scale, degree 0 omitted. The plateau at 74-93 and the peak at 117-119 in the case of articles are commented on in
the text. (Right) Degree distribution for the skeleton of the article network (log-log scale). The skeleton extraction
procedure is described in the text. Only the incoherent components are accounted for, degree 0 is omitted. The
distribution fits the power law with γ ≈ 3.75 (adjusted R2 ≈ 0.9770). The peak at 27-30 is commented on in the
text.

interlanguage links to (redirects to) this page.

Watts and Strogatz [104] have demonstrated the usefulness of an indicator named

clustering coefficient in describing network topologies. The clustering coefficient of a

perfectly coherent and complete network of interlanguage links would be 1. In reality,

for both networks the value is quite high (approx. 0.97), with over 0.98 for the coherent

components, and approx. 0.91 for the incoherent ones. Figure 3.5 presents the distribu-

tion of the values of the clustering coefficient for nodes having at least 10 neighbors4.

As expected, a low clustering coefficient is fairly uncommon. More interesting is the

conditional probability that a node with degree > 9 and clustering coefficient < 0.80

will be part of an incoherent component: it is approximately equal to 0.9958 in the case

of A and “only” 0.7748 in the case of C.

3.5 Skeleton Extraction

Let us summarize the results so far: having analyzed the distributions of component

sizes, degrees, and clustering coefficients, we have found that the network of interlan-

guage links mainly consists of tight clusters. There are rare connections between the

clusters, which are usually symptoms of incoherence. Our next question is: what is

the topology of these rare connections?

4If the lower degrees were included, peaks at 1
2 ,

1
3 ,

2
3 , . . . would be visible, since the low-degree nodes

have only a few possible values of the clustering coefficient. We have decided to “subtract” the expected
peaks and show the less-obvious pattern.

28

CHAPTER 3. CASE STUDY: SEMANTIC DRIFT IN WIKIPEDIA

0.0 0.2 0.4 0.6 0.8 1.0

1e
−

06
1e

−
04

1e
−

02
1e

+
00

Clustering

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

1e
−

06
1e

−
04

1e
−

02
1e

+
00

Clustering

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

1e
−

05
1e

−
03

1e
−

01

Clustering

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

1e
−

05
1e

−
03

1e
−

01

Clustering

F
re

qu
en

cy

Figure 3.5: Distribution of the clustering coefficient values of nodes. Only the nodes with degree > 9 have
been accounted for. The left diagram presents distributions for the article network, the right diagram presents
distributions for the category network. Circles denote values for the incoherent components, triangles – for the
coherent ones. Note that the y-axis is logarithmic, so the vast majority of nodes have clustering coefficient close to
one.

We would like to extract the “skeleton” of an incoherent component, a network in

which each set of nodes representing a given topic (usually a tight cluster) is shrunk to

a single point, thus revealing the connections between separate topics. Of course, par-

titioning a network into topics requires expert knowledge, which we cannot provide.

Instead, we propose a method of extracting an approximate structure of the skeleton

network, presented in Algorithm 3.1.

The algorithm takes a graph G = 〈V, E, κ〉, where V represents vertices (i.e., pages),

E represents edges (i.e., interlanguage links), and function κ(·) represents nodes’ lan-

guages. The algorithm consists of a couple of phases, each of which has a clear objec-

tive:

1. First, any of the most frequently occurring languages is chosen as the reference

language. The nodes in this language will be the reference nodes.

2. For each node v, the closest reference node(s) z(v) is determined. Let us bear

in mind that the number of the closest reference nodes of a node v, denoted by

|z(v)|, may be larger than 1.

3. In the loop starting in line 7, nodes with only one closest reference nodes are “col-

lapsed” to the reference node. All the links of a collapsed node are “inherited”

by the respective reference node.

4. Next, we want to collapse the remaining non-reference nodes. In the loop starting

in line 15, as long as there is any pair of non-reference nodes connected by a link,

we merge the pair into a single (non-reference) node.

29

CHAPTER 3. CASE STUDY: SEMANTIC DRIFT IN WIKIPEDIA

Algorithm 3.1 FindSkeleton(G) – extraction of the skeleton of a graph

1: lmax ← argmaxx
∣

∣{v ∈ V|κ(v) = x}
∣

∣ ⊲ choose the most frequent language

2: L← {v ∈ V|κ(v) = lmax} ⊲ nodes in the most frequent language

3: for v ∈ V do

4: dmin(v)← minw∈L d(v,w) ⊲ distance to the closest node in L

5: z(v)← {w ∈ L|d(v,w) = dmin(v)} ⊲ the closest nodes in L

6: end for

7: for v ∈ L do

8: for v ∈ V such that z(v) = {v} do
9: for w ∈ ǫ(v) do

10: E← E ∪
{

{v,w}
}

\
{

{v,w}
}

11: end for

12: V ← V \ {v} ⊲ v removed, its links "acquired" by v

13: end for

14: end for

15: for {v′, v′′} ∈ E such that |z(v′)| > 1∧ |z(v′′)| > 1 do

16: V ← V ∪ {w} ⊲ merge v′ and v′′ into a new node w

17: κ(w)← ∅

18: z(w)← z(v′) ∪ z(v′′)
19: for v′′′ ∈ ǫ(v′) ∪ ǫ(v′′) \ {v′, v′′} do
20: E← E ∪

{

{w, v′′′}
}

21: end for

22: V ← V \ {v′, v′′}
23: for v′′′ ∈ ǫ(v′) ∪ ǫ(v′′) do
24: E← E \

{

{v′, v′′′}, {v′′, v′′′}
}

25: end for

26: end for

27: for v ∈ V such that |z(v)| = 2∧ |ǫ(v)| = 2 do

28: E← E ∪ {ǫ(v)}
29: V ← V \ {v}
30: end for

31: return 〈V, E, κ〉

30

CHAPTER 3. CASE STUDY: SEMANTIC DRIFT IN WIKIPEDIA

Figure 3.6: Illustration of the skeleton extraction procedure. Top-left: the original network, reference nodes are
hollow. Top-right: the nodes with exactly one closest reference node are merged (loop in line 7 in Algorithm 3.1).
Bottom-left: the nodes with more than one closest reference node are merged (loop in line 15 in Algorithm 3.1).
Bottom-right: the non-reference nodes with exactly two neighbors are removed (loop in line 27 in Algorithm 3.1).

31

CHAPTER 3. CASE STUDY: SEMANTIC DRIFT IN WIKIPEDIA

Figure 3.7: Skeleton of a medium-sized incoherent component (812 articles, including 47 in English). The skeleton
extraction procedure is described in the text.

5. At this point any non-reference node left may only have the reference nodes

as its neighbors. We remove all the non-reference nodes that have exactly two

neighbors, and in each case we directly connect the pair of reference nodes (loop

starting in line 27).

In other words, the algorithm first collapses all the nodes that are in the sphere of

influence of only one reference node (|z(v)| = 1). After this operation the network

contains only the reference nodes and some “intermediate” nodes. We wish to mini-

mize the number of the “intermediate” nodes. Therefore, the algorithm collapses all

the connected “intermediate” nodes, and ultimately removes nodes the “intermediate”

nodes that connect only two reference nodes. Figure 3.6 presents an example of the

skeleton extraction procedure.

Figure 3.7 presents a result of the skeleton extraction procedure applied to a middle-

sized component. After extracting the skeleton of the entire A network, the average

degree of a skeleton node is approx. 1.17, and the clustering coefficient is approx.

0.37. The distribution of node degrees is shown in the right panel of Figure 3.4. The

distribution is power-law (with γ ≈ 3.75), indicating a scale-free network. The peak

at degrees 27-30 is yet another result of mass-edition, this time related to articles on

the days of the year (such as: en:December 1, en:December 2, etc.) In 10 out of 12 cases,

at least one language edition contains a bizarre copy-and-paste error that connects all

the days of a given month, for example all the 30 articles on the days of September

from the Hindu edition contain an interlanguage link to the article in Kannada on

September 11. Thus, in the skeleton network, the node representing September 11 has

29 neighbors. Note that in the ideal case (no incoherence) the skeleton network should

consist solely of isolated nodes, i.e., should contain no links at all.

32

CHAPTER 3. CASE STUDY: SEMANTIC DRIFT IN WIKIPEDIA

3.6 Summary

Summing up, we have presented the surprisingly complex topology of the interlan-

guage links in Wikipedia. Instead of a set of isolated cliques, the structure can be

informally described as a scale-free network of loosely interconnected cores. From

a user’s point of view, lack of coherence results in semantic drift, e.g. en:Pipeline and

en:Vulture are connected by a series of interlanguage links which are supposed to model

equivalence (cf. Figure 3.7).

33

Chapter 4

Theoretical Results

This chapter presents the main theoretical results of author’s original research. Its

contents are laid out as follows: Section 1.2 introduces the notation and definitions

used throughout the chapter, illustrating them with examples. Section 1.3 presents

the algorithmic problem of drift detection in a vertex-colored graph, together with a

brief motivation behind it. Then the problem’s computational complexity is assessed

in Section 4.1.

As the problem is proved to be computationally hard, three approximate solutions

are presented, each using a distinct approach. In Section 4.2 we describe a meta-

approach that is a common part of two other approaches: a greedy algorithm for find-

ing the minimal cut given a sequence of edges ordered decreasingly by their “credibil-

ity”. In Section 4.3, we iteratively solve the Maximum Clique graph-theoretic problem

(using fast heuristics). In Section 4.4 we present an approach motivated by molecu-

lar mechanics, in which a carefully designed potential is minimized. In Section 4.5 a

genetic algorithm yielding an approximate solution to the computational problem is

presented. In Section 4.6, we approach the problem by applying the Girvan-Newman

algorithm for finding communities in a network based on interactive calculation of

edge betweenness.

4.1 Computational Complexity of the Researched Prob-

lem

Computational complexity theory is the part of computer science that studies the re-

source requirements in time and memory of various computational tasks [83]. Full

presentation of the theory is outside the scope of this work, readers unfamiliar with

the theory may consult Refs. [47, 102].

In the following section, we prove that the Minimum Partition optimization prob-

lem is NP-hard, i.e., for any problem in theNP complexity class, there exists a polynomial-

34

CHAPTER 4. THEORETICAL RESULTS

time reduction to our problem. This implies, in particular, that if there is a polynomial-

time solution to our problem, then any problem in the NP class has a polynomial time

solution.

In practical terms, the result has the following significance: since a polynomial-

time solution to the Minimum Partition problem would answer the most important

and arguably the most difficult open question in the field of computer science (P
?
=

NP), then finding such a solution is extremely unlikely. Therefore, we may focus our

attention on looking for fast heuristics, returning approximate solutions to the problem.

We express our main result in the form of a theorem. The reminder of the section

shall be devoted to the proof of the theorem.

Theorem 4.1 Minimum Partition optimization problem, even with the restriction of edge

weights to µ ≡ 1, is NP-hard.

Proof (4.1) In order to prove NP-hardness of the optimization problem, we show that

the corresponding decision problem is NP-complete:

Instance: A graph G = 〈V, E, κ〉, and a bound B.

Question: Is there a partition Π such that ‖Π‖G ≤ B?

Let us start the proof by noting that the decision problem is NP. Indeed, given

an instance of Π, the calculation of ‖Π‖G is polynomial. NP-completeness is shown

by a polynomial transformation from the Multiterminal Cut problem for arbitrary

graphs, which was proved to be NP-hard in [25]:

Problem 4.2 (Multiterminal Cut, [25]) Given a graph G = (V, E), a set S = {s1, s2, . . . , sk}
of k specified vertices or terminals, and a positive weight w(e) for each edge e ∈ E, find a mini-

mum weight set of edges E′ ⊆ E such that the removal of E′ from E disconnects each terminal

from all the others.

Theorem 4.3 (NP-completeness of 3-Terminal Cut, [25]) If arbitrary1 graphs are allowed,

Multiterminal Cut for k = 3 (i.e., 3-Terminal Cut) is NP-complete even if all weights

are equal to 1.

A detailed proof of Theorem 4.3 can be found in [25]. The proof uses a polynomial

transformation from the Simple Max Cut problem [46], [47].

Let us consider the decision problem corresponding to the 3-Terminal Cut prob-

lem with unit edges:

1In this context, arbitrary means: “not necessarily planar”. This remark in the original formulation is
due to the fact that in the preceding parts of [25] the tractability of some special cases of planar graphs
is investigated.

35

CHAPTER 4. THEORETICAL RESULTS

Instance: An unweighted graph G = (V, E), a set of three terminal nodes S,

and a bound B.

Question: Is it possible to remove at most B edges in such a way that each

terminal would be disconnected from all the others?

Having chosen a problem known to be NP-complete, we proceed by showing a

polynomial transformation from the selected problem to the decision version of the

Minimum Partition problem.

Figure 4.1: Sample transformation from 3-Terminal Cut to Minimum Partition. Input for 3-Terminal

Cut, shown on the left, is a graph G with three terminal nodes marked with hollow circles. The corresponding
input for Minimum Partition, shown on the right, is a graph G′ with vertices in six different colors. All the
nodes in G′ corresponding to the terminals in G are of the same color (gray hexagon) and each of the remaining
nodes has a different, distinct color.

Let us show how to construct a graph G′ being the input for the Minimum Par-

tition, based on an instance G = (V, E) of the 3-Terminal Cut. The graph G′ shall

contain the same vertices V and edges E as graph G, and the vertex coloring shall be

as follows:

κ(v) :=

{

S for v ∈ S

{v} otherwise
(4.1)

An example of the transformation is shown in Figure 4.1. The reverse transformation,

that is, mapping of the answer to the Minimum Partition problem to the setting of the

3-Terminal Cut problem is as follows: given Π, return IG(Π), which is a polynomial

operation.

Lemma 4.4 For G = (V, E) and a set of terminals S, there exists a disconnecting subset E′

such that |E′| ≤ B if and only if for a corresponding G′ there exists a domain partition Π

such that ‖Π‖G′ ≤ B.

Proof (4.4,⇒) Assume that E′ disconnects all terminals S in graph G from each other,

and |E′| ≤ B. Since S is the only non-trivial layer of G′, and E′ disconnects all elements

36

CHAPTER 4. THEORETICAL RESULTS

in S from each other, then E′ is a cut, and therefore for Π, the natural partition of

〈V, E \ E′, κ〉, the inequality ‖Π‖G′ ≤ B holds.

�

Proof (4.4, ⇐) Given a partition Π such that ‖Π‖ ≤ B, from the choice of colors

(equation 4.1), and from the definition of a partition (Eq. 1.7) it follows that:

∀s1∈S∀s2∈S(s1 6= s2)⇒ Π(s1) 6= Π(s2) (4.2)

Therefore, removing edges IG′(Π) from graph G separates each terminal node in S

from all the other ones. The total number of edges which need to be removed in order

to achieve separation is thus at most: B.

�

We have demonstrated that the 3-Terminal Cut decision problem can be reduced

to Minimal Partition decision problem using transformations of polynomial com-

plexity (in time and in memory). Therefore, the latter problem is at least as difficult

as the former one. Since the former is NP-complete, and the latter is NP, then the

Minimum Partition decision problem is NP-complete, and thus the corresponding

optimization problem in NP-hard.

�

4.2 “Greedy” Approach

Our first algorithm belongs to a class of so-called greedy algorithms. It is a well-known

and simple problem solving strategy, which is based on an assumption that a series

of locally optimal choices will yield a globally optimal solution. The set systems such

that the corresponding optimization problem can be solved by a greedy algorithm are

called greedoids [60]. Even in the case of optimization problems that cannot be solved

by a greedy algorithm, such a strategy may yield quite useful approximate solutions.

Let us assume that we are given a list of edges of the graph ordered descending by

their “trustworthiness” (denoted by ~E). Next, starting with an empty set of accepted

edges, we process each edge from the ordered list in the following way: if the edge

can be added to the set of accepted edges without violating coherence, then we add it.

The corresponding set of rejected edges is returned as an approximate solution to the

problem. Algorithm 4.1 implements the above procedure.

Observe that for any input ~E the algorithm returns a locally-minimal cut. Also,

there is always an input sequence of edges ~E such that the algorithm 4.1 returns the

37

CHAPTER 4. THEORETICAL RESULTS

Algorithm 4.1 GreedyMerge(G,~E) – greedy meta-approach

1: F ← ∅ ⊲ rejected edges, i.e., cut

2: for v ∈ V do

3: A[v]← {κ(v)}
4: B[v]← {v}
5: end for

6: for {v1, v2} ∈ ~E do

7: if A[v1] ∩ A[v2] = ∅ then

8: A[v1]← A[v2]← A[v1] ∪ A[v2]
9: B[v1]← B[v2]← B[v1] ∪ B[v2]

10: else if B[v1] 6= B[v2] then
11: F ← F ∪ {{v1, v2}}
12: end if

13: end for

14: return F

(globally) minimal cut. In particular, any sequence that ends with the edges of the

minimal cut will yield the minimal cut.

As noted, this is in fact a meta-algorithm: the missing part is a method of ordering

the edges. The easiest way to complete the algorithm is to provide a random sequence

of edges on input, as presented in Algorithm 4.2. However, we will describe two

different approaches that produce the required sequence in Sections 4.4 and 4.6. The

greedy strategy will also be employed in Section 4.5.

During an evaluation of the approaches developed in this chapter, Algorithm 4.2

shall serve as a baseline. It is arguably the simplest and the most obvious heuristic

for the main computational problem, and all the other approaches shall be evaluated

relative to the results of this algorithm.

Algorithm 4.2 GreedyCut(G) – simple greedy algorithm, baseline for further ap-

proaches

1: ~E←Shuffle(E)
2: F ←GreedyMerge(G,~E)
3: return F

4.2.1 Computational Complexity

Each vertex of the meta-algorithm holds a set of at most K values, where K is the

number of colors in the graph. Therefore, the space cost of the algorithm is O(|V|K).
The main loop has O(|E|) iterations, the time cost of each iteration is limited by the

38

CHAPTER 4. THEORETICAL RESULTS

set intersection and sum operations, each of which may be performed within time cost

O(K). Therefore, the time cost of the meta-algorithm is O(|E|K).

4.3 “Cliques” Approach

Our second approach features another classic algorithmic problem: finding the maxi-

mum clique in a graph. As we shall show, well-known clique-finding heuristics can be

employed to solve the Minimum Partition problem.

4.3.1 Motivation

As it was mentioned in Section 1.3, completeness is the desired property of the re-

searched graphs. Therefore, in an ideal layered graph, each connected component is a

clique. Recall that clique is defined as a set of vertices S such that ∀v,w∈S {v,w} ∈ E.

An example of a complete graph, consisting of three cliques, is presented in the left

panel of Figure 4.2.

Figure 4.2: Example of a complete graph (left) and an incomplete graph (right). Adding an extra edge to the graph
on the left would render the graph incoherent. Using only three edge removals, followed by three edge additions,
the graph on the right may be transformed to the complete graph on the left.

The main idea of the approach is the following: given a problem instance which

is “close” to the ideal case (measuring by the number of edges added or removed

with respect to the complete graph), we may approach it by repetitively employing an

algorithm for finding maximum clique in a weighted graph.

4.3.2 The Maximum Clique Heuristic

39

CHAPTER 4. THEORETICAL RESULTS

Algorithm 4.3 A simple heuristic for the Maximum Clique problem

1: S← ∅

2: P← V

3: v← argmaxv′∈P ∑v′′∈V µ({v′, v′′})
4: while v 6= ∅ do

5: S← S ∪ {v}
6: P← P ∩ {v′ ∈ P | {v, v′} ∈ E}
7: v← argmaxv′∈P ∑v′′∈V µ({v′, v′′})
8: end while

9: return S

We have selected an extremely simple heuristic for the Maximum Clique problem.

Using the terminology introduced by Kopf and Ruhe [59], we employ a best in strategy

for finding the best clique. Our algorithm starts from the empty set, and iteratively

finds best vertices for addition, simultaneously updating the set of possible extensions.

Algorithm 4.3 presents a pseudo-code of this approach.

4.3.3 The Algorithm

In short, our clique-based heuristic for Minimum Partition creates an initial partition,

and then iteratively clusters the vertices using maximum clique heuristics2. The clus-

tering is performed in two slightly differing passes. Algorithm 4.4 presents the general

structure of the heuristic.

Algorithm 4.4 CliquesCut(G) – general structure of the clique-based approach

1: Π←
⋃

v∈V{{v}}
2: Π← FirstPass(G,Π, θ)
3: Π← SecondPass(G,Π)
4: return IG(Π)

In the initial clustering, each vertex v is assigned to its own singleton cluster {v}.
Written formally, the initial clustering is:

Π =
⋃

v∈V

{{v}} (4.3)

Any two clusters {v1} and {v2} are linked iff the corresponding vertices v1 and

v2 are linked too. We introduce a function M : 2V × 2V → R measuring the sum of

2One should keep in mind that iterative application of a maximum clique heuristic does not neces-
sarily yield a clique. In other words, slightly informally: a clique of cliques of vertices is not necessarily
a clique of vertices.

40

CHAPTER 4. THEORETICAL RESULTS

Figure 4.3: Example of an undesired start for finding maximum clique. Algorithm 4.3 will fail to find any of the
cliques of size 5, since it is going to choose either b or j as the initial vertex, expand by selecting the other one (j or
b, respectively), and return {b, j} as a clique.

weights between any two given clusters:

M(C′,C′′) :=

{

0 when ∃v′∈C′∃v′′∈C′′ κ(v′) = κ(v′′)

∑v′∈C′ ∑v′′∈C′′ µ({v′, v′′}) otherwise
(4.4)

Note that for the initial setting:

M({v1}, {v2}) = µ(v1, v2) (4.5)

unless κ(v1) = κ(v2). As the partition Π changes, so does the subdomain of M that

we’re interested in. In Subsection 4.3.4 we show that the function can be efficiently

computed using extra O(|V|+ |E|) space.

In the first pass, only cliques above a given threshold size θ are merged. The reason

for introducing a threshold is illustrated in Figure 4.3. Assuming all edges in the

presented graph have unit weights, a naïve heuristic, such as algorithm 4.3, is going to

select either b or j as the initial vertex (line 3 in Algorithm 4.3), expand by selecting the

other vertex (j or b, respectively), and return {b, j} as a clique to merge.

One possible solution to the above problem would be application of a more robust

(and slower) maximum clique heuristic. However, since we need to run the maximum

clique search multiple times, we may as well use the original heuristic, and discard any

unsatisfactory results.

Choosing to discard cliques of size less than θ, we need to keep track of the clusters

which, once selected as the starting cluster, did not yield a satisfactory clique. Other-

wise, the algorithm would enter an infinite loop: constantly choosing the same cluster

as the starting one, and constantly discarding the resulting clique. To avoid this, a set

of unsuccessful initial clusters is maintained (variable F in Algorithm 4.5).

Algorithm 4.5 presents the pseudo-code for the first pass of the “clique” approach.

When no more cliques of size θ or greater can be found, the first pass of the heuristic

is concluded. What remains to be done is to merge all the remaining clusters, so that

the resulting clustering Π does not contain any mergeable pair of clusters (note that a

mergeable pair of clusters is a clique of size 2).

41

CHAPTER 4. THEORETICAL RESULTS

Algorithm 4.5 FirstPass(G,Π, θ) – first pass of the clique-based approach: clusteri-

zation of big cliques

1: F ← ∅ ⊲ “failed” clusters

2: while ∃c′,c′′∈Π M(c′, c′′) > 0 do

3: S← ∅

4: P← Π \ F ⊲ possible extensions

5: s← FindHeaviest(Π, P)
6: c← s

7: while c 6= ∅ do

8: S← S ∪ {c}
9: P← P ∩ {c′ ∈ P |M(c, c′) > 0}

10: c← FindHeaviest(Π, P)
11: end while

12: if |S| ≥ θ then

13: for c′ ∈ S do

14: Π← Π \ {c′}
15: end for

16: Π← Π ∪ (
⋃

c′∈S c
′) ⊲ merge the clique into one cluster

17: else

18: F ← F ∪ {s}
19: end if

20: end while

21: return Π

Algorithm 4.6 FindHeaviest(Π, P) – “heaviest first” strategy of choosing the next

node to add to a clique

1: c← ∅

2: max← 0

3: for c′ ∈ P do

4: sum← ∑c′′∈Π M(c′, c′′)
5: if sum > max then

6: max← sum

7: c← c′

8: end if

9: end for

10: return c

42

CHAPTER 4. THEORETICAL RESULTS

Algorithm 4.7 SecondPass(G,Π) – second pass of the clique-based approach: clus-

terization of the remaining clusters

1: while ∃c′,c′′∈Π M(c′, c′′) > 0 do

2: S← ∅

3: P← Π ⊲ possible extensions

4: c← FindHeaviest(Π, P)
5: while c 6= ∅ do

6: S← S ∪ {c}
7: P← P ∩ {c′ ∈ P |M(c, c′) > 0}
8: c← FindClosest(Π, S, P)
9: end while

10: for c′ ∈ S do

11: Π← Π \ {c′}
12: end for

13: Π← Π ∪ (
⋃

c′∈S c
′) ⊲ merge the clique into one cluster

14: end while

15: return Π

The second pass is very similar to the first one, there are however two important

differences. Firstly – it was already mentioned above – cliques of any size are merged.

Secondly, a different strategy of choosing the next cluster to merge is employed.

Figure 4.4: A typical setting in the second pass of the heuristic. Among the three clusters, A − B and B − C
are still mergeable. If B is selected as the initial cluster, then assuming the “heaviest first” strategy of cluster
expansion, A− B will be merged. On the other hand, assuming the “closest first” strategy, B− C will be merged.

The reason for such a change is illustrated in Figure 4.4. The figure represents a

typical setting during the second phase of the execution of the algorithm. Assuming

that cluster B was selected as the initial one (line 4 of Algorithm 4.7), the repeated ap-

plication of the “heaviest first” strategy would select cluster A for expansion, while it is

more relevant to choose cluster C. Therefore, the “closest first” strategy (cf. Algorithm

4.8) is used instead.

Algorithm 4.7 presents the pseudocode for the second pass of the “clique” ap-

proach, and Algorithm 4.8 presents the “closest first” strategy.

43

CHAPTER 4. THEORETICAL RESULTS

Algorithm 4.8 FindClosest(Π, S, P) – “closest first” strategy of choosing the next

node to add to a clique

1: c← ∅

2: max← 0

3: for c′ ∈ P do

4: sum = ∑c′′∈S M(c′, c′′)
5: if sum > max then

6: max← sum

7: c← c′

8: end if

9: end for

10: return c

4.3.4 Computational Complexity

Let us estimate the computational complexity of the proposed algorithm, that is, the

time and space cost of its execution.

Let us start with assessing the cost of computing the omnipresent function M(·, ·).
The space cost of storing the non-zero values of the function together with the clus-

ters is limited by the number of clusters (at most |V|) and the number of edges |E|.
Therefore, in order to store the non-zero values, one needs O(|V|+ |E|) space. If the

values stored at a given cluster are sorted, then one can access any value with time

cost O(log |V|).

Initially there are |E| non-zero values of the function M, which need to be stored

in |V| domains, therefore the time cost of the initialization of M is O(|V|+ |E|). Each
merge requires inspecting each non-zero value of M at most once, and since the num-

ber of non-zero values of M decreases in time, the upper estimate on the number of

inspections is |E|. Sorting and storing the non-zero values associated with the newly

merged cluster requires O(|V|) operations (using counting sort [24], for example),

therefore the total time cost of update of M after a merge is O(|V|+ |E|).

In the FindHeaviest function (algorithm 4.6), the sum in line 4 may be precom-

puted during cluster merges. The sum is calculated in O(|E|) time after each merge.

All sums can be stored in a priority queue [24], with additional space cost of O(|V|),
which allows retrieval of the “heaviest” cluster in O(log |V|) time. Updates of the pri-

ority queue during cluster merges have amortized time cost of O(log |V|) per merged

component. Note that the costs associated with cluster merges are dominated by the

cost of update of M, which is O(|V|+ |E|).

Each call to FindClosest (algorithm 4.8) contains O(|V|+ |E|) accesses to M, that

is, a call takes O((|V| log |V|+ |E| log |V|) time.

In the first pass, there are at most |Π| ≤ |V| iterations of the outer loop (line 2), since

44

CHAPTER 4. THEORETICAL RESULTS

each iteration either merges a clique S (decreasing the number of available clusters by

the size of the clique), or expands the set of forbidden initial cluster F. For each “failed”

initial cluster, there are at most θ iterations of the inner loop (line 7), therefore at most

θ calls to FindHeaviest. On the other hand, in the case of finding a sufficiently large

clique, each call to FindHeaviest results in decrease in |Π|.

Therefore, there are at most θ|V| iterations of the inner loop at line 7. Each is

dominated by the update of P in line 7, which takes O(|V| log |V|) time in the worst

case, giving O(θ|V|2 log |V|) total time. There are also at most |V| cluster merges,

which results in O(|V|2 log |V|+ |V||E|) time cost. Summing up, the total time cost of

the first pass is:

O(θ|V|2 log |V|+ |V||E|)

In the second pass, every first call to FindClosest in the loop starting at line 5

returns a non-empty cluster (if everything else fails, at least the cluster returned by

FindHeaviest is acceptable). Also, since returning an empty cluster ends the loop,

then at least half of all calls to FindClosest return a non-empty domain. Each call

to FindClosest reduces the number of clusters |Π| ≤ |V| by one, therefore there are

O(|V|) calls to FindClosest. Note that there are as many updates of P as there are

calls to FindClosest, and each update takes O(|V| log |V|) time. There are O(|V|)
calls to FindHeaviest as well. Finally, there are also O(|V|) cluster merges (at line 13).

Summing up, the total time cost of cluster merges in the second pass is O(|V|2 +
|V||E|), the total cost of calls to FindHeaviest is O(|V|2 + |V||E|) the total cost of calls
to FindClosest and updates of P is O(|V|2 log |V| + |E||V| log |V|). Therefore, the

total cost of the second pass is:

O(|V|2 log |V|+ |E||V| log |V|)

Finally, the computational complexity of initialization and both passes, the total

time cost of the “clique” heuristic is:

O(θ|V|2 log |V|+ |E||V| log |V|)

using O(|V|+ |E|) space.

4.3.5 Summary

We have presented a heuristic solving Minimum Partition problem, based on an

approximate solution of the classic Maximum Clique problem. The applicability of

the approach is limited to almost complete graphs, i.e. complete graphs in which

some edges were removed (introducing incompleteness) while some other were added

(possibly introducing inconsistency).

45

CHAPTER 4. THEORETICAL RESULTS

4.4 “Spatial” Approach

Our second heuristic combines the greedy strategy described in Section 4.2 and a force-

based node placement.

4.4.1 Motivation

The idea is to arrange the graph’s nodes in space in such a way that the distance

between a pair of nodes is related to their affinity. We introduce a set of conditions: we

want each pair of same-color nodes to be as far away from one another as possible, and

we want each pair of the nodes connected by a link to be at a certain distance R. Later,

we will assume that the closer a pair of nodes is, the more probable it is that they are

equivalent. Thus, our revised task is to find such an arrangement of the graph’s nodes

is space that as many of the above conditions are satisfied as possible.

Having done that, a greedy approach builds the set of accepted (valid) links starting

from the shortest ones: each new link is added to the set as long as it satisfies the

coherence constraints.

4.4.2 Node Placement

We place the nodes in an N-dimensional space. It is done is such a way that the

calculation of graph nodes’ positions may be reused in in graph visualization. The

choice of N is driven by a couple of factors. Graph analysis requires only that N ≥ 2,

with the classic “amount of work vs. quality of results” trade-off. Visualization is

usually restricted to two or three dimensions, the latter being both more impressive and

resource-consuming. Since node placement calculations are the most computationally-

intensive part of the whole approach, it is reasonable to do the calculations once, and

apply them to both analysis and visualization. In such a case, the choice of N is

restricted to 2 ≤ N ≤ 3.

Node placement uses the classic force-based paradigm, introduced by Kamada and

Kawai [57]. A potential is defined, assigning each vector of node positions a scalar

value, and the task is to find a sufficiently deep local minimum of the potential. The

first challenge is thus to define the potential in such a way that its minima correspond

to the desired node positions, and at the same time the calculation of its value and

gradient at any given point is feasible.

We choose the potential to be:

P(x1, x2, . . . , x|V|) := ∑
{vi,vj}∈E

µij

(

|xi − xj| − R
)2

+λR3 ∑
{vi,vj}∈F

1

|xi − xj|
(4.6)

46

CHAPTER 4. THEORETICAL RESULTS

where µij := µ({vi, vj}) is the weight of the edge connecting vi and vj, and F :=
{

{vi, vj} ∈ 2V
∣

∣κ(vi) = κ(vj) ∧ i 6= j
}

is the set of pairs of nodes of the same color.

The possibility to derive the gradient ∇P analytically is a huge advantage during the

numerical minimization:

∇P(x1, x2, . . . , x|V|) = 2 ∑
{vi,vj}∈E

µij

(

|xi − xj| − R
)∇|xi − xj|

|xi − xj|

−λR3 ∑
{vi,vj}∈F

∇|xi − xj|

|xi − xj|3
(4.7)

The potential models two types of force: harmonic for linked pairs, and repulsive

for nodes of the same color. The harmonic potential for a given pair achieves its

minimum (= 0) when the pair is separated by distance R, the repulsive one is minimal

when the given pair is separated by an infinite distance.

There are two parameters in the above equations: R and λ. The former is purely

decorative, since any positive value of R yields the same minimum (up to scaling). The

latter parameter controls the balance between the harmonic and repulsive forces. In

practice λ should not be too small, since then the repulsive force will be too weak to

separate the tight cores (impairing both the analysis and visualization). On the other

hand, if the ratio is too big, then the cores will be extremely far away from one another

and although the analysis will be still possible, the layout will be neither aesthetic

nor suitable for visualization. Empirically, we have established that the best results for

medium-sized cases (hundreds of nodes) are obtained when λ is in the range 101÷ 102.

The minimization is performed using the Conjugate Gradients method [84], without

preconditioning, with a simple gradient-only linear search.

4.4.3 Edge Ordering

Having found the vertex locations in space, we may easily sort the edges according

to their length and feed them to the greedy algorithm presented in Section 4.2. This

is motivated by the assumption that shorter edges are more likely to be correct. since

the balance of attractive and repulsive forces acting on a short link did not manage to

stretch it.

4.4.4 Computational Complexity

Although the number of iterations of the conjugate gradient optimization cannot be

precisely estimated, we can determine the computational complexity of two key op-

erations performed during this procedure, namely: the calculation of the potential’s

value and the calculation of potential’s gradient. Both operations contain the same

47

CHAPTER 4. THEORETICAL RESULTS

loops: one over the edges and one over the “forbidden” pairs. The loops over the

edges clearly incur a time cost of O(|E|). In a pessimistic case, there may be O(|V|2)
forbidden pairs, and thus that is the time cost of the second type of loops. Thus, the

total time cost of a calculation of potential’s value or gradient is O(|V|2).
Fortunately, in typical cases observed empirically, a graph in question is almost

complete, that is, it can be transformed to a complete graph in O(|V|) edge adds or

removals. Furthermore, let us assume that the tight cores are all of similar sizes O(K),

where K is the number of colors. In such a case, there are O(K2 |V|
K) = O(|V|K) edges,

and O(|V|
2

K2 K) = O(|V|
2

K) forbidden pairs.

The potential’s formulation exploits the fact that we already know the “forbidden”

pairs which we want to separate in space. With this information, the repulsive part is

cheaper to calculate: instead of processing all O(|V|2) pairs, we need to compare only

the same-color pairs.

Edge ordering, as any ordinary comparison sort, incurs O(|E| log |E|) time cost.

4.5 “Genetic” Approach

Our next heuristic is an example of a genetic algorithm. It defines a fitness function on

candidate solutions and simulates the natural selection process.

4.5.1 Motivation

Observe that the computational problem exhibits a certain kind of locality. A locally-

minimal cut F1 may contain the optimal set of cuts on a given subset V1 of the graph,

while another locally-minimal cut F2 may contain the optimal set of cuts on another

subset V2. It is tempting to look for a method of combining the cuts in order to obtain

a cut F12 that would be better than both F1 and F2. The above notions bring to mind

the so-called Genetic Algorithms.

4.5.2 The Algorithm

In our approach we have chosen an unorthodox realization of the Genetic Algorithm

technique. Nevertheless, the key features of the original framework have been retained.

Algorithm 4.9 presents the approach.

We start by generating n pseudo-random locally-minimal cuts (line 2). The cuts are

generated by running the greedy algorithm described in Section 4.2 with a random

permutation of edges as input. Note that due to the method used, some cuts may be

generated more frequently than other.

The remaining part of the algorithm resides in a loop (starting at line 6). First,

2n− 2m parents (n−m pairs) are chosen using the roulette-wheel selection, with the

48

CHAPTER 4. THEORETICAL RESULTS

Algorithm 4.9 GeneticCut(G) – a genetic algorithm

1: for i ∈ [0, n− 1] do
2: H[i]←GreedyMerge(G, Shuffle(E)) ⊲ first generation

3: end for

4: F, v← E,∞ ⊲ minimal cut and its weight initialized to ∞

5: t← 0

6: while t < tmax do

7: H′ ←Roulette(G,H, 2(n−m)) ⊲ draw parent cuts

8: for i ∈ [0, n−m− 1] do
9: H[i]← H′[2i] ∪ H′[2i + 1] ⊲ merge parent cuts

10: H[i]←GreedyMerge(G, Shuffle(E \ H[i])∪ Shuffle(H[i]))
11: end for

12: for i ∈ [n−m, n− 1] do
13: H[i]←GreedyMerge(G, Shuffle(E)) ⊲ add random cuts to the new generation

14: end for

15: v′ ← mini∈[0,n−1] ‖H[i]‖G
16: if v′ < v then

17: v← v′ ⊲ new best cut found

18: F ← argminF′∈H ‖F
′‖G

19: t← 0

20: else

21: t← t + 1

22: end if

23: end while

24: return F

fitness of a cut F defined as:

φ(F) :=
1

1+
√

‖F‖G
(4.8)

Next, each pair of parent cuts (F1, F2) produces an offspring cut. In order to do this,

first a cut F = F1 ∪ F2 is taken. Note that this is not a locally-minimal cut, since F1 ⊂ F

and F2 ⊂ F. Our goal is to randomly choose a locally-minimal cut that is a subset of

F. In order to do that, we run the GreedyMerge algorithm from Section 4.2 with the

sequence:
~E := Shuffle(E \ F) ∪ Shuffle(F) (4.9)

as input. All the edges in the first part of the sequence are guaranteed to be accepted,

thus the resulting cut is decided by the random permutation of the edges in F. Note

that both F1 and F2 are among the potential results.

Next, we add m random cuts to the new generation. Finally, we check whether a

cut better than the current best cut was found. If no new best cut is found in tmax

49

CHAPTER 4. THEORETICAL RESULTS

iterations of the main loop, the current best cut is returned as an answer.

Our algorithm diverges from the model GA described earlier in a couple of point.

Most ostensibly, binary code is not used to encode cuts. As a consequence, the cross-

over operation was replaced by a offspring generation procedure that is very specific

to the problem at hand. Lack of mutations is balanced by adding m random cuts to

every generation.

4.5.3 Computational Complexity

The number of iterations of the algorithm cannot be predicted, we can, however, esti-

mate the time cost of an individual iteration. Each iteration is dominated by the need to

perform n GreedyMerge operations. The time cost of each iteration is thus O(n|E|K),
where K is the number of colors in the graph.

4.6 “Girvan-Newman” Approach

The last heuristic combines the greedy strategy described in Section 4.2 and a slightly

modified Girvan-Newman algorithm.

The Girvan-Newman algorithm applies to unweighted, uncolored graphs. Our

slight modification renders the algorithm applicable to colored graphs. However, the

restriction to unweighted graphs still holds.

4.6.1 Motivation

Recall that the Minimum Partition problem seeks to minimize the total weight of

edges that are truncated by a given partition. Two vertices v1, v2 ∈ V cannot be located

in the same domain (i.e. every path v1 ! v2 needs to be cut) iff they have the same

color, i.e., κ(v1) = κ(v2). Effectively, our task is to separate each vertex v ∈ V from

all the other vertices of the same color, and we want to cut as little as possible, by

minimizing the sum of weights of removed edges.

One idea is to look for bottlenecks in the sum of flows between same-colored ver-

tices and derive an analogue of the max-flow min-cut theorem [82]. If fact, a very spe-

cial case of the main computational problem may be solved using the Ford-Fulkerson

algorithm [41] for finding a maximum flow3. Unfortunately, Dahlhaus et al. have

shown that generalizations of the maximum flow problem are NP-hard [25] and we

have used that result while establishing the computational complexity of the Mini-

mum Partition problem in Section 4.1.

Another concept which captures the notion of network bottlenecks is so-called cen-

trality. In fact, a number of different loosely related measures called centrality were

3More precisely, the special case is a graph in which each vertex except one pair has a unique color.

50

CHAPTER 4. THEORETICAL RESULTS

developed over time [15]: closeness centrality [89], graph centrality [52], stress central-

ity [94], betweenness centrality [44, 4], and edge betweenness centrality [48]. All the

above measures aim to quantify the extent to which a given edge or vertex is critical

in the graph. We shall use the last flavor (edge betweenness), which has already been

successfully used in for analyzing social [77] and biological [110] networks.

4.6.2 The Algorithm

Girvan and Newman proposed a measure called edge betweenness, and showed its

application in analyzing community structure [77, 48, 72]. Edge betweenness of a

given edge is defined as the number of shortest (geodesic) paths that pass through the

edge. The idea of their algorithm is to iteratively find and remove the edge with the

highest edge betweenness. Unfortunately, each edge removal changes the betweenness

of all the edges in the connected component(s) to which the edges’ endpoints belong.

Therefore, each edge removal is followed by recalculation of edge betweenness. Note

that this approach studies the network’s topology, but does not take into account the

weights of individual edges.

The output of the Girvan-Newman algorithm (sequence of edge removals) is fed,

in the reversed order, to the greedy meta-algorithm presented in Section 4.2. In other

words: first, the edges are removed from the graph based on edge betweenness calcu-

lations and then they are greedily added back (if possible) in the reversed order.

First optimization, a fairly obvious one, is to check, after each edge removal, whether

the resulting graph is coherent, and if so, stop the Girvan-Newman algorithm and run

the greedy meta-algorithm.

Another modification of the original algorithm stems from the observation that

there is no need to calculate edge betweenness in the coherent components of the

processed graph. Indeed, all the edges removed from a coherent component will even-

tually be added back, since there is no constraint that would stop the greedy algorithm

from doing so. Therefore, after each edge removal we find the incoherent components

and perform all the subsequent calculations on the incoherent subgraph only. Note

that our modifications do not change the overall result of the combination of Girvan-

Newman algorithm and greedy approach, they only allow to obtain the result faster.

Algorithm 4.10 implements the above remarks. The VerticesOfIncoherent(G)
function returns the vertices in G that are located in the incoherent components of the

graph. The EdgeBetweenness(G) returns the edges in G sorted descending by their

betweenness (a part of the original Girvan-Newman algorithm), and Head(~E) returns

the first element of list ~E.

Since Algorithm 4.10 is computationally expensive, it is tempting to run EdgeBe-

tweenness only once and feed the results to GreedyMerge, as in Algorithm 4.11.

However, this solution is clearly inferior to GirvanNewmanCut, and should be used

51

CHAPTER 4. THEORETICAL RESULTS

Algorithm 4.10 GirvanNewmanCut(G) – a heuristic based on the Girvan-Newman

algorithm

1: ~E← ()
2: repeat

3: I ← VerticesOfIncoherent(〈V, E \ ~E, κ〉)
4: if I 6= ∅ then

5: e← Head(EdgeBetweenness(〈V, E \ ~E〉|I))
6: ~E← (e) ∪ ~E

7: end if

8: until I = ∅

9: for e ∈ E \ ~E do

10: ~E← (e) ∪ ~E ⊲ put edges from the coherent components in front

11: end for

12: F ← GreedyMerge(G,~E)
13: return F

only as a last resort – in the cases when problem size renders the full algorithm infea-

sible.

Algorithm 4.11 BetweennessCut(G) – a heuristic based on a single edge betweenness

calculation

1: ~E←EdgeBetweenness(G)
2: F ← GreedyMerge(G,~E)
3: return F

4.6.3 Computational Complexity

The pessimistic time cost of the Girvan-Newman algorithm is O(|E|2|V|). This means

that in the case of dense graphs, the algorithm’s time complexity becomes O(|V|5)!

However, let us repeat the reasoning conducted in Subsection 4.4.4 and derive a

more optimistic time complexity estimation. Assume, as we did before, that the input

network is O(|V|) edge additions and removals away from a network consisting of

isolated cliques of size O(K). Then, there are O(|V|K) edges and each update of edge

betweenness takes O(|V|2K) time. Fortunately, for a sufficiently high values of K, the

O(|V|) links connecting different cores are removed first, and in that case the algorithm

runs in O(|V|3K) time.

52

CHAPTER 4. THEORETICAL RESULTS

4.7 Summary

We have shown that the computational problem studied in this thesis is NP-hard.

Next, we have proposed five algorithms giving approximate solutions of the problem.

Obviously, a meta-algorithm running all five algorithms and returning the best answer

is a viable alternative.

Algorithm Space Time Time (cores)

GreedyCut O(VK) O(EK) O(K2V)
CliquesCut O(V + E) O(θV2 logV + EV logV) O((θ + K)V2 logV)
SpatialCut O(V + E) O(tV2 + E log E) O(tV2/K +VK(t + log(VK))))

GeneticCut O(nE +VK) O(tnEK) O(tnK2V)
GirvanNewmanCut O(V + E) O(E2V) O(V3K)

Table 4.1: Space and time complexities of the five algorithms presented in previous sections. Here: V is the number
of vertices, E, the number of edges, K the number of colors, t is the number of function evaluations (SpatialCut)
or iterations (GeneticCut). Other symbols are inputs of respective algorithms. The last column shows the time
cost in the case when the input is a “skeleton of cores” (see text).

All of the five heuristics are inspired by some earlier results in the respective fields.

The fields are quite diverse, including: classic computer science problems, numeri-

cal optimization, graph visualization, genetic algorithms and community detection in

social networks.

Note that CliquesCut and GirvanNewmanCut are not general-purpose solutions,

as they assume certain level of modularity of the input network. The remaining algo-

rithms are applicable to any problem instance.

Table 4.1 summarizes the space and time costs of the proposed algorithms. Note

that we are using the O notation, which states the upper bound of the asymptotic

behavior of a given property. The table includes time complexities in the special case

of input networks of the “skeleton of cores” type. More precisely, this special case as-

sumes that an input network consists of Θ(V/K) cores, each containing Θ(K) vertices

and Θ(K2) edges, as well as Θ(V) edges each connecting two different cores.

It should be stressed that a number of arbitrary qualitative decisions were made

while designing the proposed algorithms. This fact is perhaps most clearly visible in

the case of CliquesCut. Other examples include: the choice of Conjugate Gradient

as the method of numerical optimization in SpatialCut, the choice of fitness function

in GeneticCut. These arbitrary decisions were made using a combination of author’s

intuition and “trial and error” exploration based on test problem instances. Therefore,

there is obviously a lot of room for improvement and more systematic calibration.

Quantitative decisions, on the other hand, are extracted and expressed in the form of

function parameters to be supplied upon execution.

53

Chapter 5

Experimental Results

In this chapter, we evaluate the approaches proposed in Chapter 4 on the network of

Wikipedia’s interlanguage links described in Chapter 3.

5.1 Methodology

We will be interested in the quality of cuts and running speed of the following 8

algorithms:

• MNR – minimum of 10 GreedyCut runs

• AVR – average of 10 GreedyCut runs

• MXR – maximum of 10 GreedyCut runs

• CLI – a single CliquesCut run with θ = 5

• GEN – a single GeneticCut run with n = 100, m = 10 and tmax = 5

• SPA – a single SpatialCut run with R = 1, λ = 40, and with the number of

Conjugate Gradient iterations limited to 80.

• BET – a single BetweennessCut run

• G-N – a single GirvanNewmanCut run

The first three algorithms, producing essentially random answers, serve as points of

reference for the remaining algorithms.

As it was mentioned earlier, the computational problem studied in this thesis has

not been explored before. Therefore, there is no real state-of-the-art algorithm to which

our results could be compared. To a certain degree, the G-N algorithm, which is only

54

CHAPTER 5. EXPERIMENTAL RESULTS

a slightly modified (adapted) version of the Girvan-Newman algorithm for commu-

nity detection, might be considered the closest state-of-the-art algorithm. However, the

original Girvan-Newman algorithm is meant to be applied to different types of net-

works (i.e., colorless), and returns a different type of result (a dendrogram). Therefore,

the modified version of the algorithm, adapted to a new setting, does not constitute a

good benchmark.

The BET and G-N algorithms do not take edge weights into account, so in order to

get a reliable comparison, we will test all the algorithms on unweighted graphs only.

Our test will be performed on the total of 86123 connected components of two

networks of Wikipedias interlanguage links: one of ILLs between articles and one

of ILLs between categories. The two networks have been recreated from database

dumps downloaded on October 12, 2009. Each connected component shall be analyzed

separately, as if it was an independent graph.

We have divided the components into three categories, based on the number of

nodes (non-redirect pages) they contain:

• small – 85870 components having at most 300 nodes;

• medium – 227 components of size 301-1000;

• big – 26 components having more than 1000 nodes.

The largest component, consisting of 126776 nodes, is absent from the test, since it

could be processed by only two fastest methods (MNR-AVR-MXR and CLI).

5.2 Results

5.2.1 Quality of Cuts

Table 5.1 shows average weights of cuts returned by all the tested algorithms. The

results are grouped into three categories of components, as described above. The G-N

algorithm was too slow to be applied to the medium and big components.

Category MNR AVR MXR CLI SPA GEN BET G-N

small 13.53 36.62 84.47 12.13 12.25 10.41 15.16 11.63

medium 1138 2131 3544 604 911 469 1109 N/A

big 3073 4958 7541 1214 1986 1031 3100 N/A

Table 5.1: Average weights of cuts returned by the proposed algorithms. The results are grouped by component
classes. For each category, the best (lowest) values are bold.

The results clearly show that GEN is the best approach. In the case of small com-

ponents, G-N is second, followed by CLI and SPA, each of which perform better than

55

CHAPTER 5. EXPERIMENTAL RESULTS

the “best of 10 random” – MNR. In all the cases, BET is on par with, or slightly inferior

to, MNR, while both CLI and SPA are considerably better than MNR.

Category MNR AVR MXR CLI SPA GEN BET G-N

small 92.15% 33.18% 16.73% 85.33% 95.04% 99.92% 90.00% 92.88%

medium 1.76% 0.00% 0.00% 10.13% 10.13% 96.47% 4.84% N/A

big 3.84% 0.00% 0.00% 30.76% 15.38% 100.00% 26.92% N/A

Table 5.2: Fraction of cases for which a given algorithm yields the best cut. The results are grouped by component
classes. For each category, the value of the most efficient algorithm is bold.

Moving on, let us now take a look at Table 5.2 which presents the fraction of cases

for which a given approach returns the best result. Note that we do not know the

correct solution (i.e., the minimal cut) for each test case, therefore this is not necessarily

the fraction of cases for which a given approach returns the correct result.

GEN is the algorithm that yields the best result most often: for 99.92% of the small

components, for 96.47% of the medium components, and for all the large components,

GEN returned the best answer. We can see that the small components category is

actually very easy: even MNR, i.e., the best of 10 random cuts, yields the best result

over 90% of the time. On the other hand, in the case of medium and big components,

MNR is among the best less than 5% of the time. This means that the last two categories

are significantly more challenging.

5.2.2 Running Times

Running times are aggregated in Table 5.3. The greedy approach, even when repeated

10 times (MNR, AVR, MXR) is still clearly the fastest in the case of small and medium

components, while in the case of big components, CLI takes the lead by a small margin.

Category **R CLI SPA GEN BET G-N

small 26 120 1 057 850 184 10 737

medium 2 334 5 557 50 825 282 233 45 415 N/A

big 70 920 69 028 531 525 5 918 445 8 645 203 N/A

Table 5.3: Average running times (in milliseconds) of the proposed algorithms. The results are grouped by compo-
nent classes. For each category, the value of the fastest algorithm is bold.

On the other extreme, G-N is clearly the slowest one, and it is not feasible to run it

for larger problem sizes. Even BET, which is G-N reduced to a single iteration, takes

over two hours on average in the case of big components. SPA is reasonably fast,

there is however a trade-off between the running time and the quality of results. In

56

CHAPTER 5. EXPERIMENTAL RESULTS

this experiment, number of iterations of Conjugate Gradient method was limited to 80,

which places this particular implementation of the spatial approach on the “fast and

inaccurate” side. GEN, the approach yielding the best results, is at the same time one

of the slowest.

5.2.3 Selected Observations

Let us now take a look at the quality of cuts in individual test cases. Table 5.4 presents

the answers produced by the 7 algorithms for all the 26 big components. As we already

know from the aggregated results presented in Table 5.2, GEN returns the best answer

in all the cases. BET often returns very good answers (the best result in 7 cases), and

very bad answers (worse than MNR in 6 cases, in one case even worse than AVR).

One test case, namely 557FD07F, is fairly easy: consists of big and tight clusters

with very sparse connections between them. The test is, nevertheless, challenging in

terms of size, as the component contains over quarter of million links.

Applicability of BET and G-N

In order to explain the reasons for occasional very poor results of BET, let us analyze a

test case from the big set (0C42DB42), a fragment of which is visualized in Figure 5.1.

The interesting fragment contains the articles on “January 26”. There are two articles

from the Tatar language edition competing for connection with the rest of the group

(the two articles are located on the opposite sides of the figure). Recall that, per the

definition of a partition (cf. Equation 1.7), at most one of the two Tatar articles may

be connected to the non-Tatar articles on “January 26”. Occurrences of this pattern

(that is: two nodes of the same color, both well-connected to a clique) are the source

of extremely poor performance of BET, as well as G-N. This is because all the nodes

together form a tight community, and forcing an admissible partition (by means of the

GreedyMerge subroutine) will randomly split the community into two parts, yielding

an extremely high cost of the cut.

It should be stressed that this is not a drawback of the Girvan-Newman algorithm,

Instead, the above observation proves that the adaptation of Girvan-Newman algo-

rithm to the computational problem researched in this thesis has limited applicability.

Contrast the above case with another one, presented in Figure 5.2. The best cut

in this test case partitions the nodes into four sets, which correspond to four top-

ics: “Japanese braille”, “Braille”, “Cyrillic braille” and “Hebrew braille”1. The mini-

mal cut is obtained by removing the links forming a bottleneck between “Braille” and

“Japanese braille”, removing the single link connecting “Braille” and “Hebrew braille”,

and disconnecting “fr:Braille cyrillique” from “Braille”.

1Note that in general the minimal partition does not have to correspond to the “semantic” partition.

57

CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.1: A test case that is difficult for the G-N and BET algorithms. The model problem is a clique containing
two nodes of the same color. Here, two articles in Tatar are competing for the same group of articles. Red lines
represent the best cut.

58

CHAPTER 5. EXPERIMENTAL RESULTS

Component Nodes Links MNR AVR MXR CLI SPA GEN BET

0C42DB42 3869 255232 295 3621 7455 276 281 276 2848

0EBA16A3 1701 8570 2038 2384 2862 2067 1517 1462 1604

1E0B534B 1187 20873 4474 5974 7448 3061 2810 1687 2607

25ECD94D 4549 106516 2272 4263 5637 1007 1169 986 1025

40EA68AE 2027 34794 339 818 1456 198 463 190 198

4B8C5F58 7832 494188 3574 10891 25081 1035 4459 1035 1035

4BB0A9F9 3881 248171 1009 4973 8303 374 374 374 3213

4E7C07B1 1091 19705 3873 4676 5632 1468 1810 1098 2942

534F3412 1045 18638 113 673 1455 94 94 94 94

557FD07F 4011 253246 232 2581 6591 232 232 232 232

56B1A372 1235 16208 2236 3025 4324 1044 1325 918 1393

5AA6E4BA 1302 22256 5254 6560 7464 2152 3679 1712 5111

5D2EA275 1689 65410 18076 21663 24124 5442 15949 4943 18006

6C72FBBA 5921 372930 1670 7658 16638 1039 1045 1039 16462

8672A237 1150 20255 3611 4746 6114 1271 1382 951 2532

96B93C7A 2274 39293 8070 9375 10394 2700 4180 2491 5307

A51F2E7A 1905 34103 207 531 1027 135 348 127 127

B559954A 1833 31302 203 983 1565 154 175 154 154

C54407E4 1395 25268 184 757 1892 119 111 111 111

C57187AA 1058 7401 1439 1699 2098 832 932 704 1156

CBA823C5 1016 18724 763 1345 2520 473 1098 439 575

CCCCE533 1214 64382 8675 12191 21687 1988 2857 1834 4064

D48EBEE8 3719 234073 938 3376 5814 308 313 308 3027

D5831EA2 2185 37712 209 1026 1713 145 145 136 136

E6C63BF8 1070 19594 4053 5383 7328 1523 1736 1395 2179

EDB82C74 2464 32576 6094 7752 9445 2431 3171 2113 4473

Table 5.4: Cut weights for the largest connected components (sizes over 1000). Each row represents a component.
First three columns of the table are component’s identifier, number of non-redirect pages and number of links,
respectively. Next, cut weights for 7 tested algorithms are presented. For each row, the best (lowest) values are
bold.

59

CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.2: A test case that is properly solved by the G-N and BET algorithms. Red lines represent the best cut.

60

CHAPTER 5. EXPERIMENTAL RESULTS

The non-French articles in the “Braille” cluster are well-connected to two French

articles: “fr:Braille” and “fr:Braille cyrillique”, in a manner similar to the previous test

case. At most one of the two French articles may be connected to the non-French

articles on “Braille”. However, it this test, “fr:Braille cyrillique” has weaker connection

that “fr:Braille” or any other member of the group, and this fact is reflected in edge

betweenness: the edges incident to “fr:Braille cyrillique” have higher betweenness than

any other edge in the cluster, and will be removed first. Therefore, the BET algorithm

applied to this and similar test cases will have no problems identifying neither the

bottlenecks, nor the competing same-color nodes.

Semantic drift

Let us take a look at two examples of semantic drift. Figure 5.4 presents a medium-

sized semantic drift pattern spanning topics such as: “Nuclear power in Japan”, “Fu-

sion power”, “Latent heat”, “Phase Change Material”, and “Bed warmer”. Each topic

is represented by a circle whose area is proportional to the number of language editions

covering the topic, and the width of segments connecting any two given topics is pro-

portional to the number of links spanning the two topics. Figure 5.5 features a smaller

example and a different presentation method: this time each individual node and link

in the component is shown. This component contains politically-charged topics such

as: “Kosovo”, “Metohija”, “2008 Kosovo declaration of independence”, “International

recognition of Kosovo”, and “Kosovo status process”. Most of the incoherent links are

incident to articles in Albanian and Serbian language editions.

The topology of connections between clusters returned by the algorithms proposed

in Chapter 4 corresponds to the topology of “skeletons” generated by Algorithm 3.1

introduced in Chapter 3. Recall, however, that the latter algorithm did not return a

partition of the given set of nodes and thus it was of little practical use.

It is not feasible to verify whether the best partitions returned by the algorithms

proposed in Chapter 4 coincide with the true, semantic partitions of the articles and

categories. Nevertheless, in the course of this research we have analyzed and critically

assessed partitions of a couple of hundred components. Based on this, unorganized

and definitely not methodical, probe we have concluded that the best algorithm, in

vast majority of cases, yields the semantically correct partition. This result requires,

however, to process weighted graphs, where edge weights reflect a coarse measure of

content similarity. In our implementation, weight of an edge connecting articles A and

B depends on:

• whether there are interlanguage links in both directions (A → B and B → A) or

not

• whether the interlanguage links point to a redirect or not

61

CHAPTER 5. EXPERIMENTAL RESULTS

• the number of common categories of the two pages

Figure 5.3: Illustration of an impact of edge weighting on node partitioning. In the absence of edge weights, there
are two minimal partitions of this tiny incoherent component, only one of which is semantically correct. When
weights associated with content affinity are introduced, the sole minimal partition is semantically correct.

Figure 5.3 shows a trivial example in which assigning weights is critical to obtaining

semantically-correct cut. Without weights, disconnecting either of the two articles in In-

donesian yields a minimal cut. Once weights are assigned, the “id:Category:Transportasi

di Kosta Rika” category is better connected to the English and Italian categories than

“id:Category:Transportasi di Amerika Tengah”.

It goes without saying that even the most sophisticated weight assignment can only,

at best, reduce the number of semantically-incorrect partitions. It is by no means a sure-

fire solution generating semantically-correct partitions.

Network dynamics

Finally, let us compare certain characteristics of the network of interlanguage links

observed at three different points in time. The largest connected component has risen

from approx. 48 thousand articles in March 2008, to approx. 72 thousand in August

2008, to over 126 thousand in October 2009. Recall that the size of coherent components

should not exceed 265 articles (i.e., the number of language editions). The number of

incoherent connected components2 has risen from approx. 60 thousand in August 2008

to over 85 thousand in October 2009.

There is little rotation in the set of incoherent components – new incoherent cases

appear, but the old ones are rarely resolved. Instead, smaller incoherent components

merge into larger ones in a process resembling coagulation. Unfortunately, it is difficult

to propose and validate a convincing model of network dynamics based on two or three

snapshots. All we can do at this moment is report the handful of observations that we

have made.

2In the case of interlanguage links between articles.

62

CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.4: A medium-sized semantic drift pattern. A single connected component contains articles on several
different topics, such as: “Nuclear power in Japan”, “Fusion power”, “Latent heat”, “Phase Change Material”
and “Bed warmer”.

63

CHAPTER 5. EXPERIMENTAL RESULTS

Figure 5.5: A small-sized semantic drift pattern. The component contains articles on several topics related to the
situation in Kosovo. A lot of incoherent links (red) are incident to articles in either Albanian or Serbian.

64

Chapter 6

Summary, Conclusions and Outlook

6.1 Summary

In this thesis we have researched a problem that is increasingly present in the global

knowledge infrastructure.

The framework of our research consisted of six steps:

1. formulate the optimization problem;

2. understand the state of the art in related areas;

3. study an important example;

4. find feasible solutions;

5. validate the results experimentally;

6. draw conclusions.

Due care has been taken to separate theoretical work (steps 1 and 4) from empirical

results, obtained in steps 3 and 5.

In the beginning (Chapter 1), we have presented the wider context of the problem

in a top-down manner, starting with the big picture: the paradigm shift triggered

by the Information Age. Next, we have sketched the landscape of Semantic Web,

and focused on one particular challenge regarding equivalence relations in semantic

networks. We have listed a number of real-world occurrences of the challenge, and

offered a longer description of one particular example: semantic drift in the network

of so-called interlanguage links in Wikipedia. Having done that, we have expressed

the problem using formal, graph- and set-theoretic language: a subspace of “stable”

graphs has been defined, and the optimization problem asked for the closest “stable”

graph to the given “perturbed” one.

65

CHAPTER 6. SUMMARY, CONCLUSIONS AND OUTLOOK

Next (Chapter 2), we have surveyed the relevant literature and discussed state-of-

the-art approaches in related areas, including:

• summary of similar computational problems;

• review of network growth models;

• examples of occurrences of power-law distributions;

• advances in social network analysis (community detection in particular);

• review of several techniques used in this research, such as: clique and core find-

ing, genetic algorithms, graph visualization;

• survey of academic studies focusing on Wikipedia;

• and summary of efforts to create multilingual dictionaries.

Moving on (Chapter 3), we have studied an example of a network in which the re-

searched problem is particularly acute: the network of interlanguage links inWikipedia.

We have given a thorough description of the network’s topology, made a number of

surprising observations, and developed an algorithm that distills semantic drift pat-

terns.

Next (Chapter 4), we have proved the researched problem to be NP-hard and of-

fered five algorithms that attack the problem from five considerably different angles:

• a greedy algorithm;

• an iterated finding of the maximum clique;

• a numerical minimization of a multi-dimensional potential;

• a genetic algorithm;

• an adaptation of a community finding algorithm.

The computational complexity of each approach has been established as well.

Following that (Chapter 5), we have applied the proposed algorithms to over 85

thousand problem cases extracted from the network of interlanguage links inWikipedia.

Both the methodology and technical details were documented (the latter in Appendix

A).

66

CHAPTER 6. SUMMARY, CONCLUSIONS AND OUTLOOK

6.2 Conclusions

Results of the conducted research allow us to formulate the following conclusions.

First of all, the optimization problem asking for the semantic drift reduction

using as few cuts as possible is NP-hard. This result has a profound impact on

methods of reducing semantic drift. Instead of a polynomial-time algorithm yielding

exact solutions, one has to settle for heuristics returning approximate answers.

Secondly, interlanguage links in Wikipedia suffer from extensive semantic drift.

We have demonstrated that this is a growing problem, and that current approaches

(surveyed in Chapter 2) fail to address it properly. The largest connected components

are three orders of magnitude larger than expected. In the case of coherent compo-

nents, we have noticed an impact of mass-generated articles and categories on the

shape of component size distributions.

Thirdly, the genetic algorithm presented in Section 4.5, applied to the interlan-

guage links, is very often capable of finding the correct semantic partition of articles.

This means that, to a large extent, it is possible to extract articles’ meanings by analyz-

ing only the structure of links – we do not have to analyze texts written in over 200

languages (which is clearly beyond current state of the art). Nevertheless, results of the

genetic algorithm should be interpreted as mere educated guesses pending validation

by a human.

6.3 Outlook

The research documented in this thesis answered a number of questions, but at the

same time a number of problems were left untackled, and new challenges were out-

lined. Let us briefly describe possible extensions of this research.

6.3.1 Applications in Wikipedia

One of the obvious applications of the obtained results is correction of the incoherent

interlanguage links in Wikipedia. This is a complex and interesting challenge for a cou-

ple of reasons. We assume that each edit recommendation generated by our algorithms

should be validated by a user before it is committed1. Therefore, a well-designed web

service is called for, one in which a user could efficiently browse through 85 thousand

problem cases, and intuitively navigate, visualize, discuss, update and approve edit

recommendation generated for each individual component (the largest of which con-

tains well over 100 thousand nodes). Accountability should be thought through, since

1This statement contains an implicit assumption that the validating user has both necessary linguistic
competences and good will. Frequent cases of vandalisms and blatant mistakes render this assumption
dubious.

67

CHAPTER 6. SUMMARY, CONCLUSIONS AND OUTLOOK

Wikipedians would probably like to know who approved what change, and why. Last

but not least, the suggested web service should ideally be language-neutral (i.e. either

all the messages should be localized or users should be able to interact with the system

by means of universally understood icons).

Moreover, there is a non-trivial social challenge, namely, how to organize the com-

munity of casual editors and bot operators so that they would act in a coherent way.

Right now, there is hardly even a consensus on the interpretation of interlanguage

links, and human-bot or bot-bot “edit wars” regarding interlanguage links are not

uncommon. Perhaps a way to achieve this goal is to raise the level of awareness of

the problem and focus on defining common rules and guidelines regarding editing

interlangauge links.

An alternative solution, much simpler but at the same time quite controversial, is to

apply all the recommendations generated by our algorithm without human oversight,

knowing full well that such an operation may and will locally do more harm than

good. The goal is to “divide and conquer”, that is, eliminate one gigantic problem and

introduce a number of small, but easily manageable ones.

We have shared the results of our research with the Wikipedia community and

initiated a cooperation aiming at validating and applying the edit recommendations

generated by the algorithms presented in this thesis.

6.3.2 Model of Network Dynamics

In Chapters 3 and 5 we have seen two snapshots of the network of interlanguage links

in Wikipedia, taken one year apart. Basing on this limited material, we have noted

a dramatic increase of the number of problem cases and their complexity. We have

also offered a hypothesis that the dynamics of interlanguage links are governed by a

coagulation-like process.

In our opinion, a thorough study of the dynamics of interlanguage links would

not only be an interesting and challenging academic endevour, but might help create

solutions preventing creation of semantic drift patterns. It is probable that, in order to

be accurate, a model of interlanguage links dynamics would have to assume multiple

types of actors (e.g. vandals, bots, experts) and multiple types of page relations (e.g.

equivalent, broader/narrower meaning, common theme, homonyms, false friends, un-

related). On the other hand, a more generic model is more likely to be useful outside

the scope of Wikipedia.

6.3.3 Algorithm Refinements and New Approaches

As noted earlier, the heuristics presented in Chapter 4 contain a lot of arbitrary choices

which have not been justified, and may probably be refined. Naturally, there is also

room for radically new approaches.

68

CHAPTER 6. SUMMARY, CONCLUSIONS AND OUTLOOK

Particularly hopeful is the field of community detection, from which the Girvan-

Newman algorithm comes. Advances in this area result in an influx of new algorithms,

some of which may be adapted to the our computational problem the way we have

adapted the Girvan-Newman algorithm.

69

Appendix A

Implementation

In order to evaluate the theoretical results presented in Chapter 4, we have applied the

algorithms to analyze the graph of articles from 265 language versions of Wikipedia.

This chapter documents the data import process and an open-source implementation

of the proposed methods. The results of the analysis and conclusions shall be presented

in Chapter 5.

A.1 Technical Background

All the text content of all the language versions of Wikipedia is published under GNU

Free Documentation License1. Wikimedia Foundation facilitates access to the content

by publishing regular database dumps2.

To understand format and content of the dumps, we start with a brief overview

of the engine which powers Wikipedia and the structure of the underlying database.

Next, we present the dumps and explain how and why did we import and postprocess

them.

The description in this section includes a number of technical details, which may

uninteresting for most readers, but valuable for ones willing to reproduce our results,

or conduct similar research.

A.1.1 MediaWiki Engine

Each language version of Wikipedia is powered by an independent instance of the

MediaWiki engine. The engine, written in PHP specially for the Wikipedia, is now an

independent project. Apart from all the Wikimedia Foundation projects, MediaWiki is

used by hundreds of other websites3.

1See: http://en.wikipedia.org/wiki/Wikipedia:Copyrights
2See: http://en.wikipedia.org/wiki/Wikipedia:Database_download
3See: http://www.mediawiki.org/wiki/Sites_using_MediaWiki

70

APPENDIX A. IMPLEMENTATION

By default, MediaWiki works with MySQL as database backend, but starting with

version 1.8 released in October 2006, it fully supports PostgreSQL too.

A.1.2 MediaWiki Database Structure

Let us briefly describe the key tables in the database. We shall focus on MySQL back-

ends, since this backend is used by all Wikipedia language versions.

The page table contains, among others, page ID, namespace and title. The ID is

referenced in many other tables.

CREATE TABLE page (
page_id INT UNSIGNED NOT NULL AUTO_INCREMENT,
page_namespace INT NOT NULL,
page_title VARCHAR(255) BINARY NOT NULL,
...
PRIMARY KEY page_id (page_id),
UNIQUE INDEX name_title (page_namespace,page_title),
...

);

The pagelinks table contains page-to-page links between the latest revisions of the

pages. Note that the target page is referenced by title instead of ID, links in Wikipedia

may lead to nonexistent pages (encouraging creation of the missing article).

CREATE TABLE pagelinks (
pl_from INT UNSIGNED NOT NULL DEFAULT ’0’,
pl_namespace INT NOT NULL DEFAULT ’0’,
pl_title VARCHAR(255) BINARY NOT NULL DEFAULT ’’,
...
UNIQUE KEY pl_from (pl_from,pl_namespace,pl_title),
...

);

The langlinks table contains links to pages in other language versions. Again,

the target page is referenced by title instead of ID, since the target language version of

Wikipedia does not need to be, and often isn’t, stored in the same database. Note that

it is by design impossible for a single page to contain two interlanguage links to the

same language version (by the UNIQUE KEY) constraint.

CREATE TABLE langlinks (
ll_from int UNSIGNED NOT NULL DEFAULT ’0’,
ll_lang VARBINARY(20) NOT NULL DEFAULT ’’,
ll_title VARCHAR(255) BINARY NOT NULL DEFAULT ’’,
...

71

APPENDIX A. IMPLEMENTATION

UNIQUE KEY (ll_from, ll_lang),
...

);

The redirect table stores page redirects. Note that, in theory, circular redirects

are possible, as well as redirects to different namespaces, although none of these are

recommended.

CREATE TABLE redirect (
rd_from INT UNSIGNED NOT NULL DEFAULT ’0’,
rd_namespace INT NOT NULL DEFAULT ’0’,
rd_title VARCHAR(255) BINARY NOT NULL DEFAULT ’’,
...
PRIMARY KEY rd_from (rd_from),
...

);

The categorylinks table stores categories of individual pages. Note that each

category is a page itself, located in namespace 14 (NS_CATEGORY).

CREATE TABLE categorylinks (
cl_from int unsigned NOT NULL default ’0’,
cl_to varchar(255) binary NOT NULL default ’’,
...
UNIQUE KEY cl_from (cl_from,cl_to),
...

);

There is a number of other important tables, most notably revision storing meta-

data for a given page revision (page, author, comment, date), and text storing text

content for each revision.

In fact, all the “link” tables are redundant, since information contained in them

can be recreated from the text of the latest revisions of pages. This, however, requires

complex parsing, and thus, for the sake of efficiency, these auxiliary tables are used.

A.1.3 Wikipedia Database Dumps

For each language version of Wikipedia, there are several database dump files avail-

able, in different formats and containing different types of content. The file format

is either compressed XML (Extensible Markup Language) suitable for import through

the MediaWiki engine which powers Wikipedia, or compressed SQL (Structured Query

Language) for direct import into the underlying database. Some files are compressed

using gzip algorithm, others using bzip2. The largest dumps files are additionally avail-

able in the 7z compression format.

72

APPENDIX A. IMPLEMENTATION

The most important XML dump files are:

• pages-meta-history.xml.{bz2,7z}— All pages with complete edit history. These

are the most complete dumps available, and the largest ones. For example, as of

mid-February 2008, the English version compressed using bzip2 takes 133 GB

and is approximately 20 times larger after decompression.

• pages-meta-current.xml.bz2 — All pages, current versions only. These files in-

clude only the most recent revisions. Technical pages, such as discussion and

user pages are included in these dumps.

• pages-articles.xml.bz2 — Articles, templates, image descriptions, and primary

meta-pages. These dumps contain the most recent revisions of articles. Wikipedia

mirrors typically use these files.

SQL dumps store contents of individual tables in the database. Therefore, most

(if not all) of these dumps can be recreated from the XML files, in the same way that

“links” tables can be reconstructed from the texts of latest revisions of pages.

Some users need only one or two tables, and rebuilding them from the XML files

can be extremely time-consuming. For that reason, some of the database tables are

stored in the form of SQL dumps. Some of the dumps are listed below:

• categorylinks.sql.gz — Wiki category membership link records.

• langlinks.sql.gz — Wiki interlanguage link records.

• page.sql.gz — Base per-page data (id, title, old restrictions, etc).

• pagelinks.sql.gz — Wiki page-to-page link records.

• redirect.sql.gz — Redirect list.

For the complete list of available dumps, go to: http://download.wikimedia.org/.

A.1.4 Import Alternatives

The canonical method of importing a language version of Wikipedia is installing the

MediaWiki engine and running the importDump maintenance script with an XML

dump as input, followed by optional rebuild of certain indexes. However, this method

is painfully slow, especially for the larger language versions.

There are at least two reasons for the sluggishness of this procedure. First, the im-

port function is written in PHP, an interpreted language, thus inevitably it executes

less efficiently than a code generated by an optimizing C/C++ or Java compiler. Sec-

ondly, such import performs, among other things, parsing of the page text followed by

updates of a number of auxiliary tables.

73

http://download.wikimedia.org/

APPENDIX A. IMPLEMENTATION

For many purposes, a tool extracting the crucial data from an XML dump and

storing it as an SQL table is sufficient. One such practical tool, a Java program called

mwdumper, reads an XML dump and writes page, revision, and text tables.

Finally, one can simply download the tables of interest instead of recreating them.

A.2 Database Import Process

A.2.1 Required and Optional Dumps

The minimum data requirements for our research consisted of page, langlinks, and

redirect tables for each language version. Using this data, we could reconstruct the

graph of interlanguage links between all the language versions: page tables provided

nodes, langlinks tables provided links, and redirect tables were used to merge

certain nodes.

However, in order to assign weights to the links, additional information about the

nodes is needed. We have decided to calculate, for the interlanguage links that required

such data, the number of common intrawiki links and common categories for the two

endpoints, which requires pagelinks and categorylinks tables, respectively.

In this context, the number of “common” links for a given pair of articles (a, b)
connected by an interlanguage link is understood as the number of intrawiki neighbors

of a which are connected by interwiki links with neighbors of b (the definition is, of

course, symmetric wrt. a and b).

A.2.2 Data Import and Preprocessing

We have written a script in the Python programming language that imports and pre-

processes all the available dumps of a multi-language, MediaWiki-powered wiki, such

as Wikipedia.

The script parses rawMySQL database dumps, therefore it does not require MySQL

to be installed. The network of pages and links is stored in a database. The connected

components of the network are identified and indexed. This way, each individual

connected component may be processed independently, as a fast access to pages and

links associated with the request component is guaranteed. The import process also

filters out pages from namespaces other than the article namespace (0) or the category

namespace (14). Similarly, links that are incident to the ignored pages are ignored as

well.

A detailed design of the database holding the network shall be presented in Section

A.3. We have created a software package hosted on the Google Code website4, licensed

4See: http://code.google.com/p/interwiki-analysis/

74

APPENDIX A. IMPLEMENTATION

under GNU General Public License version 3. The import script described above is part

of this package.

A.3 Software Design and Implementation

A.3.1 Network Storage Model

Figure A.1 presents a Unified Modeling Language [38] class diagram of the idealized

network storage. Page is the central class in the model, representing both articles and

categories. It contains all the basic facts about a page, such as title, language, and

namespace. A Component consists of one or more Pages. It is possible to derive several

interesting facts about a given component: whether it is coherent or not, what is the

namespace of the pages it contains, how many non-redirect pages does it contain.

A LangLink represents an interlanguage link between a pair of pages. It is possible

to determine the Component in which a given LangLink resides. Next, CategoryLink and

PageLink classes model the individual links of other types: a category link from X to

Y says that article X belongs to category Y, while a page link from X to Y is the plain

wiki link between two articles within a given language edition.

Next, PagePosition describes the position of a given Page in space. This information

is used both by the “Spatial” approach described in Section 4.4, and in visualization.

Finally, PageMeaning describes the cluster to which a given Page is assigned by a given

Approach.

A.3.2 Database Design

The network storage design was optimized towards the specific needs of the analysis

performed in this work. The following features were identified to be mandatory:

1. fast access to details of each node;

2. fast extraction of both incoming and outgoing links of any given node;

3. fast extraction of any given connected component.

The network data is stored in a PostgreSQL-backed database.

Each connected component is assigned a unique identifier (UUID, i.e., Universally

Unique Identifier). The network_comp relation stores certain characteristics of every

connected component having more than one node. The characteristics include the

namespace of the nodes comprising the given component (0 for articles, 14 for cate-

gories – the codes are the same as in the MediaWiki engine), whether the component is

coherent or not, and its size. While this relation is essentially redundant (all the values

can be inferred from the remaining relations), it is maintained for an accelerated access

75

APPENDIX A. IMPLEMENTATION

Component

+key: UUID

+isCoherent(): boolean

+getNamespace(): integer

+getSize(): integer

Page

+key: string

+language: string

+namespace: integer

+title: string

+redirect: Page

+component: Component

1

1..*

LangLink

+source: Page

+destination: Page

+getComponent(): Component

CategoryLink

+page: Page

+category: Page

PageMean ing

+approach: Approach

+page: Page

+meaning: UUID

+getComponent(): Component

PageLink

+source: Page

+destination: Page

incidence

2

0..*

incidence

0..*

2

incidence

0..*

2

0..*

1

PagePosit ion

+page: Page

+x: double

+y: double

+z: double

+getComponent(): Component

0..1

1

Approach

+name: string

1

0..*

Figure A.1: UML class diagram of network storage.

to components of a given type. The components of size one are not recorded in this

relation because of space considerations. The SQL schema for the network_comp is as

follows:

CREATE TABLE network_comp (
key varchar(36) NOT NULL PRIMARY KEY,
namespace INTEGER NOT NULL,
coherent BOOLEAN NULL,
size INTEGER NULL

);

Each page (an article or a category) in any of the language editions has a corre-

sponding record in the network_page relation. The record holds page’s identifier,

76

APPENDIX A. IMPLEMENTATION

language and title, namespace (article or category), and informs whether the page is a

redirect to another one. For the sake of optimization it also contains (redundantly) the

identifier of the connected component.

CREATE TABLE network_page (
key VARCHAR(32) NOT NULL PRIMARY KEY,
lang VARCHAR(16) NOT NULL,
namespace INTEGER NOT NULL,
title varchar(1024) NOT NULL,
redirect_id VARCHAR(32) NULL,
comp_id VARCHAR(36) NULL REFERENCES network_comp (key)

);

Each interlanguage link between a pair of articles or a pair of categories has a

corresponding record in the network_langlink relation. Again, the identifier of the

connected component to which the given ILL belongs is redundantly stored:

CREATE TABLE network_langlink (
id SERIAL NOT NULL PRIMARY KEY,
src_id VARCHAR(32) NOT NULL REFERENCES network_page (key),
dst_id VARCHAR(32) NOT NULL REFERENCES network_page (key),
comp_id VARCHAR(36) NULL REFERENCES network_comp (key)

);

Links between articles and their categories, as well as links between articles within a

given language edition, are stored in the network_categorylink and network_pagelink

relations, respectively. The primary purpose of storing the above links is to assign

weights to the interlanguage links based on the number of common categories and

outgoing links of a pair of articles.

CREATE TABLE network_categorylink (
id SERIAL NOT NULL PRIMARY KEY,
page_id VARCHAR(32) NOT NULL REFERENCES network_page (key),
category_id VARCHAR(32) NOT NULL REFERENCES network_page (key)

);

CREATE TABLE network_pagelink (
id SERIAL NOT NULL PRIMARY KEY,
src_id VARCHAR(32) NOT NULL REFERENCES network_page (key),
dst_id VARCHAR(32) NOT NULL REFERENCES network_page (key)

);

Page positions in space are stored in the network_pageposition relation. Each

page has a corresponding record in the relation, containing the x, y and z coordinates

77

APPENDIX A. IMPLEMENTATION

of the location in R
3. A reference to the component containing the page is redundantly

stored as well.

CREATE TABLE network_pageposition (
id SERIAL NOT NULL PRIMARY KEY,
page_id VARCHAR(32) NOT NULL REFERENCES network_page (key),
x DOUBLE PRECISION NULL,
y DOUBLE PRECISION NULL,
z DOUBLE PRECISION NULL,
comp_id VARCHAR(36) NOT NULL REFERENCES network_comp (key)

);

Finally, the network_pagemeaning relation stores the partitions generated by the

approaches described in Chapter 4. A record in the relation describes the location of

an individual page within a partition generated by a given approach. Such record

contains the identifier of the approach, the identifier of the meaning to which the page

is assigned, and – as usual – the identifier of the component to which the page belongs.

CREATE TABLE network_pagemeaning (
id SERIAL NOT NULL PRIMARY KEY,
auth VARCHAR(30) NOT NULL,
page_id VARCHAR(32) NOT NULL REFERENCES network_page (key),
meaning VARCHAR(36) NOT NULL,
comp_id VARCHAR(36) NOT NULL REFERENCES network_comp (key)

);

As we have already pointed out, most of the relations have a redundant reference

to the component containing a given entity. Thanks to this, assuming that in each of

the case there is a database index on the comp_id column, it is feasible to fetch a single

component and all the entities associated with it. This way, one may process a network

component-by-component, dramatically improving the performance.

Another optimization-driven redundancy is present in the network_comp relation,

where component characteristics are redundantly stored. This way it is possible to effi-

ciently iterate over a set of components with given properties. Again, this optimization

yields a dramatic reduction of the processing time.

A.3.3 Software Package

We have developed a software package containing the database import procedure and

implementations of all the approaches presented in Chapter 4. The package is hosted

on the Google Code website: http://code.google.com/p/interwiki-analysis/

and is available under the GNU General Public License version 3.

78

APPENDIX A. IMPLEMENTATION

The code has been written in the Python programming language. We have used

the NumPy and SciPy scientific libraries to perform the Conjugate Gradient routine

referenced in the “Spatial” approach (Section 4.4). We have chosen PostgreSQL as the

database backend, and the psycopg package provides the Python-PostgreSQL connec-

tivity.

A proof-of-concept website has been created, where incoherent components and se-

lected analysis results may be explored. The website is written using the Django frame-

work (a Python library). The website’s address is: http://wikitools.icm.edu.pl/

79

Appendix B

Glossary and Symbols

B.1 Glossary

The following is a list of recurring terms used throughout this thesis:

clique A set of vertices in a graph such that every pair of vertices from the set is

connected by an edge.

cluster An element of a partition (a subset of vertices).

coherent graph A graph in which each connected component contains at most one

vertex of any given color.

complete graph A coherent graph in which every connected component is a clique.

connected component A set of vertices in a graph such that for each pair of vertices

in the set there is a path (a sequence of edges) that connect the two vertices.

cut In a given graph, any set of edges such that their removal renders the graph co-

herent.

edge A connection between two vertices.

graph A set of vertices and edges. In the context of this thesis, unless stated other-

wise, a graph is assumed to be vertex-colored (a color is assigned to each vertex),

weighted (a positive real number is assigned to each edge), and undirected (each

edge simply connects two vertices v and w without specifying whether it is a

connection from v to w, or from w to v).

ILL See: interlanguage link.

interlanguage link In Wikipedia, a link from a page in one language edition to a

corresponding page in another language edition.

80

APPENDIX B. GLOSSARY AND SYMBOLS

link See: edge.

network See: graph.

node See: vertex.

partition In a given graph, partition of the set of vertices into subsets (clusters) in such

a way that no two vertices of the same color are in the same subset.

vertex An elementary building block of a graph. A graph consists of vertices connected

by edges. A vertex may have additional properties, such as color.

B.2 Symbols

The following is a list of recurring symbols used throughout this thesis:

E all the edges of a graph.

e typical symbol for an individual edge.

F typical symbol for a cut.

f |X if f is a function and X is a set, then f |X is a new function with the domain

restricted to dom(f) ∩ X, and equal to f everywhere.

G = 〈V, E, κ, µ〉 A graph consisting of vertices V and edges E, with vertex colors κ and

edge weights µ.

G|π if G is a graph and π is a partition of this graph, then G|π is a truncated graph,

that is, a graph G with all the edges incoherent with π removed.

V all the vertices of a graph.

v,w typical symbol for individual vertices.

κ vertex colors. It is a function that, for a given vertex v, returns its color κ(v).

µ edge weights. It is a function that, for a given edge e, returns its weight µ(e).

Π partition of the set of vertices V into disjoint subsets covering V.

π partition of the set of vertices V into disjoint subsets covering V. For a given v, π(v)
returns the subset of V containing v.

81

Acknowledgements

First of all, I would like to thank my wife Duygu for her tremendous support and

motivation, without which this thesis would never have been completed.

Next, I would like to thank Prof. Marek Niezgódka for his supervision of this the-

sis and creating a comfortable environment for research. I would also like to thank

my colleagues at the Interdisciplinary Centre for Mathematical and Computational

Modelling, whose to-the-point remarks and fruitful discussions were invaluable: Piotr

Bała, Dominik Batorski, Magdalena Gruziel, Jarosław Kalinowski, Kerstin Kantiem,

Michał Łopuszyński, Aleksander Nowiński, Krzysztof Nowiński, Michał Politowski,

Franciszek Rakowski, Tomasz Rosiek, Wojciech Sylwestrzak, and Anna Trykozko. Fi-

nally, I would like to thank members of the Wikipedia and Wikia communities: Masti

and Tor for their cooperation and fruitful discussion.

This research was possible because of a wide range of free and open source soft-

ware, including: GNU bc, Django framework, Eclipse IDE, Fedora GNU/Linux dis-

tribution, Firefox, gnuplot, MediaWiki, MySQL, NetBeans, OpenJDK, PostgreSQL,

Python, GNU R, Referencer, Subversion, TeX Live, Texmaker, GNU Textutils, Ubuntu

GNU/Linux distribution, and Vim. I deeply appreciate the effort of countless authors

of these excellent products.

82

Bibliography

[1] Adafre, S.F., de Rijke, M.: Discovering missing links in Wikipedia. In: Proceedings

of the 3rd international workshop on Link discovery. (2005) 90–97

[2] Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Reviews of

Modern Physics 74 (2002) 47–97

[3] Almeida, R.B., Mozafari, B., Cho, J.: On the Evolution of Wikipedia. In: Proceed-

ings of the International Conference on Weblogs and Social Media. (2007)

[4] Anthonisse, J.M.: The rush in a directed graph. Technical Report BN 9/71,

Stichting Mathematisch Centrum, Amsterdam (1971)

[5] Auer, S., Bizer, C., Lehmann, J., Kobilarov, G., Cyganiak, R., Ives, Z.: DBpedia: A

Nucleus for a Web of Open Data. In: 6th International and 2nd Asian Semantic Web

Conference (ISWC2007+ASWC2007). (2007) 715–728

[6] Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286

(1999) 509–512

[7] Barabási, A.L., Ravasz, E., Vicsek, T.: Deterministic Scale-Free Networks. Physica

A 299 (2001) 3

[8] Barak, A.: Psychological Aspects of Cyberspace: Theory, Research, Applications. Cam-

bridge University Press, New York, NY, USA (2008)

[9] Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Scientific American

(2001)

[10] Berners-Lee, T.: Tim Berners-Lee on the next Web. TED Talks (2009)

[11] Bollobás, B.: Random Graphs. Cambridge University Press (2001)

[12] Bomze, I., Budinich, M., Pardalos, P.M., Pelillo, M.: The maximum clique prob-

lem. In Du, D.Z., Pardalos, P.M., eds.: Handbook of Combinatorial Optimization

(Supplement Volume A). Volume 4. Kluwer Academic Publishers, Boston, MA

(1999)

83

BIBLIOGRAPHY

[13] Bondy, J.A., Murty, U.S.R.: Graph theory with applications. Elsevier Science (1976)

[14] Boudet, V., Rastello, F., Robert, Y.: Alignment and distribution is NOT (always)

NP-hard. In: Proceedings of the International Conference on Parallel and Distributed

Systems. (1998)

[15] Brandes, U.: A faster algorithm for betweenness centrality. Journal of Mathematical

Sociology 25 (2001) 163–177

[16] Brandes, U., Lerner, J.: Visual analysis of controversy in user-generated encyclo-

pedias. Information Visualization 7 (2008) 34–48

[17] Bryant, S.L., Forte, A., Bruckman, A.: Becoming Wikipedian: transformation of

participation in a collaborative online encyclopedia. In: GROUP ’05: Proceed-

ings of the 2005 international ACM SIGGROUP conference on Supporting group work.

(2005) 1–10

[18] Bunde, A., Havlin, S.: Power-law persistence in the atmosphere and in the

oceans. Physica A 314 (2002) 15–24

[19] Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network Robustness

and Fragility: Percolation on Random Graphs. Phys. Rev. Lett. 85 (2000) 5468–

5471

[20] Capocci, A., Servedio, V.D.P., Colaiori, F., Buriol, L.S., Donato, D., Leonardi, S.,

Caldarelli, G.: Preferential attachment in the growth of social networks: the case

of Wikipedia (2006)

[21] Capocci, A., Servedio, V.D.P., Caldarelli, G., Colaiori, F.: Detecting communities

in large networks. Physica A 352 (2005) 669–676

[22] Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very

large networks. Phys. Rev. E 70 (2004) 066111

[23] Clauset, A., Shalizi, C.R., Newman, M.E.J.: Power-law distributions in empirical

data (2007)

[24] Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,

Second Edition. The MIT Press (2001)

[25] Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.:

The Complexity of Multiterminal Cuts. SIAM J. Comput. 23 (1994) 864–894

[26] Danon, L., Duch, J., Diaz-Guilera, A., Arenas, A.: Comparing community struc-

ture identification. Journal of Statistical Mechanics: Theory and Experiment (2005)

P09008–09008

84

BIBLIOGRAPHY

[27] Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Pseudofractal scale-free web.

Phys. Rev. E 65 (2002) 066122

[28] Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: k-core organization of complex

networks. Physical Review Letters 96 (2006) 040601

[29] Dorogovtsev, S.N., Mendes, J.F.F.: Scaling properties of scale-free evolving net-

works: Continuous approach. Physical Review E 63 (2001) 056125

[30] Dorogovtsev, S.N., Mendes, J.F.F., Oliveira, J.G.: Frequency of occurrence of

numbers in the World Wide Web. Physica A 360 (2006) 548

[31] Duch, J., Arenas, A.: Effect of random failures on traffic in complex networks.

Proc. SPIE 6601 (2007)

[32] Eades, P.: A Heuristic for Graph Drawing. Congressus Numerantium 42 (1984)

149–160

[33] Eastman, R., Eastman, E.: Iquito Syntax. In Elson, B.F., ed.: Studies in Peruvian

Indian languages: I. SIL of the University of Oklahoma (1963) 145–192

[34] Ebel, H., Mielsch, L.I., Bornholdt, S.: Scale-free topology of e-mail networks.

Physical Review E 66 (2002) 035103

[35] Erdmann, M., Nakayama, K., Hara, T., Nishio, S.: Lecture Notes in Computer

Science. In Haritsa, J.R., Ramamohanarao, K., Pudi, V., eds.: DASFAA. Volume

4947., Springer (2008) 380–392

[36] Erdős, P., Rényi, A.: On random graphs, I. Publicationes Mathematicae 6 (1959)

290–297

[37] Erdős, P., Rényi, A.: On the evolution of random graphs. Publ. Math. Inst. Hung.

Acad. Sci 5 (1960) 17–61

[38] Eriksson, H.E., Penker, M.: UML toolkit. John Wiley & Sons, Inc., New York, NY,

USA (1998)

[39] Everett, D.L.: Cultural Constraints on Grammar and Cognition in Pirahã. Current

Anthropology 46 (2005)

[40] Flake, G., Lawrence, S., Giles, C.L.: Efficient Identification of Web Communities.

In: Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, Boston, MA (2000) 150–160

[41] Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press, Prince-

ton, NJ (1962)

85

BIBLIOGRAPHY

[42] Frank, M.C., Everett, D.L., Fedorenko, E., Gibson, E.: Number as a cognitive

technology: Evidence from Pirahã language and cognition. Cognition 108 (2008)

819–824

[43] Freeman, L.C.: A Set of Measures of Centrality Based on Betweenness. Sociometry

40 (1977) 35–41

[44] Freeman, L.C.: Centrality in social networks: Conceptual clarification. Social

Networks 1 (1979) 215–239

[45] Fruchterman, T.M.J., Reingold, E.M.: Graph Drawing by Force-directed Place-

ment. Software - Practice and Experience 21 (1991) 1129–1164

[46] Garey, M.R., Johnson, D.S., Stockmeyer, L.J.: Some Simplified NP-Complete

Graph Problems. Theor. Comput. Sci. 1 (1976) 237–267

[47] Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of

NP-Completeness. W. H. Freeman & Co., New York, NY, USA (1990)

[48] Girvan, M., Newman, M.E.J.: Community structure in social and biological

networks. Proc. Natl. Acad. Sci. U.S.A. 99 (2002) 7821–6

[49] Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning.

Addison-Wesley Professional (1989)

[50] Gulbahce, N., Lehmann, S.: The art of community detection. BioEssays 30 (2008)

934–938

[51] Hansen, S., Berente, N., Lyytinen, K.: Wikipedia, Critical Social Theory, and the

Possibility of Rational Discourse. The Information Society 25 (2009) 38–59

[52] Harary, F., Hage, P.: Eccentricity and centrality in networks. Social Networks 17

(1995) 57–63

[53] He, G., Liu, J., Zhao, C.: Approximation algorithms for some graph partitioning

problems. Journal of Graph Algorithms and Applications 4 (2000) 1–11

[54] Hill, T., Lundgren, A., Fredriksson, R., Schiöth, H.B.: Genetic algorithm for large-

scale maximum parsimony phylogenetic analysis of proteins. Biochim Biophys

Acta 1725 (2005) 19–29

[55] Holland, J.H.: Adaptation in natural and artificial systems. MIT Press, Cambridge,

MA, USA (1992)

[56] Hong, B.H., Lee, K.E., Lee, J.W.: Power Law in Firms Bankruptcy. Physics Letter

A 361 (2007) 6

86

BIBLIOGRAPHY

[57] Kamada, T., Kawai, S.: An algorithm for drawing general undirected graphs. Inf.

Process. Lett. 31 (1989) 7–15

[58] Karp, R.M.: Reducibility among combinatorial problems. In Miller, R.E.,

Thatcher, J.W., eds.: Complexity of Computer Computations. Plenum Press (1972)

85–103

[59] Kopf, R., Ruhe, G.: A computational study of the weighted independent set

problem for general graphs. Foundations of Control Engineering 12 (1987) 167–180

[60] Korte, B., Lovász, L., Schrader, R.: Greedoids. Springer-Verlag (1991)

[61] Laherrère, J.H.: Distributions de type fractal parabolique dans la nature. Comptes

Rendus de l’Acadèmie des Sciences 322 (1996) 535–541

[62] Lewis, P.O.: A genetic algorithm for maximum-likelihood phylogeny inference

using nucleotide sequence data. Mol Biol Evol 15 (1998) 277–283

[63] Li, J., Chen, M.: Index Domain Alignment: Minimizing Cost of Cross-reference

between Distributed Arrays. In: Proceedings of the third Symposium on Frontiers of

Massively Parallel Computation. (1990) 424–433

[64] Luccio, F., Sami, M.: On the Decomposition of Networks in Minimally Intercon-

nected Subnetworks. IEEE Transactions on Circuit Theory 16 (1969) 184–188

[65] Magnus, P.D.: On Trusting WIKIPEDIA. Episteme 6 (2009) 74–90

[66] Mantegna, R.N., Buldyrev, S.V., Goldberger, A.L., Havlin, S., Peng, C.K., Simons,

M., Stanley, H.E.: Linguistic Features of Noncoding DNA Sequences. Phys. Rev.

Lett. 73 (1994) 3169–3172

[67] Marsili, M., Zhang, Y.C.: Interacting Individuals Leading to Zipf’s Law. Phys.

Rev. Lett. 80 (1998) 2741–2744

[68] Milgram, S.: Behavioral study of obedience. Journal of Abnormal and Social Psy-

chology 67 (1963) 371–378

[69] Mitchell, M.: An Introduction to Genetic Algorithms. The MIT Press (1998)

[70] Miyazima, S., Lee, Y., Nagamine, T., Miyajima, H.: Power-law Distribution of

Family Names in Japanese Societies. Physica A 278 (2000) 282 – 288

[71] Newman, M.E.J.: Scientific collaboration networks. I. Network construction and

fundamental results. Phys. Rev. E 64 (2001) 016131

87

BIBLIOGRAPHY

[72] Newman, M.E.J.: Scientific collaboration networks. II. Shortest paths, weighted

networks, and centrality. Phys. Rev. E 64 (2001) 016132

[73] Newman, M.E.J.: Detecting community structure in networks. European Physical

Journal B 38 (2004) 321–330

[74] Newman, M.E.J.: Fast algorithm for detecting community structure in networks.

Physical Review E 69 (2004) 066133

[75] Newman, M.E.J.: Power laws, Pareto distributions and Zipf’s law. Contemporary

Physics 46 (2005) 323

[76] Newman, M.E.J.: Modularity and community structure in networks. Proceedings

of the National Academy of Sciences 103 (2006) 8577–8582

[77] Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in

networks. Physical Review E 69 (2004) 026113

[78] Newman, M.E.J., Park, J.: Why social networks are different from other types of

networks. Physical review. E 68 (2003) 036122

[79] Nunes, S., Ribeiro, C., David, G.: WikiChanges - Exposing Wikipedia Revision

Activity. In: WikiSym’08: Proceedings of the 2008 international symposium on Wikis.

(2008)

[80] Oreg, S., Nov, O.: Exploring motivations for contributing to open source initia-

tives: The roles of contribution context and personal values. Comput. Hum. Behav.

24 (2008) 2055–2073

[81] Palla, G., Derenyi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping com-

munity structure of complex networks in nature and society. Nature 435 (2005)

814–818

[82] Papadimitriou, C.H., Steiglitz, K.: Combinatorial optimization: algorithms and com-

plexity. Prentice-Hall (1982)

[83] Papadimitriou, C.M.: Computational complexity. Addison-Wesley, Reading, Mas-

sachusetts (1994)

[84] Press, W.H.: Numerical recipes: the art of scientific computing. 3 edn. Cambridge

University Press (2007)

[85] Pushkin, D.O., Aref, H.: Bank mergers as scale-free coagulation. Physica A 336

(2004) 571–584

88

BIBLIOGRAPHY

[86] R. Albert, H. Jeong, A.L.B.: Error and attack tolerance of complex networks.

Nature 406 (2000) 378–482

[87] Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., Parisi, D.: Defining and

identifying communities in networks. Proc Natl Acad Sci USA 101 (2004) 2658–

2663

[88] Ravasz, E., Barabási, A.L.: Hierarchical organization in complex networks. Phys.

Rev. E 67 (2003) 026112

[89] Sabidussi, G.: The centrality index of a graph. Psychometrika 31 (1966) 581–603

[90] Saito, K., Yamada, T., Kazama, K.: Extracting Communities from Complex Net-

works by the k-Dense Method. IEICE Trans. Fundam. Electron. Commun. Comput.

Sci. E91-A (2008) 3304–3311

[91] Sanger, L.M.: The Fate of Expertise after WIKIPEDIA. Episteme 6 (2009) 52–73

[92] Schroer, J., Hertel, G.: Voluntary Engagement in an Open Web-Based Encyclope-

dia: Wikipedians and Why They Do It. Media Psychology 12 (2009) 96–120

[93] Seidman, S.: Network structure and minimum degree. Social Networks 5 (1983)

269–287

[94] Shimbel, A.: Structural parameters of communication networks. Bulletin of Math-

ematical Biology 15 (1953) 501–507

[95] Stone, H.S.: Multiprocessor Scheduling with the Aid of Network Flow Algo-

rithms. IEEE Trans. Softw. Eng. 3 (1977) 85–93

[96] Suh, B., Chi, E.H., Pendleton, B.A., Kittur, A.: Us vs. Them: Understanding Social

Dynamics in Wikipedia with Revert Graph Visualizations. In: IEEE Symposium

on Visual Analytics Science and Technology. (2007) 163–170

[97] Tollefsen, D.P.: WIKIPEDIA and the Epistemology of Testimony. Episteme 6

(2009) 8–24

[98] Travers, J., Milgram, S.: An Experimental Study of the Small World Problem.

Sociometry 32 (1969) 425–443

[99] Tyers, F.M., Pienaar, J.A.: Extracting bilingual word pairs from Wikipedia. In:

Proceedings of the SALTMIL Workshop at Language Resources and Evaluation Confer-

ence, LREC08. (2008) 19–22

89

BIBLIOGRAPHY

[100] van Batenburg, F.H., Gultyaev, A.P., Pleij, C.W.: An APL-programmed genetic

algorithm for the prediction of RNA secondary structure. J Theor Biol 174 (1995)

269–280

[101] Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory. MIT Press,

Cambridge, MA, USA (1998)

[102] Wagner, K., Wechsung, G.: Computational Complexity. Springer (2001)

[103] Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications. Cam-

bridge University Press (1994)

[104] Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature

393 (1998) 440–2

[105] Wierzbicka, A.: Semantics, culture, and cognition : universal human concepts in

culture-specific configurations. Oxford University Press (1992)

[106] Wierzbicka, A.: Semantics: Primes and Universals. Oxford University Press (1996)

[107] Wierzbicka, A.: Emotions Across Languages and Cultures: Diversity and universals.

Cambridge University Press (1999)

[108] Willett, P.: Genetic algorithms in molecular recognition and design. Trends in

Biotechnology 13 (1995) 516–521

[109] Wray, B.K.: The Epistemic Cultures of Science and WIKIPEDIA: A Comparison.

Episteme 6 (2009) 38–51

[110] Yoon, J., Blumer, A., Lee, K.: An algorithm for modularity analysis of directed

and weighted biological networks based on edge-betweenness centrality. Bioin-

formatics 22 (2006) 3106–8

[111] Zlatic, V., Bozicevic, M., Stefancic, H., Domazet, M.: Wikipedias: Collabora-

tive web-based encyclopedias as complex networks. Physical Review E 74 (2006)

016115

90

	1 Introduction
	1.1 Background
	1.2 Notation and Definitions
	1.3 Problem Statement
	1.4 Key Contributions
	1.5 Thesis Structure

	2 Literature Review and State of the Art
	2.1 Computational Problem
	2.2 Models of Network Dynamics
	2.3 Power-Law Distributions
	2.4 Social Networks
	2.5 Cliques and Cores
	2.6 Genetic Algorithms
	2.7 Molecular Dynamics and Visualization
	2.8 Wikipedia in Academic Studies
	2.9 Translation as an Equivalence Relation

	3 Case Study: Semantic Drift in Wikipedia
	3.1 Research Material
	3.2 Basic Properties
	3.3 Component Sizes
	3.4 Node Degrees and Clustering Coefficients
	3.5 Skeleton Extraction
	3.6 Summary

	4 Theoretical Results
	4.1 Computational Complexity of the Researched Problem
	4.2 ``Greedy'' Approach
	4.3 ``Cliques'' Approach
	4.4 ``Spatial'' Approach
	4.5 ``Genetic'' Approach
	4.6 ``Girvan-Newman'' Approach
	4.7 Summary

	5 Experimental Results
	5.1 Methodology
	5.2 Results

	6 Summary, Conclusions and Outlook
	6.1 Summary
	6.2 Conclusions
	6.3 Outlook

	A Implementation
	A.1 Technical Background
	A.2 Database Import Process
	A.3 Software Design and Implementation

	B Glossary and Symbols
	B.1 Glossary
	B.2 Symbols

	Acknowledgements
	Bibliography

