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a b s t r a c t

In the present paper, we propose a modified tumor invasion model which was originally
proposed in Chaplain and Anderson (2003) [1]. And we show the local existence and
uniqueness of solutions to approximate systems of the 1Dmodified tumor invasionmodel.
Especially, we introduce a new function and show that our system is equivalent to the
nonlinear second-order PDE, which should be reformulated by the new function. Roughly
speaking, our system can be rewritten into only one second-order PDE and this fact is quite
essential to show the local existence of solutions to the approximate systems.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In [1] Chaplain and Anderson proposed the following PDEs-ODE system (S) := {(1.1)–(1.4)} to model a tumor invasion
phenomenon:

nt = ∇ · (κn(f ,m)∇n)−∇ · (nχ(f )∇f )+ F1(n, f ,m), (1.1)
ft = −F2(f ,m), (1.2)
mt = κm∆m+ g(n,m)− h(n,m, f )− k(m, w), (1.3)
wt = κw∆w + l(m, f )− k(m, w)− εww, (1.4)

where the unknown functions n, f ,m andw represent the concentrations of the tumor cells, the ECM (extracellular matrix),
the active MDEs (matrix degrading enzymes) and the endogenous inhibitors, respectively.
The first equation (1.1) describes the kinetics of the tumor cells. In this equation, its flux is given by −κn(f ,m)∇n +

nχ(f )∇f . The former −κn(f ,m)∇n represents the random motility of the tumor cells. And a non-negative function
κn(f ,m) of f and m represents a chemokinetic response to the ECM and the active MDEs. Roughly speaking, the larger
the concentration of the ECM or the active MDEs, the higher the random motility of the tumor cells. The latter nχ(f )∇f
describes the haptotactic flux and χ̂(f ) is the haptotactic sensitivity of the tumor cells to the ECM, where χ̂ is the primitive
of χ . Moreover, a non-negative function F1 describes the proliferation of the tumor cells.
The second equation (1.2) describes the kinetics of the ECM. Actually, the ECM is degraded by the biochemical reaction

between the ECM and the active MDEs. And its degradation process is described by ODE because this phenomenon is
modelled in the meso-scale. By a non-negative function F2(f ,m), we describe the decay rate of the ECM as the result of
the biochemical reaction between the ECM and the active MDEs.
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The third equation (1.3) describes the kinetics of the active MDEs. A positive constant κm describes the diffusion
coefficient of the activeMDEs. A positive function g(n,m) describes the production of the activeMDEs by the tumor cells and
themselves. And positive functions h(n,m, f ) and k(m, w) describe the natural decay of the active MDEs, which depends
upon the concentrations of the tumor cells and the ECM, and the neutralisation of the active MDEs by the biochemical
reaction between the active MDEs and the endogenous inhibitors, respectively.
The fourth equation (1.4) describes the kinetics of the endogenous inhibitors. Positive constants κw , εw and a positive

function l(m, f ) describe the diffusion coefficient of the endogenous inhibitors, the natural decay rate and the production
by the ECM as a response to the active MDEs of the endogenous inhibitors, respectively.
Now, we propose a modified system of (S). For this, we suppose that the following conditions are satisfied:

(1) There does not exist any endogenous inhibitors. Hence, we do not consider (1.4).
(2) The degradation of the ECM occurs when they contact with the tumor cells and therefore we omit the equation for the
active MDEs. Roughly speaking, the tumor cells have an influence on the degradation of the ECM directly and we almost
identify the concentration of the tumor cells with that of the active MDEs. So, we do not have to consider (1.3). As a
result, we drop out the variablem of the function F1 in (1.1) and replace that of F2 in (1.2) by n, namely, F1(n, f ,m) and
F2(f ,m) are replaced by F1(n, f ) and F2(f , n), respectively.

(3) The coefficient of the random motility is given by a function of space and time, not of the concentrations of the ECM
and the active MDEs like κn(f ,m) in (1.1). The reason why it is a function of space and time will be explained below.
Throughout this paper we denote it by p = p(x, t) instead of κn(f ,m).

(4) The proliferation F1 of the tumor cells in (1.1) is given by a function of space, time and the concentrations of the tumor
cells as well as the ECM. The reason why it depends upon space and time will be also explained below. Moreover, we
take the apoptosis of the tumor cells into consideration. So, the nonlinear function in (1.1), denoted by F , is expressed by
the difference between non-negative functions F1 (a proliferation of the tumor cells) and Fa (an apoptosis of the tumor
cells), i.e., F = F1 − Fa. As a result, we do not have to assume the non-negativeness of F throughout this paper.

(5) The haptotactic coefficient χ depends upon the concentration of the ECM. In [2], the following functions are reported
as the typical examples of χ :

χ(r) = −
χ0

r2
, ∀r ∈ (0,+∞)

and

χ(r) = −
χ0K

(r + K)3
, ∀r ∈ [0,+∞),

which are called the logarithmic law and the receptor law, respectively, where χ0 and K are given positive constants.
(6) The decay of the ECM is directly proportional to the product of the concentrations of the tumor cells and the ECM. We
denote by δ its proportion constant, which is positive. Here, you note that the condition (2) above is satisfied.

Under the above setting, we derive the following haptotaxis-degenerate system (P) := {(1.5), (1.6)} as a modified tumor
invasion model of (S):

nt = ∇ · (p(x, t)∇n)−∇ · (nχ(f )∇f )+ F(x, t, n, f ), (1.5)
ft = −δnf . (1.6)

In below,weexplainwhy a coefficient p = p(x, t)of the randommotility of the tumor cells and a function F = F(x, t, n, f )
depend upon space and time.
At first, we consider a function F . Recently, it is pointed out that heat shock proteins have influences on the apoptosis

of the tumor cells and their dynamics are controlled by a stress of temperature, for example, in [3–6]. In order to take such
influences of heat shock proteins into consideration, we assume that a nonlinear function F is a function of space, time and
the concentrations of the tumor cells as well as the ECM. But we suppose that the tumor cells and the ECM do not have any
influences on the dynamics of heat shock proteins.
Next, we consider a coefficient p. In (S), it is a function of the concentrations of the ECM and the active MDEs. In the

process to derive (P), we identify the dynamics of the concentration of the tumor cells with that of the active MDEs. Hence,
it must be a function of the concentrations of the tumor cells and the ECM. But, in (P) we suppose that it depends upon
distributions of heat shock proteins. So, we give a coefficient of the randommotility of the tumor cells by a function of space
and time.
Throughout this paper, we impose the following mathematical assumptions to the prescribed data p, χ , F , n0 and f0. In

below, let T be any positive and finite time and Ω := (−L, L) for some positive and finite constant L, which contains all
tumor cells.

(A1) p is a non-negative and bounded function on Q T := [−L, L] × [0, T ], that is, there exists a positive constant c1 such
that

0 ≤ p(x, t) ≤ c1, a.a. (x, t) ∈ Q T .
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(A2) χ is a non-negative continuous function on R+ := [0,∞). And there exist positive constants ci (i = 2, 3) such that

χ(r)+ rχ(r) ≤ c2, ∀r ∈ R+
and

|r1χ(r1)− r2χ(r2)| ≤ c3|r1 − r2|, ∀r1, r2 ∈ R+.

(A3) F is a continuous function from Q T × R× R+ into R. And there exist positive constants ci (i = 4, 5) such that

|F(x, t, 0, 1)| ≤ c4, ∀(x, t) ∈ Q T
and ∣∣F (x, t, r1, exp(r2))− F (x, t, r̃1, exp(r̃2))∣∣ ≤ c5 (|r1 − r̃1| + |r2 − r̃2|) ,

∀(x, t) ∈ Q T , ∀r1, r̃1 ∈ R, ∀r2, r̃2 ∈ R+ (i = 1, 2).

(A4) n0 ∈ H1(−L, L)with (n0)x(±L) = 0.
(A5) f0 ∈ H1(−L, L)with (f0)x(±L) = 0. And there exists a positive constant c6 such that

f0(x) ≥ c6, ∀x ∈ [−L, L].

From the above conditions, ln f0 is also in H1(−L, L)with (ln f0)x(±L) = 0.

Before giving ourmain theorems of this paper, we state some knownmathematical results. Actually, there are a lot of papers
treating the following chemotaxis-parabolic PDE system, which is sometimes called the Keller–Segel model:

nt = κn∆n−∇ · (nχ(f )∇f ),
ft = κf∆f − F2(f , n),

where κn and κf are positive constants. For example, in [7] Horstmann gives a survey of the mathematical results for the
Keller–Segel model, so, we refer the references to it.
In the present paper we consider the case that κf = 0. In this case the Keller–Segel model becomes a chemotaxis-

degenerate system, which is sometimes called the angiogenesis model. For thismodel, in [8] Friedman and Tello showed the
global existence and uniqueness of classical solutions by imposing some suitable assumption to the nonlinear term F2(f , n).
Moreover, in [9] Fontelos, Friedman and Hu considered 1D model for the case F2(t, f , n) = a1nf − a2(t)f , where a1 is a
positive constant and a2 is a positive function on R+. They showed the global existence and uniqueness of classical solutions.
Besides, they obtained some results concerned with the steady state problem. Recently, in [10,11] Corrias, Perthame and
Zaag considered the higher dimensional models for the case F2(f , n) = −nf m, wherem ≥ 1, and succeeded in showing the
global existence of weak solutions. Especially, they have already succeeded in deriving the global boundedness of solutions
with respect to time in some suitable function space for the 2D case.
But, the mathematical treatments, which are developed in the above papers, essentially and strongly depend upon the

fact that the coefficient of the random motility κn is a positive constant. As a result, they cannot be applied directly for the
case κn is not a positive constant. Actually, in our model it is given by a non-negative function of space and time, which
is denoted by p throughout this paper. Moreover, since p is non-negative and may be not continuous in our setting, the
randommotility of tumor cells is allowed to be degenerate and discontinuous at some positions and times. From this fact, it
is quite difficult to treat our systemmathematically. So, we add the terms κ∆nt and−ε∆ ln f in the right-hand side of (1.5)
to approximate (P).
Finally, in the present paper we consider the following approximate 1D haptotaxis-degenerate system, which is denoted

by (AP) := {(1.7)–(1.10)} throughout this paper:

nt = {κntx + p(x, t)nx − nχ(f )fx − ε(ln f )x}x + F(x, t, n, f ) a.a. in QT , (1.7)

ft = −δnf a.a. in QT , (1.8)
nx(±L, t) = fx(±L, t) = 0 a.a. t ∈ (0, T ), (1.9)
n(x, 0) = n0(x), f (x, 0) = f0(x) a.a. x ∈ (−L, L), (1.10)

κ and ε are positive constants. Throughout this paper, for simplicity we denote L2(−L, L) and H1(−L, L) by H and V ,
respectively. We note that V is continuously imbedded in C[−L, L], i.e., there exists a positive constant c7 such that

‖z‖C[−L,L] ≤ c7‖z‖V , ∀z ∈ V , (1.11)

which is a key inequality throughout all arguments in this paper.
Now, we are in a position to give our main theorems in this paper.

Theorem 1. Assume that (A1)–(A5) hold. Then, there exists T0 ∈ (0, T ] such that (AP) has at least one solution [n, f ] on [0, T0]
satisfying the following properties:

(P1) n ∈ W 1,∞(0, T0; V ) (⊂C([0, T0];H)).
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(P2) ln f ∈ W 2,∞(0, T0; V ) (⊂C1([0, T0];H)).
(P3) For any z ∈ V and a.a. t ∈ (0, T0) the following equality holds:

(n′(t), z)H + κ(n′x(t), zx)H +
∫ L

−L
p(x, t)nx(x, t)zx(x)dx− ε ((ln f )x(t), zx)H

−

∫ L

−L
n(x, t)χ(f (x, t))fx(x, t)zx(x)dx = (F(t, n(t), f (t)), z)H , (1.12)

where ‘‘′’’ implies the derivative with respect to the variable t throughout this paper.
(P4) For a.a. (x, t) ∈ QT0 the following equality holds:

f ′(x, t) = −δn(x, t)f (x, t). (1.13)

(P5) u(0) = u0 and f (0) = f0.

Theorem 2. Assume that (A1)–(A5) hold. Then, (AP) has at most one solution [n, f ] on [0, T0], where T0 is the same time as in
Theorem 1.

From Theorems 1 and 2, (AP) has one and only one time-local solution [n, f ] on [0, T0].

2. Equivalent evolution equation to (AP)

Let n0 and f0 be the same functions as in (A4) and (A5), respectively. Moreover, for each function ` on Q T we define a
function ˜̀ by

˜̀(x, t) := f0(x) exp (−δtn0(x)− δ`(x, t)) , ∀(x, t) ∈ Q T .

And we consider the following second-order PDE denoted by (E) := {(2.1)–(2.3)}:

u′′(x, t) = qx(x, t, u(x, t))+ F
(
x, t, u′(x, t)+ n0(x), ũ(x, t)

)
a.a. (x, t) ∈ QT , (2.1)

ux(±L, t) = 0 a.a. t ∈ (0, T ), (2.2)

u(x, 0) = u′(x, 0) = 0 a.a. x ∈ (−L, L), (2.3)

where

q(x, t, u(x, t)) = κu′′x (x, t)+ p(x, t)u
′

x(x, t)+ εδux(x, t)+ δ
{
u′(x, t)+ n0(x)

}
ũ(x, t)χ

(
ũ(x, t)

)
ux(x, t)

+
[
p(x, t)+ δt

{
u′(x, t)+ n0(x)

}
ũ(x, t)χ

(
ũ(x, t)

)
+ εδt

]
(n0)x(x)

−
[{
u′(x, t)+ n0(x)

}
ũ(x, t)χ

(
ũ(x, t)

)
+ ε

]
(ln f0)x(x).

It is easily seen from (A4), (A5) with (2.2) that the following boundary condition holds:

q(±L, t, u(±L, t)) = 0 a.a. t ∈ (0, T ).

First of all, we give the definition of solutions to (E) below.

Definition 2.1. The function u : Q T −→ R is called a solution to (E) on [0, T ] if and only if the following properties are
satisfied:

(E1) u ∈ W 2,∞(0, T ; V )
(
⊂ C1([0, T ];H) ∩ C(Q T )

)
.

(E2) For any z ∈ V and a.a. t ∈ (0, T ) the following equality holds:

(u′′(t), z)H + (q(t, u(t)), zx)H =
(
F
(
t, u′(t)+ n0, ũ(t)

)
, z
)
H . (2.4)

(E3) u(0) = u′(0) = 0 in H .

Then, we see that the following propositions hold.

Proposition 2.1. Let [n, f ] be a solution to (AP) on [0, T ]. And we define a function u : Q T −→ R by

u(x, t) := −n0(x)t −
1
δ
ln
f (x, t)
f0(x)

, ∀(x, t) ∈ Q T .

Then, u is a solution to (E).
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Proof. By the standard calculation, it is easily seen that the following equalities are satisfied for a.a. (x, t) ∈ Q T :

f (x, t) = f0(x) exp (−δtn0(x)− δu(x, t)) = ũ(x, t),
n(x, t) = u′(x, t)+ n0(x),
nx(x, t) = u′x(x, t)+ (n0)x(x),
n′(x, t) = u′′(x, t),
n′x(x, t) = u

′′

x (x, t),
fx(x, t) = ũ(x, t) {−δux(x, t)− δt(n0)x(x)+ (ln f0)x(x)} ,
(ln f )x(x, t) = −δux(x, t)− δt(n0)x(x)+ (ln f0)x(x).

We substitute the above equalities into (1.12). Then, we see that u satisfies (2.4).
Moreover, it is clear that u satisfies all regularities and the initial conditions, which are required in (E1) and (E3) in

Definition 2.1, respectively.
Hence, we see that u is a solution to (E) on [0, T ]. �

Proposition 2.2. Let u be a solution to (E) on [0, T ]. Then, we define functions n and f on Q T by

n(x, t) := u′(x, t)+ n0(x)

and

f (x, t) := ũ(x, t) = f0(x) exp (−δtn0(x)− δu(x, t)) ,

respectively. Then, a pair [n, f ] is a solution to (AP) on [0, T ].

Proof. It is clear that u and f satisfy the regularities and the initial conditions, which are required in (P1), (P2) and (P5) in
Theorem 1. By the standard calculation, we see that the following equalities are satisfied for a.a. (x, t) ∈ Q T :

u(x, t) = −tn0(x)−
1
δ
ln
f (x, t)
f0(x)

,

ux(x, t) = −t(n0)x(x)−
1
δ
{(ln f )x(x, t)− (ln f0)x(x)} ,

u′x(x, t) = nx(x, t)− (n0)x(x),
u′′(x, t) = n′(x, t),
u′′x (x, t) = n

′

x(x, t).

We substitute the above equalities into (2.4). Then, we see that (1.12) holds.
Moreover, we see that the following equality holds for a.a. (x, t) ∈ QT :

f ′(x, t) = −δ
{
n0(x)+ u′(x, t)

}
f0(x) exp (−δtn0(x)− δu(x, t))

= −δn(x, t)f (x, t),

that is, (1.13) is satisfied.
Hence, we see that a pair [n, f ] is a solution to (AP) on [0, T ]. �

From Propositions 2.1 and 2.2, in order to show the local existence of solutions to (AP), it is enough to show that of (E).
Actually, in Section 4 we show the local existence of solutions to (E) instead of (AP).

3. Auxiliary problem for (E)

Let v be any given function in C1([0, T ]; V ). And we consider the following auxiliary problem (AE)v = {(3.1)–(3.3)}:

u′′(x, t) = q̃x(x, t, u(x, t), v(x, t))+ F
(
x, t, u′(x, t)+ n0(x), ũ(x, t)

)
a.a. (x, t) ∈ QT , (3.1)

ux(±L, t) = 0 a.a. t ∈ (0, T ), (3.2)

u(x, 0) = u′(x, 0) = 0 a.a. x ∈ (−L, L), (3.3)

where

q̃(x, t, u(x, t), v(x, t)) = κu′′x (x, t)+ p(x, t)u
′

x(x, t)+ εδux(x, t)+ δ
{
v′(x, t)+ n0(x)

}
ṽ(x, t)χ (ṽ(x, t)) ux(x, t)

+
[
p(x, t)+ δt

{
v′(x, t)+ n0(x)

}
ṽ(x, t)χ (ṽ(x, t))+ εδt

]
(n0)x(x)

−
[{
v′(x, t)+ n0(x)

}
ṽ(x, t)χ (ṽ(x, t))+ ε

]
(ln f0)x(x). (3.4)

This section is devoted to showing the following proposition.
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Proposition 3.1. Assume that (A1)–(A5) hold. Then, for each v ∈ C1([0, T ]; V ) (AE)v has one and only one solution uv satisfying
the following properties:

(1) uv ∈ W 2,∞(0, T ; V ) ∩ C1([0, T ]; V ).
(2) For any z ∈ V and a.a. t ∈ (0, T ) the following equality holds:

(u′′v(t), z)H +
(
q̃(t, uv(t), v(t)), zx

)
H =

(
F
(
t, u′v(t)+ n0, ũv(t)

)
, z
)
H . (3.5)

(3) uv(0) = u′v(0) = 0 in H.

Moreover, there exists a continuous function K1 : R4+ −→ R+ such that

‖uv‖C1([0,T ];V ) + ‖u
′′

v‖L∞(0,T ;V ) ≤ K1(T , ‖u0‖V , ‖f0‖V , ‖v‖C1([0,T ];V )), (3.6)

and for each fixed ri ∈ R+ (1 ≤ i ≤ 3) the function K1(·, r1, r2, r3) is strictly increasing on R as well as for each bounded sets
Bi ⊂ R+ (1 ≤ i ≤ 3)

lim
T↓0

sup
ri∈Bi, 1≤i≤3

K1(T , r1, r2, r3) = 0. (3.7)

In order to show Proposition 3.1 we use Galerkin method. Actually, let {ϕn}n∈N be a base of V , which is an orthonormal
one of H , and for eachm ∈ Nwe consider the following Galerkin system denoted by (G)m = {(3.8), (3.9)}:

(u′′m(t), z)H + (q(t, um(t), v(t)), zx)H =
(
F
(
t, u′m(t)+ n0, ũm(t)

)
, z
)
H ,

∀z ∈ Vm := span{ϕ1, ϕ2, . . . , ϕm}, ∀t ∈ [0, T ], (3.8)

um(x, 0) = u′m(x, 0) = 0 a.a. x ∈ (−L, L), (3.9)

where

um(x, t) =
m∑
i=1

ai(t)ϕi(x), ∀(x, t) ∈ Q T .

By using the standard argument in the theory of ODE, it is easily seen that for each m ∈ N (G)m has a unique solution
a = [a1, a2, . . . , am]T ∈ C2([0, T ];Rm).
Now, we derive the uniform estimates of the solutions um to (G)m in the following lemmas.

Lemma 3.1. There exist continuous functions Ri : R2+ −→ R+ (i = 1, 2) such that

sup
0≤t≤T

‖u′m(t)‖
2
V + sup

0≤t≤T
‖um(t)‖2V ≤

(
1+ ‖v‖2C1([0,T ];V )

)
R1(‖n0‖V , ‖f0‖V )

×

(
T 3

3
+ T

)
exp

(
T
(
1+ ‖v‖C1([0,T ];V )

)
R2(‖n0‖V , ‖f0‖V )

)
, ∀m ∈ N. (3.10)

Proof. For simplicity, we skip the indexm. We substitute z = u′(t) in (3.8). Then, it is easily seen from (A1)–(A5) that there
exist constants Ci > 0 (i = 1, 2), which are determined by ‖n0‖V and ‖f0‖V , such that the following inequality holds for a.a.
t ∈ (0, T ):

d
dt
G1(t) ≤ C1

(
1+ ‖v‖C1([0,T ];V )

)
G1(t)+ C2(t2 + 1)

(
1+ ‖v‖2C1([0,T ];V )

)
(3.11)

where

G1(t) := ‖u′(t)‖2H + κ‖u
′

x(t)‖
2
H + εδ‖u(t)‖

2
V .

By applying Gronwall lemma to (3.11), we see that (3.10) holds. �

Lemma 3.2. There exists a constant R3 > 0, which is determined by T , ‖n0‖V , ‖f0‖V and ‖v‖C1([0,T ];V ), such that

‖u′′m‖L∞(0,T ;V ) ≤ R3, ∀m ∈ N.

Proof. By substituting z = u′′m(t) in (3.8) and using Lemma 3.1 with (A1)–(A5) again, we can easily obtain that this lemma
holds. �

Now, we are in a position to show Proposition 3.1.
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Proof of Proposition 3.1. First, we show the existence of solutions to (AE)v . From Lemmas 3.1 and 3.2, we can take a
subsequence {mk} ⊂ {m} and a function u so that

u ∈ W 2,∞(0, T ; V ) (⊂C1([0, T ]; V ))

and

uk := umk −→ u
{
strongly in C1([0, T ];H),
∗-weakly inW 2,∞(0, T ; V )

(3.12)

as k→∞.
Moreover, by taking a subsequence of {mk} if it is necessary, which is denoted by the same notation {mk} throughout this

proof, we see that

uk(x, t) −→ u(x, t), u′k(x, t) −→ u′(x, t) a.a. (x, t) ∈ QT (3.13)

as k→∞.
We see from (3.4) and (3.5) that for any k ∈ N and φ ∈ C∞0 (0, T ) the following equality holds:∫ T

0
(u′′k (t), z)Hφ(t)dt + κ

∫ T

0
((u′′k )x(t), zx)Hφ(t)dt +

∫ T

0

∫ L

−L
p(x, t)(u′k)x(x, t)zx(x)φ(t)dxdt

+ εδ

∫ T

0
((uk)x(t), zx)H φ(t)dt + δ

∫ T

0

∫ L

−L

{
v′(x, t)+ n0(x)

}
ṽ(x, t)χ(ṽ(x, t))(uk)x(x, t)zx(x)φ(t)dxdt

= −

∫ T

0

∫ L

−L
p(x, t)(n0)x(x)zx(x)φ(t)dxdt + ε

∫ T

0
((ln f0)x − δt(n0)x, zx)H φ(t)dt

+

∫ T

0

∫ L

−L

{
v′(x, t)+ n0(x)

}
ṽ(x, t)χ(ṽ(x, t)) {(ln f0)x(x)− δt(n0)x(x)} zx(x)φ(t)dxdt

+

∫ T

0

(
F
(
t, u′k(t)+ n0, ũk(t)

)
, z
)
H φ(t)dt, ∀z ∈ Vmk .

We substitute z = ϕj (j = 1, 2, 3, . . .) and take the limit k → ∞ in the above equality. Then, it is easily seen from the
convergences in (3.12) and (3.13) that the following equality holds:∫ T

0
(u′′(t), ϕj)Hφ(t)dt + κ

∫ T

0
(u′′x (t), (ϕj)x)Hφ(t)dt +

∫ T

0

∫ L

−L
p(x, t)u′x(x, t)(ϕj)x(x)φ(t)dxdt

+ εδ

∫ T

0

(
ux(t), (ϕj)x

)
H φ(t)dt + δ

∫ T

0

∫ L

−L

{
v′(x, t)+ n0(x)

}
ṽ(x, t)χ(ṽ(x, t))ux(x, t)(ϕj)x(x)φ(t)dxdt

= −

∫ T

0

∫ L

−L
p(x, t)(n0)x(x)(ϕj)x(x)φ(t)dxdt + ε

∫ T

0
((ln f0)x − δt(n0)x, (ϕj)x)Hφ(t)dt

+

∫ T

0

∫ L

−L

{
v′(x, t)+ n0(x)

}
ṽ(x, t)χ(ṽ(x, t))(ln f0)x(x)(ϕj)x(x)φ(t)dxdt

− δ

∫ T

0

∫ L

−L
t
{
v′(x, t)+ n0(x)

}
ṽ(x, t)χ(ṽ(x, t))(n0)x(x)(ϕj)x(x)φ(t)dxdt

+

∫ T

0

(
F
(
t, u′(t)+ n0, ũ(t)

)
, ϕj
)
H φ(t)dt. (3.14)

So, (3.14) is valid for any z ∈
⋃
∞

m=1 Vm. Since the set
⋃
∞

m=1 Vm is dense in V , we see that the equality (3.14) holds for any
z ∈ V and φ ∈ C∞0 (0, T ). This implies that u is a solution to (AE)v .
Moreover, it is clear from Lemmas 3.1 and 3.2 that there exists a function K1 satisfying all properties, which are demanded

in Proposition 3.1.
In the rest of this proof, we show the uniqueness of solutions to (AE)v . For this, let ui (i = 1, 2) be two solutions to (AE)v ,

and put Ū := u1 − u2. Then, we see that for any z ∈ V and a.a. t ∈ (0, T ) the following equality holds:

(Ū ′′(t), z)H + κ(Ū ′′x (t), zx)H +
∫ L

−L
p(x, t)Ū ′x(x, t)zx(x)dx

+ δ

∫ L

−L

{
v′(x, t)+ n0(x)

}
ṽ(x, t)χ (ṽ(x, t)) Ūx(x, t)zx(x)dx+ εδ(Ūx(t), zx)H

=
(
F
(
t, u1(t)+ n0, ũ1(t)

)
− F

(
t, u2(t)+ n0, ũ2(t)

)
, z
)
H . (3.15)
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We substitute z = Ū ′(t) in (3.15) and use (A1), (A2) to derive

1
2

{
‖Ū ′(t)‖2H + κ‖Ū

′

x(t)‖H + εδ‖Ūx(t)‖
2
H

}
≤ δc2

∫ L

−L

(
|v′(x, t)| + |n0(x)|

)
|Ūx(x, t)||Ū ′x(x, t)|dx

+

∫ L

−L

∣∣F (x, t, u1(x, t)+ n0(x), ũ1(x, t))− F (x, t, u2(x, t)+ n0(x), ũ2(x, t))∣∣ |Ū ′(x, t)|dx.
It is easily seen from (1.11), (A3) and (A4) that

δc2

∫ L

−L

(
|v′(x, t)| + |n0(x)|

)
|Ūx(x, t)||Ū ′x(x, t)|dx ≤ C

(
‖v′(t)‖V + 1

) {
‖Ūx(t)‖2H + ‖Ū

′

x(t)‖
2
H

}
and ∫ L

−L

∣∣F (x, t, u1(x, t)+ n0(x), ũ1(x, t))− F (x, t, u2(x, t)+ n0(x), ũ2(x, t))∣∣ |Ū ′(x, t)|dx
=

∫ L

−L
|F (x, t, u1(x, t)+ n0(x), exp(ln f0(x)− δ{tn0(x)+ u1(x, t)}))

− F (x, t, u2(x, t)+ n0(x), exp(ln f0(x)− δ{tn0(x)+ u2(x, t)})) ||Ū ′(x, t)|dx
≤ C

(
‖Ū ′(t)‖2H + ‖Ū(t)‖

2
H

)
.

Hence, we derive that the following inequality holds:

d
dt
G2(t) ≤ C

(
‖v‖C1([0,T ];V ) + 1

)
G2(t), a.a. t ∈ (0, T ), (3.16)

where

G2(t) := ‖Ū ′(t)‖2H + κ‖Ū
′

x(t)‖
2
H + εδ‖Ū(t)‖

2
V .

By applying Gronwall lemma to (3.16), it follows that

‖Ū ′(t)‖2H + κ‖Ū
′

x(t)‖
2
H + εδ‖Ū(t)‖

2
V ≤ 0, ∀t ∈ [0, T ].

This implies that u1(t) = u2(t) in V for any t ∈ [0, T ]. Hence, we see that (AE)v has at most one solution on [0, T ]. �

4. Proof of Theorem 1

We devote this section to showing Theorem 1. For this, throughout this section we fix any number R > 0. And for each
finite T > 0 we consider the closed ball BR(T )with center 0 and radius R of C1([0, T ]; V ), i.e.,

BR(T ) :=
{
v ∈ C1([0, T ]; V ) | ‖v‖C1([0,T ];V ) ≤ R

}
.

From Proposition 3.1, we can define an operator ST from BR(T ) into C1([0, T ]; V ), which assigns v ∈ BR(T ) to a unique
solution uv := STv to (AE)v .
Then, we derive the following lemma.

Lemma 4.1. There exists a finite T1 := T1(R) > 0 such that

STBR(T ) ⊂ BR(T ), ∀T ∈ (0, T1],

i.e., for any T ∈ (0, T1] ST is an operator from BR(T ) into itself.

Proof. From (3.6) in Proposition 3.1, we see that the following inequality holds:

‖STv‖C1([0,T ];V ) ≤ K1(T , ‖u0‖V , ‖f0‖V , R), ∀v ∈ BR(T ),

where K1 is the same function as in Proposition 3.1.
Since the function K1(·, ‖u0‖V , ‖f0‖V , R) is a strictly increasing and continuous function on R+ satisfying

K1(0, ‖u0‖V , ‖f0‖V , R) = 0, lim
T↑∞
K1(T , ‖u0‖V , ‖f0‖V , R) = ∞,

it is easily seen that the algebraic equation K1(t, ‖u0‖V , ‖f0‖V , R) = R has a unique solution T1 := T1(R).
Then, it is clear that

‖STv‖C1([0,T ];V ) ≤ R, ∀T ∈ (0, T1], ∀v ∈ BR(T ),

that is, STBR(T ) ⊂ BR(T ) for all T ∈ (0, T1]. �



Author's personal copy

A. Ito et al. / Nonlinear Analysis: Real World Applications 11 (2010) 3555–3566 3563

To show the local existence of solutions to (E) it is enough to show Lemma 4.2. Actually, from Lemma 4.2 we can apply
Banach fixed point theorem and it is clear that its fixed point is a solution to (E) on [0, T2], where T2 is the same time as in
Lemma 4.2. So, we show Lemma 4.2 and omit the exact proof of Theorem 1 in this paper.

Lemma 4.2. There exists a finite T2 := T2(R) ∈ (0, T1] such that

‖ST2v1 − ST2v2‖C1([0,T2];V ) < ‖v1 − v2‖C1([0,T2];V ), ∀v1, v2 ∈ BR(T2),

that is, ST2 is contractive with respect to the strong topology of C
1([0, T2]; V ), where T1 is the same time as in Lemma 4.1.

Proof. In this proof, we denote by C positive constants, which are determined by ‖n0‖V , ‖f0‖V , R and constants ci given in
Section 1, but are independent of T . Moreover, for simplicity we put ui := STvi (i = 1, 2), Ū := u1 − u2 and V̄ := v1 − v2.
Then, for each T ∈ (0, T1] it follows from Lemma 4.1 that

‖ui‖C1([0,T ];V ) ≤ R, i = 1, 2. (4.1)

We substitute z := Ū ′(t) in the following equality:

(Ū ′′(t), z)H + κ(Ū ′′x (t), zx)H +
∫ L

−L
p(x, t)Ū ′x(x, t)zx(x)dx

+ δ

∫ L

−L

{
v′1(x, t)+ n0(x)

}
ṽ1(x, t)χ (ṽ1(x, t)) (u1)x(x, t)zx(x)dx

− δ

∫ L

−L

{
v′2(x, t)+ n0(x)

}
ṽ2(x, t)χ (ṽ2(x, t)) (u2)x(x, t)zx(x)dx+ εδ(Ūx(t), zx)H

=

∫ L

−L

{
v′1(x, t)+ n0(x)

}
ṽ1(x, t)χ (ṽ1(x, t)) {(ln f0)x(x)− δt(n0)x(x)} zx(x)dx

−

∫ L

−L

{
v′2(x, t)+ n0(x)

}
ṽ2(x, t)χ (ṽ2(x, t)) {(ln f0)x(x)− δt(n0)x(x)} zx(x)dx

+

∫ L

−L

{
F
(
x, t, u′1(x, t)+ n0(x), ũ1(x, t)

)
− F

(
x, t, u′2(x, t)+ n0(x), ũ2(x, t)

)}
z(x)dx.

First of all, we give the following estimate, which is a key inequality in this proof. We see from (1.11), (A2), (A4) and (A5)
that

|ṽ1(x, t)− ṽ2(x, t)| = f0(x)| exp(−δ{tn0(x)+ v1(x, t)})− exp(−δ{tn0(x)+ v2(x, t)})|
≤ δf0(x) exp (δ{2t|n0(x)| + |v1(x, t)| + |v2(x, t)|}) |v1(x, t)− v2(x, t)|
≤ δc27‖f0‖V exp (δc7(2t‖n0‖V + ‖v1(t)‖V + ‖v2(t)‖V )) ‖V̄ (t)‖V
≤ δc27‖f0‖V exp (2δc7(‖n0‖V T + R)) ‖V̄ (t)‖V ,

that is,

‖ṽ1 − ṽ2‖L∞(QT ) ≤ C exp(C(T + 1))‖V̄‖C([0,T ];V ). (4.2)

Secondly, it follows from (1.11), (4.1) and (4.2) that the following inequality holds:

−δ

∫ L

−L

{
v′1(x, t)ṽ1(x, t)χ (ṽ1(x, t)) (u1)x(x, t)− v

′

2(x, t)ṽ2(x, t)χ (ṽ2(x, t)) (u2)x(x, t)
}
Ū ′x(x, t)dx

≤ δ

∫ L

−L
|V̄ ′(x, t)||ṽ1(x, t)χ (ṽ1(x, t)) ||(u1)x(x, t)||Ū ′x(x, t)|dx

+ δ

∫ L

−L
|v′2(x, t)||ṽ1(x, t)χ (ṽ1(x, t))− ṽ2(x, t)χ (ṽ2(x, t)) ||(u1)x(x, t)||Ū

′

x(x, t)|dx

+ δ

∫ L

−L
|v′2(x, t)||ṽ2(x, t)χ (ṽ2(x, t)) ||Ūx(x, t)||Ū

′

x(x, t)|dx

≤ δc2c7‖u1(t)‖V‖V̄ ′(t)‖V‖Ū ′x(t)‖H + δc2c7‖v
′

2(t)‖V‖Ūx(t)‖H‖Ū
′

x(t)‖H

+ δc3c7‖v′2(t)‖V

∫ L

−L
|ṽ1(x, t)− ṽ2(x, t)||(u1)x(x, t)||Ū ′x(x, t)|dx

≤ δc2c7R
{
‖V̄ ′(t)‖V‖Ū ′x(t)‖H + ‖Ūx(t)‖H‖Ū

′

x(t)‖H
}
+ δc3c7R

3
2 ‖ṽ1 − ṽ2‖L∞(QT )‖Ū

′

x(t)‖H

≤ C
{
‖Ūx(t)‖2H + ‖Ū

′

x(t)‖
2
H

}
+ C exp(C(T + 1))‖V̄‖2C1([0,T ];V ).
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By repeating the similar argument above, we derive the following inequalities:

• −δ

∫ L

−L
n0(x) {ṽ1(x, t)χ (ṽ1(x, t)) (u1)x(x, t)− ṽ2(x, t)χ (ṽ2(x, t)) (u2)x(x, t)} Ū ′x(x, t)dx

≤ C
{
‖Ūx(t)‖2H + ‖Ū

′

x(t)‖
2
H

}
+ C exp(C(T + 1))‖V̄‖2C([0,T ];V ),

•

∫ L

−L

{
v′1(x, t)ṽ1(x, t)χ (ṽ1(x, t))− v

′

2(x, t)ṽ2(x, t)χ (ṽ2(x, t))
}
(ln f0)x(x)Ū ′x(x, t)dx

≤ C‖Ū ′x(t)‖
2
H + C exp(C(T + 1))‖V̄‖

2
C1([0,T ];V ),

• δt
∫ L

−L

{
v′1(x, t)ṽ1(x, t)χ (ṽ1(x, t))− v

′

2(x, t)ṽ2(x, t)χ (ṽ2(x, t))
}
(n0)x(x)Ū ′x(x, t)dx

≤ C‖Ū ′x(t)‖
2
H + Ct

2 exp(C(T + 1))‖V̄‖2C1([0,T ];V ),

•

∫ L

−L
n0(x) {ṽ1(x, t)χ (ṽ1(x, t))− ṽ2(x, t)χ (ṽ2(x, t))} (ln f0)x(x)Ū ′x(x, t)dx

≤ C‖Ū ′x(t)‖
2
H + C exp(C(T + 1))‖V̄‖

2
C([0,T ];V ),

• −δt
∫ L

−L
n0(x) {ṽ1(x, t)χ (ṽ1(x, t))− ṽ2(x, t)χ (ṽ2(x, t))} (n0)x(x)Ū ′x(x, t)dx

≤ C‖Ū ′x(t)‖
2
H + Ct

2 exp(C(T + 1))‖V̄‖2C([0,T ];V ).

Thirdly, it follows from (A3) that the following inequality holds:∫ L

−L

{
F
(
x, t, u′1(x, t)+ n0(x), ũ1(x, t)

)
− F

(
x, t, u′2(x, t)+ n0(x), ũ2(x, t)

)}
Ū(x, t)dx

≤ C
{
‖Ū ′(t)‖2H + ‖Ū(t)‖

2
H

}
, a.a. t ∈ (0, T ).

At last, we derive from the above inequalities that the following inequality holds:

d
dt
G3(t) ≤ C

{
G3(t)+ (t2 + 1) exp(C(T + 1))‖V̄‖2C1([0,T ];V )

}
, a.a. t ∈ (0, T ), (4.3)

where

G3(t) := ‖Ū ′(t)‖2H + κ‖Ū
′

x(t)‖
2
H + εδ‖Ū(t)‖

2
V .

By applying Gronwall lemma to (4.3), we see that there exists a strictly increasing and continuous function R4 from R+ into
itself such that

‖Ū‖C1([0,T ];V ) ≤ R4(T )‖V̄‖C1([0,T ];V ), ∀T ∈ (0, T1] (4.4)

and

R4(0) = 0, lim
T↑∞
R4(T ) = ∞. (4.5)

Hence, we put by T̃2 a unique solution of the algebraic equation R4(T ) = 1 and choose a positive and finite T2 so that T2 < T̃2
and T2 ≤ T1. Then, it is clear from (4.4) and (4.5) that T2 is a desired one in this lemma, that is, ST2 is a contractive operator
from BR(T2) into itself with respect to the strong topology of C1([0, T2]; V ). �

5. Proof of Theorem 2

We devote this section to showing Theorem 2. Before giving its proof, we prepare the following lemma, which is a quite
standard inequality.

Lemma 5.1. The following inequality holds:

|r1 − r2| ≤ (r1 + r2)| ln r1 − ln r2|, ∀r1, r2 ∈ (0,∞). (5.1)

Proof. By using Taylor expansion theorem and the convexity of the function− ln r , we see

r1 − r2 ≤ r1(ln r1 − ln r2), ∀r1, r2 ∈ (0,∞).
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Hence, we derive

r1 − r2 ≤ r1(ln r1 − ln r2) ≤ (r1 + r2)| ln r1 − ln r2|

and

r2 − r1 ≤ r2(ln r2 − ln r1) ≤ (r1 + r2)| ln r1 − ln r2|.

This implies that (5.1) holds. �

Proof of Theorem 2. Throughout this proof, the constants ci is the same constants as in Section 1 and we denote by C
positive constants. Let [ni, fi] (i = 1, 2) be solutions to (AP) on [0, T0] and put N := n1 − n2 and F := f1/f2 for simplicity.
We note that for any z ∈ V and a.a. t ∈ (0, T0) the following equality holds:

(N ′(t), z)H + κ(N ′x(t), zx)H +
∫ L

−L
p(x, t)Nx(x, t)zx(x)− ε ((ln F)x(t), zx)H

−

∫ L

−L
{n1(x, t)χ(f1(x, t))(f1)x(x, t)− n2(x, t)χ(f2(x, t))(f2)x(x, t)} zx(x)dx

=

∫ L

−L
{F(x, t, n1(x, t), f1(x, t))− F(x, t, n2(x, t), f2(x, t))} z(x)dx. (5.2)

By substituting z = N(t) in (5.2) and using (A1), we derive the following inequality:

1
2
d
dt

{
‖N(t)‖2H + κ‖Nx(t)‖

2
H

}
− ε((ln F)x(t),Nx(t))H

≤

∫ L

−L
|n1(x, t)χ(f1(x, t))(f1)x(x, t)− n2(x, t)χ(f2(x, t))(f2)x(x, t)||Nx(x, t)|dx

+

∫ L

−L
|F(x, t, n1(x, t), f1(x, t))− F(x, t, n2(x, t), f2(x, t))||N(x, t)|dx

=: I1(t)+ I2(t), a.a. t ∈ (0, T0). (5.3)

First of all, we calculate the last term in the left-hand side of (5.3). We see from (1.13) and the regularities of ni and ln fi
(cf. (P1) and (P2) in Theorem 1) that

(ln F)x(x, t) = −δ
∫ t

0
Nx(x, s)ds, a.a. (x, t) ∈ QT0 . (5.4)

By using (5.4), we see that the following equality holds:

− ε((ln F)x(t),Nx(t))H =
ε

2δ
d
dt
‖(ln F)x(t)‖2H , a.a. t ∈ (0, T0). (5.5)

Secondly, we estimate I1(t). It follows from (A2), (1.11) and Lemma 5.1 that

I1(t) ≤ c2c7 {‖(ln f1)x(t)‖H‖N(t)‖V‖Nx(t)‖H + ‖n2(t)‖V‖(ln F)x(t)‖H‖Nx(t)‖H}

+ c3c7‖n2(t)‖V

∫ L

−L
|(ln f2)x(x, t)‖f1(x, t)− f2(x, t)||Nx(x, t)|dx

≤ c2c7

[
‖ ln f1(t)‖V‖N(t)‖2V +

‖n2(t)‖V
2

{
‖(ln F)x(t)‖2H + ‖Nx(t)‖

2
H

}]
+ c3c7‖n2(t)‖V

∫ L

−L
{f1(x, t)+ f2(x, t)}|(ln f2)x(x, t)|| ln F(x, t)‖Nx(x, t)|dx

≤ C {‖n2(t)‖V + ‖ ln f1(t)‖V }
{
‖N(t)‖2V + ‖ ln F(t)‖

2
V

}
+ c3c37‖n2(t)‖V {‖f1(t)‖V + ‖f2(t)‖V } ‖ ln f2(t)‖V‖ ln F(t)‖V‖N(t)‖V ,

hence,

I1(t) ≤ K1(t)
{
‖N(t)‖2V + ‖ ln F(t)‖

2
V

}
, a.a. t ∈ (0, T0), (5.6)

where

K1(t) := C [‖n2(t)‖V + ‖ ln f1(t)‖V + ‖n2(t)‖V‖ ln f2(t)‖V {‖f1(t)‖V + ‖f2(t)‖V }] .
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It is easily seen from Theorem 1 that K1 is a non-negative function of L∞(0, T0).
Thirdly, we estimate I2(t). It is easily seen from (A3) that the following inequality holds:

I2(t) ≤ C
{
‖N(t)‖2H + ‖ ln F(t)‖

2
H

}
, a.a. t ∈ (0, T0). (5.7)

Fourthly, since it follows from (1.13) that

(ln F)′(x, t) = −δN(x, t), a.a. (x, t) ∈ QT0 ,

it is easily seen that the following inequality holds:

d
dt
‖ ln F(t)‖2H ≤ δ

{
‖N(t)‖2H + ‖ ln F(t)‖

2
H

}
, a.a. t ∈ (0, T0). (5.8)

At last, it follows from (5.3) and (5.5)–(5.8) that there exists a non-negative function K2 ∈ L∞(0, T0) such that the
following inequality holds:

d
dt
G4(t) ≤ K2(t)G4(t), a.a. t ∈ (0, T0), (5.9)

where

G4(t) := ‖N(t)‖2H + κ‖Nx(t)‖
2
V + ‖ ln F(t)‖

2
H +

ε

δ
‖(ln F)x(t)‖2H .

By applying Gronwall lemma to (5.9), we see that

n1(t) = n2(t), ln f1(t) = ln f2(t) in V , ∀t ∈ [0, T0].

This implies that (AP) has at most one solution [n, f ] on [0, T0]. �

Acknowledgements

A. Ito, one of the authors of this paper, encountered this problem when he researched at ICM, Warsaw University
from 01/09/2006 to 31/08/2007 as the researcher overseas of Kinki University. So, we thank Kinki University and Warsaw
University for giving us a chance to research this problem.

References

[1] M.A.J. Chaplain, A.R.A. Anderson, Mathematical modelling of tissue invasion, in: L. Preziosi (Ed.), Cancer Modelling and Simulation, Chapman & Hall,
CRC, Boca Raton, 2003, pp. 269–297.

[2] J.D. Murray, Mathematical Biology I: An Introduction, third ed., Springer, New York, 2002.
[3] M. Bonay, et al., Expression of heat shock proteins in human lung and lung cancers, Am. J. Respir. Cell. Mol. Biol. 10 (1994) 453–461.
[4] T.M. Gress, et al., Differential expression of heat shock proteins in pancreatic carcinoma, Cancer Res. 54 (1994) 547–551.
[5] H. Isomoto, et al., Expression of heat shock protein (Hsp) 70 and Hsp 40 in gastric cancer, Cancer Lett. 198 (2003) 219–228.
[6] A.C. Lazaris, et al., Heat shock protein 70 and HLA-DR molecules tissue expression: Prognostic implications in colorectal cancer, Dis. Colon Rectum 38
(1995) 739–745.

[7] D. Horstmann, From 1970 until present: The Keller–Segel model in chemotaxis and its consequences, Jahresber. Deutsch. Math. Verein. 105 (2003)
103–165.

[8] A. Friedman, J.I. Tello, stability of solutions of chemotaxix equations in reinforced random walks, J. Math. Anal. Appl. 272 (2002) 138–163.
[9] M.A. Fontelos, A. Friedman, B. Hu, Mathematical analysis of a model for the initiation of angiogenesis, SIAM J. Math. Anal. 33 (2002) 1330–1355.
[10] L. Corrias, B. Perthame, H. Zaag, A chemotaxis model motivated by angiogenesis, C.R. Acad. Sci. Paris, Ser. I 336 (2003) 141–146.
[11] L. Corrias, B. Perthame, H. Zaag, Global solutions of some chemotaxis and angiogenesis systems in high space dimensions, Milan J. Math. 72 (2004)

1–28.


