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part of the resulting range-separated exchange energy depends on the kinetic en-

ergy density and the Laplacian even if the base functional lacks the dependence on

these variables. The most successful practical realization of the scheme, named LC-

PBETPSS, combines the range-separated PBE exchange lifted to the hybrid meta-

GGA rung and the TPSS correlation. The value of the range-separation parameter

is estimated theoretically and confirmed by empirical optimization. The D3 disper-

sion correction is recommended for all energy computations employing the presented

functional. Numerical tests show remarkably robust performance of the method for

noncovalent interaction energies, barrier heights, main-group thermochemistry, and

excitation energies.
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I. INTRODUCTION

Since the seminal works of Becke,1,2 it is known that the inclusion of the Hartree-Fock

(HF) exchange in density-functional models not only moves practical DFT toward the goal

of chemical accuracy in thermochemistry, but also has a theoretical justification rooted in

the analysis of the exchange holes in molecular systems.3 There are currently two prevalent

ways of including the exact exchange in approximate DFT: as a fraction of the full HF

exchange or as a long-range exact exchange component enabled only at long interelectron

distances. The functionals built using the former approach, global hybrids, have become

a staple of computational chemistry owing to their favorable trade-off between accuracy

and cost.1,2,4 However, the inclusion of only a fraction of the orbital exchange results in

merely a slight correction of the self-interaction error inherited from the pure semilocal

predecessors of global hybrids. To correct this deficiency, in range-separated (long-range

corrected) hybrids the 100% HF exchange is introduced at long range. This way, the exact

−1/R behavior of the exchange potential is forced upon approximate potentials.5,6 At the

same time, range separation avoids the use of the full orbital exchange at all distances, which

would be incompatible with an approximate semilocal correlation.

Range-separated hybrids are free from a number of shortcomings arising as a consequence

of the self-interaction error. The correct long-range potential of a range-separated hybrid

exchange makes the HOMO energy close to the vertical ionization energy,7,8 approximately

satisfying Janak’s theorem.9 The spurious propensity to transfer electrons is reduced, which

improves the description of donor-acceptor systems with partial charge transfer in ground

and excited states. The inclusion of the long-range exact exchange also corrects the un-

derestimation of Rydberg excitation energies and oscillator strengths,10 and corrects the

overestimation of longitudinal (hyper)polarizabilities of polyenes.11

The majority of the available range-separated functionals are hybrids based on the gener-

alized gradient approximation (GGA).10,12–19 Notably, a systematic search spanning the vast

space of possible mathematical forms have been conducted to find range-separated GGAs

with the best general performance.20 In contrast, only a few attempts have been made to

develop a range-separated meta-GGA functional, i.e., a hybrid model in which the semilocal

part depends not only on the density and density gradient, but also on the kinetic energy

density and in some cases the Laplacian. Empirical functionals of this kind have been pro-
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posed by Lin et al.21,22 (ωM05-D and ωM06-D3) and by Peverati et al.23 (M11). While these

methods are heavily parametrized, e.g., M11 contains 40 empirical parameters, the available

tests show that the improvement over the best range-separated GGAs is nonuniform and

minor.22,24 A nonempirical range-separated meta-GGA based on the TPSS functional was

tested by Vydrov et al.,5 but for thermochemistry this method showed no improvement over

the pure TPSS functional.

The purpose of this work is to construct a reliable range-separated functional in which the

short-range exchange part is a meta-GGA derived from an existing nonempirical semilocal

model.

The range-separated exchange energy consists of two components, short-range and long-

range, defined according to the range split of the electron interaction,

1
s

= erfc(ωs)
s

+ erf(ωs)
s

, (1)

where ω is the range separation parameter and s = |r1 − r2|. Inserting Eq. 1 into the

definition of the exchange energy yields the formulae for the short-range and long-range

components:

ESR
X,approx = 1

2
∑
σ

∫∫ ρσ(r1)hσX,approx(r1, r2)erfc(ωs)
s

d3r1d3r2, (2)

ELR
X,exact = 1

2
∑
σ

∫∫ ρσ(r1)hσX,exact(r1, r2)erf(ωs)
s

d3r1d3r2. (3)

The long-range exchange energy ELR
X,exact is based on the exact, orbital-dependent HF ex-

change hole

hσX,exact(r1, r2) = −

∣∣∣∑Nσ
i ψ∗iσ(r1)ψiσ(r2)

∣∣∣2
ρσ(r1) . (4)

In the definition of the short-range exchange energy ESR
X,approx, one has to assume a specific

form of the approximate exchange hole hσX,approx. As in the case of the exchange energy

density, the local definition of the exchange hole is not unique. However, the ambiguity

disappears in the system average of the hole.25

In what follows, we present equations for closed-shell systems with ρα = ρβ = ρ/2. There

is no loss of generality because the exchange functional for arbitrary spin polarizations is

simply related to its spin-compensated counterpart by the formula26

EX [ρα, ρβ] = 1
2EX [2ρα] + 1

2EX [2ρβ] . (5)
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For clarity, hereafter we skip the spin index in the exchange hole symbol.

There exists a series of range-separated GGAs which employ various levels of exact con-

straints in the model exchange hole inserted into the definition of ESR
X .

One of the earliest range-separated functionals are those of Iikura, Tsuenda, Yanai, and

Hirao (ITYH),27 who devised a general technique of converting existing GGAs into range-

separated hybrids. The ITYH scheme was employed in several functionals, including LC-

BLYP, LC-BOP, LC-PBEOP, and CAM-B3LYP.10,12,13

The ITYH exchange hole is based on a simple modification of the LDA exchange hole.27

It has the correct value at s = 0,

hX,ITYH(r1, s = 0) = hX,exact(r1, s = 0) = −ρ(r1)
2 , (6)

and satisfies the energy integral

1
2

∫ hX,ITYH(r1, s)
s

4πs2ds = εX,approx(r1), (7)

where εX,approx is the exchange energy density of a given base functional. The ITYH hole

fails to fulfill two other exact conditions appropriate to a semilocal functional: the hole

normalization14 ∫
hX,exact(r1, s)4πs2ds = −1 (8)

and the correct second-order short-range expansion of the spherically-averaged exchange

hole at zero current density,28–30

hX,exact(r1, s) = −ρ2 −Qs
2 + . . . , (9)

Q = 1
12∇

2ρ− 1
6τ + 1

24
(∇ρ)2

ρ
, (10)

where τ is the kinetic energy density

τ = 2
Norb∑
i=1
|∇ψi|2. (11)

It should be stressed that Eq. 10 cannot be satisfied at the GGA level.

Several GGAs have been developed in which the exchange hole obeys more exact condi-

tions than the ITYH model. The range-separated PBE functionals of Henderson et al.14 and

of Vydrov et al.15 satisfy Eq. 6, Eq. 7, Eq. 8, and only approximately Eq. 10. Both methods

improve over the ITYH model in atomization energies and barrier heights.14
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Still, there is a possibility for going one rung higher than the existing range-separated

GGAs. This work presents a scheme for construction of meta-GGA range-separated ex-

change functionals which employ the kinetic energy density and the Laplacian to exactly

include the second-order coefficient of Eq. 10. The method allows one to transform an exist-

ing GGA or a meta-GGA model into its range separated variant. The resulting functional

depends on the kinetic energy density and the Laplacian even if the base functional does

not.

In the following, we begin by deriving the working equations of the new range-separation

scheme. Next, we search for a preferred combination of the base exchange functional and

the accompanying correlation model. Finally, we test the performance of the selected func-

tional on a test set including thermochemical energy differences, barrier heights, noncovalent

interaction energies, and excitation energies.

II. THEORY

A. Exchange Hole Model

Our range-separation scheme requires an exchange hole model which integrates to εX,approx

and has enough degrees of freedom to satisfy two further conditions: the exact value of

hX,approx at s = 0 and the exact coefficient of s2. These prerequisites are satisfied by the

generalized Becke-Roussel (BR) exchange hole.31,32 The spherically-averaged generalized BR

hole,

hX,BR(a, b,N ; s) = −N a

16πbs
[
(a|b− s|+ 1)e−a|b−s| − (a|b+ s|+ 1)e−a|b+s|

]
, (12)

includes three parameters, a, b, and N , which we will define by selecting a subset of three

equations from a wider set of possible conditions. For any a > 0 and b > 0, the normalization

integral of hX,BR is ∫
hX,BR(a, b,N ; s)4πs2ds = −N . (13)

In the original BR model, the parameters a and b are fixed by enforcing the zeroth- and

second-order coefficients of Eq. 9, and the normalization is set to −1, i.e., N = 1. With these

definitions satisfied, the original hX,BR reduces to the exact exchange hole when applied to

the hydrogen atom.31
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The original definitions of the BR model have to be modified so that the electrostatic

potential generated by hX,BR corresponds to the assumed base exchange energy density:

1
2

∫ ∞
0

hX,BR(a, b,N ; s)
s

4πs2ds = εX,approx. (14)

The formula for the short-range component of εX,approx will be given in Section II B. Following

Becke32 and Precechtelova et al.,33 we enforce Eq. 14 at the cost of relaxing the normalization

condition. The set of equations defining the parameters of hX,BR,

x− 2
x2

(
ex − 1− x

2

)
= − 6Q

πρ2 εX,approx, (15)

a =

√√√√πρ(2− 2ex + x)
xεX,approx

, (16)

b = x/a, (17)

N = 4πρex/a3, (18)

is to be solved at each point of space. (For the derivation of Eqs. 15–18 see the Appendix

of ref 32.) For any physically allowed right-hand side, a unique x > 0 solves Eq. 15. The

solution can be obtained with a numerical solver or interpolation.

The resulting exchange hole integrates to the given εX,approx (Eq. 14), has the exact

value at the origin (Eq. 6), and recovers the exact coefficient of s2 (Eq. 10). However, its

normalization integral differs in general from the exact value of −1.

B. Short-Range Exchange Energy

The short-range exchange energy density εSR
X,approx is the difference between the full-range

semilocal exchange and its long-range part:

εSR
X,approx = εX,approx − εLR

X,approx. (19)

We define εLR
X,approx using the potential generated by hX,BR:

εLR
X,approx = 1

2

∫ ∞
0

hX,BR(s)erf(ωs)
s

4πs2ds = 1
2U

LR
X,approx. (20)

6



The integration in Eq. 20 can be done analytically, giving

ULR
X,approx = −Nω

ν
erf (ν) (21)

+ Nω2ν
(
1− µ2 + µν

)
erfc (µ− ν) exp

(
µ2 − 2µν

)
+ Nω2ν

(
−1 + µ2 + µν

)
erfc (µ+ ν) exp

(
µ2 + 2µν

)
, (22)

µ = a

2ω , (23)

ν = bω. (24)

For small values of ν, the right-hand side of Eq. 22 should be evaluated using a Taylor series

expansion to avoid numerical errors. Finally, the short-range exchange energy is obtained

by integrating εSR
X,approx over the whole space:

ESR
X,approx =

∫
εSR

X,approx(r1)ρ(r1)dr1. (25)

The complete range-separated exchange energy is the sum of ESR
X,approx and the long-range

HF exchange,

EX,approx = ESR
X,approx + ELR

X,exact. (26)

C. One-Electron Self-Interaction Error

We use the example of the self-interaction error in the ground state of the hydrogen atom

to illustrate the difference between our meta-GGA range-separation scheme and the existing

GGA approaches.

The ground state of the hydrogen atom is a difficult limiting case for conventional DFT

approximations. Using only local variables ρ(r1) and ∇ρ(r1), GGAs have no way of knowing

that the density under consideration belongs to a single-particle system. Therefore, the one-

electron self-interaction error arises as a residual value left by an imperfect cancellation

between an approximate exchange energy and the Coulomb repulsion.31,36 A single-electron

density can be detected using the kinetic energy density τ , thus meta-GGA functionals can,

at least partially, reduce the self-interaction error.

The large-ω behavior of the exact short-range exchange energy of the hydrogen atom is

given by the expansion37

ESR
X,exact (ω →∞) = − 1

16ω2 + 1
32ω4 + . . . (27)
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FIG. 1: Differences between approximate and exact short-range exchange energies of the

ground state of the hydrogen atom. All computations employ the aug-cc-pV5Z basis set34

and HF orbitals. The short-range GGA models of Henderson et al.14,35 are denoted as

HJS. Correlation energies are not included.

Eq. 27 assumes the exact density. Gill et al. have shown that the first term on the right-

hand side is recovered already by the local density approximation, but the term of order

1/ω4 requires hX,approx with the correct second-order expansion for small s.37 Indeed, the

short-range meta-GGA functionals derived in this work, which satisfy Eq. 10, approach

ESR
X,exact(ω →∞) visibly faster than the existing GGAs (Figure 1). The reduction of errors

for large ω is seen for all tested base functionals: PBE,38 B88,39 and TPSS.40

Figure 2 shows why, in our scheme, TPSS is not a preferred candidate for the base

exchange functional, and PBE should be used instead. Let 〈hX〉(s) denote the system and

spherical average of the exchange hole for the hydrogen atom,

〈hX〉(s) =
∫
ρ(r1)hX (r1, s) dr1. (28)

The real-space analysis of the total exchange energy is then expressed as

EX =
∫ ∞

0
HTOT

X (s)ds, (29)

where

HTOT
X (s) = 2πs〈hX〉(s), (30)
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FIG. 2: Real-space analysis of the contributions to the (short-range) exchange energy of

the hydrogen atom. All computations employ the aug-cc-pV5Z basis set34 and HF or-

bitals.

and the short-range exchange energy is

ESR
X (ω) =

∫ ∞
0

HSR
X (s)ds, (31)

where

HSR
X (s) = 2πs〈hX〉(s)erfc(ωs). (32)

For the TPSS exchange, HTOT
X (s) is too deep around s = 1 bohr and too shallow in the

tail, but these two errors perfectly cancel each other to yield the exact EX enforced by the

construction of the TPSS exchange. However, the factor erfc(ωs) included in the short-

range energy cuts off the tail of HTOT
X (x), thus leaving the relatively large short-range error

uncompensated in ESR
X . By contrast, in the PBE energy, the short-range and long-range

errors in HTOT
X (s) do not cancel perfectly, but the error at short range is small, and the

factor erfc(ωs) enhances the error cancellation in ESR
X .

The single-electron density of the hydrogen atom has been previously utilized as a con-

straint in the design of several functionals. The TPSS exchange of Tao et al.40 and the

MVS exchange of Sun et al.41 are parametrized to recover the exact exchange energy in this
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limit. The hydrogen atom energy is also included in the training set of the empirical M05-2X

functional.42 Here, we use the single-electron limit to estimate the value of ω which is most

appropriate for the range-separated exchange energy obtained using our scheme. According

to Figure 1, our model of the short-range PBE exchange energy recovers the exact energy at

ω = 0.33. Later in the text we will show that this value is nearly optimal for the atomization

energies and barrier heights of small molecules.

Apart from its manifestation in approximate exchange energy functionals, the self-

interaction error arises as a nonvanishing correlation energy of a single-electron system. In

the case of the pure PBE exchange-correlation functional, the total energy of the hydrogen

atom is only 0.0006 a.u. lower than the exact energy, but at the same time the correlation

contribution amounts to −0.006 a.u. (−3.8 kcal/mol). This error can be eliminated only

at the meta-GGA level. The desired improvement over the PBE correlation is provided

by TPSS.40,43 The TPSS correlation is built on the PBE formula, but with one-electron

self-interaction terms subtracted.43 As a result, TPSS yields exactly zero correlation energy

for the hydrogen atom, which we regard as a feature compatible with our exchange model.

We will test the advantage of using the TPSS correlation over PBE for general systems in

the following section.

D. Complete Exchange-Correlation Model

To fully define our exchange-correlation functional, we have to specify the base exchange

functional together with the accompanying model for correlation. We restrict our search to

two exchange-correlation models only: PBE and TPSS. The choice of these two functionals

reflects our preference for methods with a small number of empirical parameters. Still,

it remains possible to pair our range-separation scheme with formulae including multiple

adjustable parameters and to perform a comprehensive empirical optimization.

Let LC-XY denote a range-separated functional where X is the base model for exchange

(εX,approx in Eq. 15), and Y is the accompanying correlation. Our search comprises three

candidate functionals, LC-PBETPSS, LC-PBEPBE, and LC-TPSSTPSS, applied on a set of

atomization energies (AE644) and barrier heights (BH644). Each functional is employed with

a varying value of ω. The best method is selected for further tests described in the remainder

of this paper. The AE6 and BH6 benchmarks are representative of 109 atomization energies
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and 44 barrier heights, respectively, in the Database/3 collection.44

LC-TPSSTPSS is the poorest performing functional, which cannot fully benefit from the

addition of the long-range exact exchange. For this functional, a single value of ω cannot

work well for both AE6 and BH6: the optimal value for the former set is ω=0.0, i.e., the limit

of the pure TPSS functional, whereas for the latter set ω=0.35 minimizes the mean absolute

error (MAE). A similar behavior of the TPSS range-separated hybrid has been observed

by Vydrov et al.5 The numerical data for LC-TPSSTPSS are available in the Supporting

Information.

The problem of choosing a universally applicable value of ω arises again in the case of the

candidate based entirely on the PBE model, LC-PBEPBE, albeit it is not as severe as for

LC-TPSSTPSS. At ω = 0.30, the average error in the barrier heights is only 1.6 kcal/mol,

but at the same time the error for the atomization energies is as high as 10.5 kcal/mol,

which is large compared to the existing range-separated functionals.14

The best overall accuracy is achieved by LC-PBETPSS (Figure 3). The optimal range-

separation parameter for this functional is in the interval 0.30 ≤ ω ≤ 0.35, depending on

the weight of the BH6 set relative to AE6. (The percentage errors on the BH6 set are much

larger than on AE6, see the Supporting Information.) This result matches our theoretical

estimate, ω = 0.33, based on the minimization of the self-interaction error for the hydrogen

atom. Taking into account the relatively large errors in the barrier heights, we choose

ω = 0.35 for the final version of LC-PBETPSS recommended for general use. The MAEs at

this value of the range-separation parameter are 6.7 kcal/mol for AE6 and 2.1 kcal/mol for

BH6. LC-PBETPSS is the final, recommended functional which we will employ in the full

test set.

The long-range correction proposed here should not be confused with the correction based

on the ITYH scheme, which can be applied, e.g., in the Gaussian program, to any pure

functional. Let us denote by LC-PBETPSS(ITYH) a functional which employs the ITYH-

based range-separated PBE exchange.27 Using the above-described procedure for optimizing

the range-separation parameter, we find that ω = 0.7 is optimal simultaneously for AE6

(MAE=14.7 kcal/mol) and BH6 (MAE=2.6 kcal/mol). For both sets, LC-PBETPSS(ITYH)

is inferior to LC-PBETPSS, but the the difference is especially large for the atomization

energies. On the AE6 set, LC-PBETPSS(ITYH) is only slightly more accurate than the

pure PBETPSS functional without any addition of the HF exchange. For 0.20 ≤ ω ≤
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FIG. 3: Mean absolute errors on the AE6 and BH6 sets.44 All DFT computations employ

the def2-QZVPP basis set.34,45 The reference values are taken from ref 4 (AE6) and ref 46

(BH6).

0.35, where LC-PBETPSS performs well for AE6, LC-PBETPSS(ITYH) yields extremely

large MAEs above 30 kcal/mol. Alternatively, one could combine the range-separated PBE

exchange of Henderson et al.14 and the TPSS correlation to obtain LC-PBETPSS(HJS).

While this method performs generally better than LC-PBETPSS(ITYH), for its optimal

value of ω = 0.45, the errors for AE6 (MAE=9.9 kcal/mol) and BH6 (MAE=2.4 kcal/mol)

are both larger than for LC-PBETPSS. The numerical data for LC-PBETPSS(ITYH) and

LC-PBETPSS(HJS) are available in the Supporting Information.

E. Dispersion Correction

A dispersion correction compensates for the deficiencies of a semilocal DFT approxi-

mation in the modeling of long-range correlation contributions to noncovalent interaction

energies. We test the performance of LC-PBETPSS with the D3 correction of Grimme et
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al.47 The general form of the atom-pairwise D3 correction is47

Edisp(D3) = −
∑
A>B

∑
n=6,8

sn
CAB
n

Rn
AB

f
(n)
damp (RAB) , (33)

f
(n)
damp (RAB) = 1

1 + 6(RAB/(rnRAB
0 ))−αn , (34)

where f (n)
damp is the damping function. The only functional-dependent parameters are r6 and

s8. The CAB
6 dipole-dipole coefficients are obtained ab initio, tabulated, and interpolated

for the effective coordination numbers in the system of interest. The minimization of the

MAE for LC-PBETPSS-D3 on the S22 set of noncovalent systems48,49 for LC-PBETPSS

yields r6 = 0.88971. The 1/R8 term is not included because it does not decrease the MAE

for the training set (s8 = 0). We employ the original damping function f (n)
damp(RAB),47 which

vanishes for RAB → 0, instead of the newer Becke-Johnson damping50 to avoid double

counting of the interaction energy at short range. Optionally, a 3-body term can be added

to model the Axilrod-Teller-Muto contribution to the dispersion energy:47

E3-body
disp (D3) = −

∑
A>B>C

CABC
9

(3 cos θa cos θb cos θc + 1)
(RABRBCRCA)3 f

(9)
damp

(
RABC

)
, (35)

where θa, θb, and θc are angles between the three interacting atoms, and RABC is the geomet-

ric mean of the interatomic distances. The triple-dipole coefficient CABC
9 is approximated

as

CABC
9 = −

√
CAB

6 CAC
6 CBC

6 . (36)

The nonadditive 3-body term is known to be important for large systems.51

III. RESULTS AND DISCUSSION

A. Electronic-Structure Methods

The functional developed in this work is denoted as LC-PBETPSS. For the clarity of

presentation, let us list its main characteristics which were discussed in the previous sections.

The range-separated exchange combines the meta-GGA short-range PBE exchange and the

100% HF exchange at long range. The range-separation parameter of the exchange is fixed at

ω = 0.35. The TPSS model is used for the correlation term. The LC-PBETPSS functional is

applied with the D3 dispersion correction (LC-PBETPSS-D3) and for some systems without
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the dispersion term (LC-PBETPSS). The LC-PBETPSS functional is implemented in the

developer version of the Molpro program.52

To make a fair presentation of the performance of the new method, we have assembled a

test set of well-established functionals for comparison. The LC-ωPBE functional of Vydrov

and Scuseria15 is a GGA range-separated functional based on the PBE exchange and PBE

correlation. The numerical comparison between LC-PBETPSS-D3 and LC-ωPBE-D3 probes

the cumulative effect of upgrading the short-range exchange to meta-GGA and removing the

one-electron self-interaction error from the correlation. The M06-2X empirical meta-GGA

functional of Zhao and Truhlar53 is a workhorse of modern computational chemistry. Even

though this functional reproduces a large part of the dispersion energy in the vicinity of

equilibrium separations, adding the D3 correction slightly improves the results in general.

M06-2X-D3 is the best dispersion-corrected meta-GGA hybrid on the GMTKN30 database.54

ωB97XD is an empirical, dispersion-corrected, range-separated GGA functional of Chai and

Head-Gordon.18 It is designed for thermochemistry, kinetics, and energies of noncovalent

systems. ωB97X17 is a predecessor of ωB97XD, which is not optimized for use with a

dispersion correction. Still, its design makes it suitable for spectroscopic properties.55 We

employ ωB97X in the part of our tests devoted to excitation energies. M06-L is an empirical

meta-GGA functional which does not contain any HF exchange.53 It is known for the reliable

description of hydrogen-bonded systems.56 Finally, B3LYP-D3 is an example of a hybrid

functional57 developed in the 1990s, supplemented with the modern D3 correction.

In addition to DFT methods, for ground-state charge-transfer dimers we use the DLPNO-

CCSD(T) method,58 which is a low-scaling approximation within the coupled-cluster wave

function formalism including connected triples. The numerical thresholds for DLPNO-

CCSD(T) are set at the “tight” level defined in Table 1 of ref 59, as recommended for

noncovalent interactions.59 The DLPNO-CCSD(T) computations are performed with the

ORCA 3.0.3 program.60

B. Hydrogen-Bonded Systems

Modeling of hydrogen-bonded clusters is still challenging for modern DFT procedures.

Common hybrid GGAs and the M06-type functionals accurately describe the binding ener-

gies but unexpectedly fail for the proton-exchange barriers on the CEPX33 set of NH3, H2O,
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FIG. 4: Errors for the binding energies of the CEPX33 set. The computational details are

provided in Table I.

and HF clusters.56,61 In our tests on the CEPX33 set, LC-PBETPSS-D3 performs consis-

tently well for both properties (Figs. 4 and 5). It is the best method for the binding energies

and only slightly less accurate than the best functional (M06-L) for the barriers. The D3

correction added to LC-PBETPSS improves the results for both binding energies and bar-

rier heights (Table I). This is in contrast to LC-ωPBE, for which the effect of supplying the

dispersion term is inconsistent.

To test if the high accuracy of LC-PBETPSS-D3 persists for systems larger than those of

the CEPX33 set, we apply this functional on the set of water 16-mers studied by Yoo et al.62

Here, some of the water molecules are connected through hydrogen bonds to four nearest

neighbors. The structures of kind I (4444-a and 4444-b) include eight such nodes, whereas

the structures of kind II (antiboat, boat-a, and boat-b) include four water molecules with

such high connectivity.62 As illustrated in Figure 6, LC-PBETPSS-D3 represents reliably
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the absolute binding energies, but it predicts that the clusters of kind I are slightly too

stable relative to the clusters of kind II. A similar, yet more pronounced error in the relative

energies is present for the M06-type functionals: M06-L and M06-2X-D3.

C. Noncovalent Charge-Transfer Dimers

Since the 1990s, it is known that pure and global hybrid functionals severely overesti-

mate binding energies of noncovalent charge-transfer dimers.65,66 Range-separated function-

als achieve qualitative improvement by removing the main cause of the overbinding, which

is an unrealistic propensity to transfer electrons between the donor and acceptor. The dis-

tinction between range-separated functionals and more traditional DFT approximations is

apparent for the interaction energy curve of the NH3...ClF dimer (Figure 7). The two deep-

est, most overbinding curves belong to M06-L and B3LYP-D3, a pure functional and a global

hybrid, respectively. The range-separated methods, LC-PBETPSS-D3 in particular, yield a

16



TABLE I: Mean Absolute Errors (kcal/mol) for the Binding Energies

(BE) and Proton-Exchange Barriers (PX) of the CEPX33 Seta

method BE PX

LC-PBETPSS-D3 0.28 1.37

LC-PBETPSS 4.71 3.09

M06-L 1.21 1.05

ωB97XD 0.41 1.80

M06-2X-D3 1.40 6.79

LC-ωPBE 2.74 3.44

LC-ωPBE-D3 0.55 5.16

B3LYP-D3 1.99 5.84

a Energies are computed with the aug-

cc-pVQZ basis.34 The geometries and

reference energies are taken from ref 61.

distinct group of energies close to the reference CCSD(T) curve. The only functional which

performs well but is not range-separated, M06-2X-D3, includes a relatively large fraction of

the HF exchange (54%).

The LC-PBETPSS-D3 curve is extremely close to the reference curve in the vicinity of

the equilibrium separation of NH3...ClF, but its repulsive part is overestimated. For the

compressed dimer at R/Req = 0.8, the interaction energy of LC-PBETPSS-D3 (Eint =

2.92 kcal/mol) is qualitatively different from that of LC-ωPBE-D3 (Eint = −0.72 kcal/mol),

but in accordance with the reference coupled-cluster result (Eint = 1.17 kcal/mol).

Similar behavior of approximate DFT methods is observed for the CT9 set of rela-

tively weakly bound donor-acceptor equilibrium dimers (Table II). The CT9 set gath-

ers the dimers of the CT7/04 set Zhao and Truhlar67 (C2H2...ClF, C2H4...F2, H2O...ClF,

HCN...ClF, NH3...Cl2, NH3...F2) and a subset of the complexes studied by Yourdkhani et

al.68 (CF3CN...BF3, GeF3CN...BF3, SiF3CN...BF3). The MAEs for CT9 are similar for all

range-separated functionals and for M06-2X-D3, but the range-separated hybrids tend to

underbind, while M06-2X-D3 predicts excessive binding. Compared with the uncorrected
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variants, both LC-PBETPSS and LC-ωPBE benefit from the D3 dispersion correction.

For additional comparison, we also employ the low-scaling DLPNO-CCSD(T) wavefunc-

tion method. With the MAE of 0.18 kcal/mol on the CT9 set, DLPNO-CCSD(T) is more

accurate than any tested DFT method. However, it is still computationally more expensive

than single-determinantal DFT approaches owing to the relatively strong dependence on the

basis set quality.

D. Main-Group Thermochemistry

To test the performance of LC-PBETPSS-D3 for main-group thermochemistry, we use the

sets of isodesmic reaction energies,69 Diels-Alder reaction energies (DARC),54 and reaction

energies with a large contribution of the intramolecular dispersion energy (IDISP).54

A general-purpose functional has to describe the energy differences between covalently

bound structures while including the contributions from intramolecular noncovalent inter-
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actions. A model case of this kind involves the reaction energies of n-alkane isodesmic

fragmentation

CH3(CH2)mCH3 +mCH4 −−→ (m+ 1)C2H6. (37)

Several authors have enumerated the factors which affect the accuracy of approximate DFT

for these reactions. Grimme69 noted that a dispersion correction is crucial, but even a

dispersion-corrected semilocal DFT lacks a proper description of middle-range correlation.

Johnson et al.70 ascribed the size-dependent errors in the reaction energies to the deficient

description of regions where the reduced density gradient changes upon the reaction. An

appropriate description of these regions is provided by the PBEsol exchange energy which

obeys the exact second-order expansion for small density gradients.70,71 Song et al.72 stressed

the importance of correcting the exchange functional via range separation. Finally, Modrze-

jewski et al.63 demonstrated a remarkable improvement in the isodesmic reaction energies

when using the MCS functional, which combines the range-separated PBEsol exchange and

our meta-GGA correlation optimized to work with a dispersion correction.73

In our tests, all functionals underestimate alkane stability with the error proportional

to the alkane size (Figure 8). The two error curves with the lowest slope belong to LC-

PBETPSS-D3 and M06-2X-D3. Without the D3 correction, LC-PBETPSS and LC-ωPBE
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TABLE II: Mean Absolute Errors (kcal/mol) for the Interac-

tion Energies of the CT9 Set of Charge-Transfer Dimersa

method MAE

DLPNO-CCSD(T) 0.18

M06-2X-D3 0.37

LC-PBETPSS-D3 0.39

LC-PBETPSS 1.44

LC-ωPBE-D3 0.41

LC-ωPBE 1.14

ωB97XD 0.41

B3LYP-D3 0.73

M06-L 0.81

a DFT computations are performed with

the def2-QZVPP basis. The reference

energies at the CCSD(T) level and the

DLPNO-CCSD(T) energies are extrap-

olated to the basis-set limit (aug-cc-

pVTZ → aug-cc-pVQZ) with the auto-

mated extrapolation scheme available in

ORCA.60 The same computational pro-

cedure is employed for the interaction

energy curves of the NH3...ClF dimer.

form a group of outliers together with the pure M06-L functional. The dispersion term

has only a limited effect on M06-2X, which appears to account for the essential part of the

intramolecular dispersion energy via its extensive empirical parametrization.

The DARC subset of the GMTKN30 database54 comprises fourteen Diels-Alder reaction

energies in which the reactants containing multiple conjugated bonds react to form cyclic

and bicyclic products (see Figure 1 in ref 74). Most of the existing DFT approximations

underestimate the reaction energies in this set.74 The reasons for that have general impli-
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is employed for all DFT computations except for MCS-D3. MCS-D3 is a range-separated

functional based on the PBEsol exchange.63 The energies for MCS-D3 are computed using

the def2-TZVPP basis.

cations for the application of approximate DFT for main group thermochemistry. Johnson

et al.74 have argued that the reactants of the Diels-Alder reaction have delocalized electron

densities, therefore these structures are artificially stabilized due to the self-interaction (de-

localization) error. On the products side, the bicyclic molecules have bridgehead carbons

whose noncovalent repulsion tends to be overestimated by approximate DFT.74 Because of

these two systematic effects, the energetic gain of going from the reactants to the products

is underestimated.

LC-PBETPSS-D3 achieves the lowest mean absolute error of all functionals tested on the

DARC set (Table III). The addition of the dispersion correction to LC-PBETPSS reduces

the MAE by a factor of four. In contrast, supplying the D3 term to LC-ωPBE increases

the MAE from 6.3 kcal/mol to 10 kcal/mol. The effect of the three-body dispersion term

included in LC-PBETPSS-D3+3body is negligible due to the small size of the systems.

The IDISP subset of the GMTKN30 database is composed of six reaction energies in
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TABLE III: Mean Absolute Errors (kcal/mol) for the

Reaction Energies of the IDISP and DARC Setsa

method IDISP DARC

LC-PBETPSS-D3 2.35b 1.38c

LC-PBETPSS-D3+3body 2.27b 1.37c

LC-PBETPSS 11.38b 6.07c

M06-Ld 6.55 8.04

M06-2X-D3d 1.71 2.28

LC-ωPBE-D3d 4.13 10.04

LC-ωPBEd 8.03 6.30

B3LYP-D3d 6.63 10.23

ωB97XDd 2.63 1.98

a Reference energies and geometries are obtained

from the companion website of ref 54.

b Computed with the def2-QZVP basis.

c Computed with the def2-QZVPP basis. d Ref 54.

which alkanes undergo transformations between structures with different amounts of the

intramolecular dispersion energy.54 A typical reaction included in IDISP is presented in

Figure 9. LC-PBETPSS-D3, M06-2X-D3, and ωB97XD are the best methods tested on this

set (Table III). The D3 correction is important and beneficial for both LC-PBETPSS and

LC-ωPBE. The addition of the three-body D3 term has a noticeable beneficial effect on the

reaction energies predicted by LC-PBETPSS-D3+3body.

E. Excitation Energies

Numerous authors have reported evidence that there exists a marked advantage of using

range-separated functionals over more traditional DFT approximations for excitation ener-

gies of donor-acceptor systems and for Rydberg transitions, without compromising on valence

excitations.10,13 To test the performance of LC-PBETPSS, we apply it to the lowest charge-
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FIG. 9: Example of a reaction included in the test set for intramolecular dispersion inter-

actions (IDISP).54

transfer excitations of aromatic donor-tetracyanoethylene (Ar-TCNE) pairs (Table IV) as

well as valence and Rydberg excitations of CO, N2, H2CO, C2H4, and C4H6 (Table V).

Due to the limitations of the software suite in which LC-PBETPSS has been initially

implemented, the excitation energies for this functional are obtained using real-time time-

dependent DFT (RT-TDDFT) instead of the usual linear response equations.75,76 The prop-

agation of the density matrix was carried out for 2500 a.u. (60 fs) for all molecules except for

the TCNE-xylene dimer and ethylene, which were propagated for 3000 a.u. and 10 000 a.u.,

respectively. The time step in each case was ∆t = 0.1 a.u. (0.0024 fs). Each time a dc

pulse with a duration of 0.24 fs and field strength of Emax = 0.0001 a.u. was applied. All

RT-TDDFT calculations were carried out in the Molpro program.52

LC-PBETPSS achieves about the same level of accuracy for Rydberg, valence, and

charge-transfer excitations (Tables IV and V). While the best DFT method for the charge-

transfer transitions is ωB97X,17 there is only an insignificant difference between ωB97X,

LC-PBETPSS, and LC-ωPBE for valence and Rydberg excitations.
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TABLE IV: Energies (eV) of the Lowest CT Transi-

tions in Gas-Phase Ar-TCNE Complexesa

Ar benzene toluene o-xylene

ref77 3.59 3.36 3.15

ωB97X17 3.67 3.34 3.37

LC-ωPBE 4.00 3.65 3.68

LC-PBETPSS 3.87 3.50 3.49

B3LYP 2.06 1.81 1.88

M06-L 1.65 1.46 1.56

M06-2X 3.03 2.93 2.78

GW78 3.58 3.27 2.89

BNLb 3.8 3.4 3.0

a DFT calculations employ the cc-pVDZ

basis set.34 b The range-separated BNL

functional? includes a system-dependent pa-

rameter ω. The energies are taken from ref 79.

F. Symmetry-Adapted Perturbation Theory

Symmetry-adapted perturbation theory provides a framework for computation and inter-

pretation of noncovalent interaction energies.85 The energy contributions defined in SAPT

can be computed using approximate functionals, provided that orbital coefficients, orbital

energies, and density response functions are available.

The accuracy of the total interaction energy as well as of the individual SAPT contri-

butions is contingent on the realistic description of the density tail, therefore traditional

pure and global hybrid functionals must employ asymptotic corrections of the exchange-

correlation potential.86 Range-separated functionals do not require the corrections which

change the decay rate of the potential, but they need a procedure that levels the HOMO

energy with negative of the vertical ionization potential (IP).87 The adjustment of the or-

bital energy involves tuning of the range-separation parameter for each molecule of interest
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TABLE V: Energies (eV) of Valence and Rydberg Transitions in CO, N2,

Formaldehyde, Ethylene, and trans-1,3-Butadiene

transition ref B3LYP M06-L M06-2X ωB97X17 LC-ωPBE LC-PBETPSS

COa σ → π∗ 8.51d 8.40 8.58 8.22 8.53 8.55 8.66

σ → 3s 10.78d 9.83 9.35 10.86 10.77 10.84 10.76

σ → 3pσ 11.40d 10.21 9.61 10.86 11.22 11.34 11.15

σ → 3pπ 11.53d 10.27 9.87 10.90 11.31 11.42 11.28

N2
a σg → 3pπu 12.90d 11.78 10.85 12.47 12.57 12.68 12.50

σg → 3pσu 12.98d 11.62 10.53 12.53 12.59 12.70 12.52

πu → 3sσg 13.24f 12.04 11.76 12.49 12.88 13.01 12.86

H2COa n→ 3sa1 7.09d 6.43 6.14 7.09 7.28 7.26 7.11

n→ 3pb2 7.97d 7.15 6.49 7.90 8.12 8.11 7.98

n→ 3pa1 8.12d 7.16 6.57 7.78 8.00 8.00 7.84

σ → π∗ 8.68d 9.01 7.01 8.81 8.99 9.11 8.92

C2H4
b π → 3s 7.11e 6.56 6.60 6.85 7.38 7.52 7.44

π → π∗ 7.96c 7.32 7.18 7.47 7.57 7.63 7.69

π → 3dδ 8.90e 7.61 7.22 8.42 8.98 9.23 9.13

π → 3dδ 9.08e 7.77 7.47 8.52 9.08 9.33 9.21

π → 3dπ 9.33e 7.69 7.52 8.58 9.09 9.38 9.28

π → 3dπ 9.51e 8.09 7.92 8.82 9.46 9.79 9.68

C4H6
b π → π∗ 6.32c 5.54 5.62 5.76 5.88 5.97 5.98

Ryd (2Au) 6.66e 5.88 5.87 6.15 6.84 6.94 6.86

Ryd (2Bu) 7.07e 6.36 6.09 6.75 7.29 7.40 7.29

Ryd (3Bu) 8.00e 6.74 6.39 7.46 8.04 8.30 8.18

MAE 0.97 1.36 0.42 0.20 0.23 0.22

a Energies are computed with the augmented Sadlej basis.80

b Energies are computed with the 6-311(3+,3+)G** basis.81 c Theoretical energy at the FCIQMC level,

ref 82. d Experimental energy, ref 10. e Experimental energy, ref 83. f Experimental energy, ref 84.
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to satisfy Koopmans’ theorem:79

εHOMO (ω) = −IP(ω). (38)

The procedure of solving Eq. 38 is repeated for each interacting monomer,87 therefore each

monomer is assigned its unique value of ω.

To illustrate the importance of using the monomer-dependent range-separation parame-

ters, we employ LC-PBETPSS and the range-separated PBE functional of Henderson et al.14

(HJS-ωPBE) to compute the total SAPT interaction energies on the A24 set of noncovalent

dimers.88 Here, the total interaction energy is a sum of the first- and second-order SAPT

contributions plus a so-called delta-HF term. Each functional is used to compute the orbital

coefficients and energies provided to the SAPT program, but the exchange-correlation kernel

is in every case at the adiabatic local density approximation level.

The improvement of LC-PBETPSS upon using Eq. 38 is clear, with over threefold reduc-

tion of the MAE for the total interaction energies (Table VI). The errors are reduced by a

similar factor for HJS-ωPBE. With the monomer-dependent parameter ω, LC-PBETPSS

achieves slightly better accuracy than the common PBE0AC approach, i.e. the PBE0

functional89 employed with the asymptotic correction of Gruning et al.86

TABLE VI: Mean Absolute Errors (kcal/mol) for the

Total SAPT Interaction Energies of the A24 Seta

method MAE

HJS-ωPBE(ω=0.40) 0.19

HJS-ωPBE(ω=∗)b 0.07

LC-PBETPSS(ω=0.35) 0.30

LC-PBETPSS(ω=∗)b 0.09

PBE0AC 0.12

a SAPT calculations employ the aug-cc-

pVTZ basis set. b Range-separation pa-

rameters are adjusted to satisfy Eq. 38.
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IV. SUMMARY AND CONCLUSIONS

We have proposed a method of creating meta-GGA range-separated exchange functionals

from existing semilocal approximations. Owing to the use of the kinetic energy density and

the Laplacian, the underlying exchange hole has the exact second-order expansion in the

interelectron distance. The importance of this condition is demonstrated for the hydrogenic

density, where the functionals derived using the new approach show a clear reduction of the

self-interaction errors compared to existing range-separated GGAs.

While the method is general, its performance strongly depends on the selected pair of the

base exchange functional and the accompanying correlation. The initial numerical tests on

small sets of atomization energies and barrier heights have shown that the preferred pair of

the semilocal models is the PBE exchange and the TPSS correlation. Therefore, the only

functional considered in the full suite of tests and the method which we recommend for

general use is LC-PBETPSS.

The onset of the long-range HF exchange is controlled by the range-separation parameter,

which is estimated theoretically and confirmed by empirical optimization to be ω = 0.35.

For applications in SAPT, we recommend to adjust ω to enforce Koopmans’ theorem for

the interacting monomers.

Supplementing LC-PBETPSS with the D3 dispersion correction (comprising only the

1/R6 term) generally improves the accuracy of the method for all test sets considered in

this work. We observe additional slight improvement when a three-body dispersion term is

included for large systems.

As Figure 10 illustrates, the accuracy of LC-PBETPSS-D3 is remarkably consistent across

the whole range of tests which probe the performance for noncovalent interaction energies,

barrier heights, and thermochemical energy differences. The errors corresponding to LC-

PBETPSS-D3 are in most cases either the smallest or close to the best functionals. The only

other functional achieving a similar level of consistent accuracy is ωB97XD. When applied

to excited states of small systems, LC-PBETPSS describes charge-transfer and Rydberg

excitations with a similar level of accuracy as valence excitations.

Compared to LC-ωPBE-D3, the new method offers improved accuracy for the reaction

energies of the IDISP set, Diels-Alder reaction energies, and proton-exchange barriers. While

LC-PBETPSS-D3 works better for covalent bonds, it does not compromise on the accuracy
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FIG. 10: General view of the performance of DFT methods on the benchmark sets con-

sidered in this work. The data points for the isodesmic reaction are the absolute errors for

dodecane.

for noncovalent interaction energies. Moreover, the dispersion correction is more compatible

with LC-PBETPSS than with LC-ωPBE. The D3 term is beneficial for LC-ωPBE when

applied to the interaction energies of noncovalent dimers and clusters, but it degrades the

accuracy for proton-exchange barriers and Diels-Alder reaction energies. The performance

of LC-PBETPSS-D3 is free from such irregularities.

Compared to M06-2X-D3, the new method is more reliable for the binding energies and

barrier heights of hydrogen-bonded systems while providing a similar level of accuracy in

alkane thermochemistry.

To conclude, the tests presented in this work show that LC-PBETPSS-D3 combines

reliability with low empiricism. Further work is needed to assess the performance of the new

functional for systems with more complicated electronic structure.

The Supporting Information is available at DOI: 10.1021/acs.jctc.6b00406.
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