
STUDIA Z AUTOMATYKI I INFORMATYKI

VOL. 41 – 2016

Michał Ignaczak, Dariusz Horla∗

PERFORMANCE EVALUATION

OF BASIC OPTIMIZATION METHODS

FOR POLYNOMIAL BINARY PROBLEMS

Keywords: Binary polynomial problems, optimization, computational complexity

1. INTRODUCTION

Linear programming is applied in many decision-making problems [1]. There are, how-

ever, situations where linear formalism cannot be used. In addition, for problems that involve

nonlinear functions, binary programming task is usually more difficult to solve and requires

greater computational costs [6, 7].

The paper focuses on binary programming problems involving special case of nonlin-

ear functions of polynomial type. The majority of problems presented in the paper can be

described in a general form

max
x

f(x)

s.t. γj(x) 6 βj (j = 1, . . . , m) ,

x ∈ {0, 1}n ,

where f denotes the aim function, x ∈ Rn is the vector of decision variables, γ : Rn → Rm

is a function that defines, possibly nonlinear, constraints.

Representation of an optimization problem using variables with binary values usually

leads to heuristic approaches to solving it, what streamlines the solution. In the paper, the

following algorithms are presented and evaluated:

• basic binary algorithm for unconstrained polynomial problems,

• branch and bound method,

• branch and bound method with a penalty function,

• cutting-planes method,

• binary knapsack problem with a quadratic aim function,

• branch and bound methods based on Lagrange relaxation.

In a less general case, for specific problems with binary variables, the aim function takes

the form

f(x) =

n
∑

i=1

cixi +
∑

j∈N



aj
∏

i∈Sj

xi



 , (1)

∗Poznan University of Technology, Institute of Control and Information Engineering, Department of Control and

Robotics, Piotrowo 3a Str., 60-965 Poznan, e-mail: Dariusz.Horla@put.poznan.pl

8 Ignaczak Michał, Dariusz Horla

where c ∈ Rn forms the linear part of the aim function, N = {1, . . . , n}, aj is a constant

coefficient, and Sj defines a set of decision variables.

The main engineering problem is to formulate the aim function, and a subsequent task

is to find appropriate algorithm to find its optimal value. The basic advantage of binary

problems is the set of two values only that the decision variables can take on, what enables

one to decrease the computational burden, e.g. positive powers of decision variables do not

change their values or when calculating gradients its specific values are not important, since

the problem is not continuous and thus only signs in gradient elements matter.

Aim functions used in the paper can be divided into specific forms:

• basic algorithm, branch and bound method, cutting-planes method, see (1),

• quadratic knapsack problem, and branch and bound method with Lagrange relaxation

f(x) =
n
∑

i=1

aiixi +
∑

16i<j6n

aijxixj . (2)

2. BASIC ALGORITHM FOR UNCONSTRAINED BINARY POLYNOMIAL

PROBLEMS

The solver dedicated to this problem is easy to implement, but its use is limited. The first

problem is that partial derivatives of the aim function must be enumerated for every decision

variable and whenever new aim functions are constructed, what leads to complexity increase

[2, 3].

In this algorithm, and for every variable, a new subproblem is constructed that virtually

replaces the problem from the previous iteration. This approach is mainly based on observing

signs of partial derivatives to generate subproblems as functions of Φk(x1, . . . , xk). The

advantage of this approach is its versatility, and the fact that every subproblem can be easily

solved.

Let the following aim function be given:

f(x) =
∑

j

aj

(

∏

i

xi

)

, (3)

and ∆i =
∂fi
∂xi

= f(x1, . . . , xi−1, 1, xi+1, . . . , xn)− f(x1, . . . , xi−1, 0, xi+1, . . . , xn).
A local minimum of f is composed of the following variables:

xi =

{

1 if ∆i(x) > 0
0 if ∆i(x) 6 0

.

Let us now define the residual

θi(x) = f(x1, . . . , xi−1, 0, xi+1, . . . , xn)− xi∆i(x) ,

to express the aim function as

f(x) = xi∆(x) + θi(x) .

PERFORMANCE EVALUATION OF BASIC OPTIMIZATION METHODS. . . 9

The aim function of n variables can now be presented as

fn(x) = xngn(x1, . . . , xn) + hn(x1, . . . , xn) ,

where:

gn(·) =
∂fn
∂xn

,

hn(·) = fn(x1, . . . , xn−1, 0) .

Now, the following function can be created

Φk(·) =

{

1 if gn(x1, . . . , xn−1) > 1
0 otherwise

and a new aim function can be created

fk−1(x1, . . . , xn−1) = Φk(x1, . . . , xn−1)gn(x1, . . . , xn−1) + hn(x1, . . . , xn−1) .

As can be seen, (k − 1)th iteration is connected to a single variable, which is eliminated

from the aim function. The algorithm terminates when all variables are updated on the basis

of appropriate derivatives. According to the above outline, the algorithm terminates when the

aim function of a single variable is obtained, i.e. some fj(x1), and

x∗
1 = 1 if f1(1) > f1(0) ,

x∗
1 = 0 if f1(0) > f1(1) .

The remaining elements of the optimal solution are x∗
i+1 = Φk(x

∗
1, . . . , x

∗
i).

The algorithm can be summarized as follows:

0) Initialization step

Introduce:

fn(x) = f(x) ,

k = n .

1) Compute the following functions:

gk(x1, . . . , xk−1) =
∂fk
∂xk

,

hk(x1, . . . , xk−1) = fk(x1, . . . , xk−1, 0) ,

Φk(x1, . . . , xk−1) =

{

1 if gk(x1, . . . , xk−1) > 0
0 otherwise

2) Using gk and hk compute

fk−1(x1, . . . , xk−1) = Φk(x1, . . . , xk−1)gk(x1, . . . , xk−1) + hk(x1, . . . , xk−1) .

10 Ignaczak Michał, Dariusz Horla

3) For k > 2 put k := k − 1 and proceed to Step 1, otherwise set

x∗
1 = 1 iff f1(1) > f1(0) ,

x∗
1 = 0 iff f1(0) > f1(1) ,

and for i = 1, . . . , n − 1, k = i + 1 compute x∗
i+1 = Φk(x

∗
1, . . . , x

∗
i), to find the

optimal solution.

As an example, let us consider the following problem:

max
x

4x1x2x3 − x1x2 − x1x3 − x2x3 ,

x ∈ {0, 1}3 .

The notation presented below is adopted:

f3(x) = 4x1x2x3 − x1x2 − x1x3 − x2x3 ,

k = 3 .

Iteration 1

1) (k = 3)

g3(x1, x2) =
∂f3
∂x3

= 4x1x2 − x1 − x2 ,

h3(x1, x2) = f3(x1, x2, 0) = −x1x2 ,

Φ3(x1, x2) =

{

1 if g3(x1, x2) > 0
0 otherwise

.

Possible values for g3:

x1 x2 g3
0 0 0
0 1 −1
1 0 −2
1 1 1

,

thus Φ3(x1, x2) = x1x2.

2)

f2(x1, x2) = Φ3(x1, x2)g3(x1, x2) + h3(x1, x2) = x1x2(4x1x2 − x1 − x2)− x1x2 =

= 4x2
1x

2
2 − x2

1x2 − x2
2x1 = 4x1x2 − x1x2 − x1x2 − x1x2 = x1x2 .

(since for binary-valued variables x2
i = xi).

PERFORMANCE EVALUATION OF BASIC OPTIMIZATION METHODS. . . 11

Iteration 2

1) (k = 2)

g2(x1) =
∂f2
∂x2

= x1 ,

h2(x1) = f2(x1, 0) = 0 ,

Φ2(x1) =

{

1 if g2(x1) > 0
0 otherwise

.

Possible values for g2:

x1 g2
0 0
1 1

,

thus Φ2(x1) = x1.

2)

f1(x1) = Φ2(x1)g2(x1) + h2(x1) = x2
1 = x1 ,

3)

f1(1) = 1 > f1(0) = 0 ,

thus x∗ = [1, 1, 1]T , f(x∗) = 1.

The summary of all possible solutions is given below

x1 x2 x3 f(x)
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 −1
1 0 0 0
1 0 1 −1
1 1 0 −1
1 1 1 1

.

3. BRANCH AND BOUND METHOD

The problem to be solved by this method can be stated as follows

max
x

f(x) =

n
∑

i=1

cixi +
∑

j∈N



aj
∏

i∈Sj

xi





s.t.

n
∑

i=1

djixi 6 βj (j = 1, . . . , m) ,

x ∈ {0, 1}n .

12 Ignaczak Michał, Dariusz Horla

At every stage, the problem is repeatedly divided into two subproblems, thus a tree of partial

solutions is obtained. The maximum number of branches R is calculated using n and is given

by

R =

n
∑

r=0

2r .

At every branching point, the two subproblems have a single variable eliminated in com-

parison with the prior problem, to choose the better solution with smaller costs-to-go. The

algorithm starts from the solution with all variables put to zero, apart from the currently

processed variable. Introduced equality constraints are taken into account by observing con-

secutive combinations that form branches and are eliminated as infeasible on the basis of

prior solutions.

At every branching point, the linear programming (LP) problem must be solved, i.e. the

original problem with additional linear constraints added between iterations, what is a disad-

vantage of the presented algorithm. When the solution of the current LP problem is binary,

the algorithm terminates.

Implementation of the penalty function is based on obtaining costs-to-go between the

branches. The penalty functions values are defined by formulas given below, where ck is the

value of the aim function in the current branch, and c′k in the other branch:

p0j =
∑

κ

max
Sκ∈{j}

(0, cκ) ,

p1j = min
Sκ∈{j}

(0, cκ) +
∑

cκ, c′κ

min
Sκ∈{j}

(|cκ|, |c
′
κ|) ,

j ∈ {1, . . . , n} .

Eventually, these formulas reduce to obtaining the cost

vi = min
Sκ∈{j}

(0, cκ) +
∑

cκ, c′κ

max
Sκ∈{j}

(|cκ|, |c
′
κ|) ,

where k is the iteration number k ∈ {1, . . . , n}.

In this algorithm, combinations of binary variables which aim function has already been

calculated for are blocked. If, for example, the constraints x3 = 1 and x4 = 1 are satisfied

by the vector [0, 0, 1, 1]T , all the aim functions with x3 = 1 and x4 = 1 are blocked.

The algorithm can be summarized as follows [4, 2]:

0) Initialization step

Find the initial solution x of the problem (4) using, e.g. Frank-Wolfe or simplex method.

If this solution is binary, terminate the algorithm. Otherwise, calculate the aim func-

tion for this solution. Put x opt = x, f opt = f(x). Start Step 1 from the first decision

variable.

1) If all the decision variables have been checked, stop the algorithm. Otherwise, verify

whether the optimal binary solution of the obtained subproblem x∗ with f∗ = f(x∗)
improves the aim function fopt. If so, set x opt = x∗. Prior to obtaining solution to

the LP problem check if the current combination of the decision variables is blocked.

PERFORMANCE EVALUATION OF BASIC OPTIMIZATION METHODS. . . 13

Terminate the algorithm if the solution is binary and block the current combination so

that this branch would not be considered anymore in further combinations. Check the

remaining constraints.

2) Update the aim function for the current partitioning of variables by substituting a deci-

sion variable with either xi = 0 or xi = 1.

3) Update the constraints by adding a single equality constraint to the existing set of con-

straints for currently processed variables, either xi = 0 or xi = 1.

4) (only for the algorithm with the penalty function)

For every variable with unfixed value in the subproblem calculate p0j and p1j , j ∈
{1, . . . , n}, and choose the constraint with the smallest penalty function value.

5) If all possible decision variables are considered the final solution is obtained. If no

feasible solution has been found, the problem is infeasible. If both possible values for

the i–th variable have been considered, put i := i+ 1 and proceed do Step 1.

As an example, let us consider the following problem:

max
x

9x1 + 5x1x2 + 6x3 + 4x4 ,

s.t. 6x1 + 3x2 + 5x3 + 2x4 6 10 ,

x3 + x4 6 1 ,

−x1 + x3 6 0 ,

−x2 + x4 6 0 ,

x ∈ {0, 1}4 ,

with the initial solution passed to Franke-Wolfe algorithm as x(0) = [0, 0, 0, 0]T .

0) Maximum number of possible branching points R = 30. Using Frank-Wolfe method

the solution to LP problem is found

x∗ = [0.8333, 1, 0, 1]T ,

f(x)∗ = 13.5 ,

what forms the first branching point with x opt = [0.8333, 1, 0, 1]T , fopt = 13.5.

Iteration 1

1) The optimal solution is not binary.

2) Branching with respect to x1: assuming that x1 = 0.

There is no block for the current equality constraint x1 = 0.

3) The constraints are updated according to branching point (possible values x1 = 0 or

x1 = 1); setting x1 = 0 (equality constraint x1 = 0 added to LP program solved with

Franke-Wolfe algorithm).

14 Ignaczak Michał, Dariusz Horla

Iteration 2

1) Solution to LP problem is x∗ = [0, 0, 0, 0]T and the aim function f(x∗) = 0. This

solution is an integer solution and x1 is the branching variable, thus x1 = 0 must be

included to blocked combinations. Setting x opt = [0, 0, 0, 0]T , fopt = 0.

2) Branching with respect to x1: assuming that x1 = 1.

There is no block for the current equality constraint x1 = 1.

3) The constraints are updated according to branching point; setting x1 = 1 (equality

constraint x1 = 1 added to LP program solved with Franke-Wolfe algorithm, replacing

of the previously added constraint x1 = 0).

Iteration 3

1) Solution to LP problem is x∗ = [1, 0.8, 0, 0.8]T and the aim function f(x∗) = −13.8
(since 13.8 is not a natural number, this combination is not blocked).

2) Branching with respect to x2: assuming that x2 = 0.

Equality constraints have the form x1 = 1, x2 = 0, and these variables are fixed

(blocked), thus this branch is no longer considered. Due to the history of previous

iterations, combinations [x1, x2] of the form:

[0, 0] ,

[0, 1]

are blocked and no longer considered.

3) The following equality constraints are generated: x1 = 1, x2 = 0.

Iteration 4

1) Solution to LP problem is x∗ = [1, 0, 0, 0]T and aim functions f(x∗) = −9. Since 9
is a natural number, the current solution is blocked (x1 = 1).

2) Branching with respect to x2: assuming that x2 = 1.

Equality constraints have the form x1 = 1, x2 = 1, and this combination is not

blocked.

3) The following equality constraints are generated: x1 = 1, x2 = 1.

Iteration 5

1) Solution to LP problem is x∗ = [1, 1, 0, 0]T and aim functions f(x∗) = −14. Since

14 is a natural number, the current solution is blocked (x1 = 1, x2 = 1).

2) Branching with respect to x3: assuming that x3 = 0.

Equality constraints have the form x1 = 1, x2 = 1, x3 = 0 and this combination is

blocked, thus this branch is no longer considered.

PERFORMANCE EVALUATION OF BASIC OPTIMIZATION METHODS. . . 15

Due to the history of previous iterations, combinations [x1, x2, x3] of the form:

[0, 0, 0] ,

[0, 0, 1] ,

[0, 1, 0] ,

[0, 1, 1] ,

[1, 0, 0] ,

[1, 0, 1] ,

[1, 1, 0] ,

[1, 1, 1]

are blocked and no longer considered.

Iteration 6

2) Branching with respect to x4: assuming that x4 = 0.

Equality constraints have the form x1 = 0, x2 = 0, x3 = 0, and these variables are

blocked, similarly to all the remaining combinations.

The optimal solution becomes x∗ = [1, 1, 0, 0]T , f(x∗) = 14.

As an example, let us consider the same problem again, this time using penalty function.

0) Maximum number of possible branching points R = 30. Using Frank-Wolfe method

the solution to LP problem is found

x∗ = [0.8333, 1, 0, 1]T ,

f(x)∗ = 13.5 ,

what forms the first branching point with x opt = [0.8333, 1, 0, 1]T , fopt = 13.5.

Iteration 1

1) The optimal solution is not binary.

2) Branching with respect to x1: assuming that x1 = 0.

There is no block for the current equality constraint x1 = 0.

3) The constraints are updated according to branching point (possible values x1 = 0 or

x1 = 1); setting x1 = 0 (equality constraint x1 = 0 added to LP program solved with

Franke-Wolfe algorithm).

Iteration 2

1) Solution to LP problem is x∗ = [0, 1, 0, 1]T and aim functions f(x∗) = 6. This

solution is an integer solution and x1 is the branching variable, thus x1 = 0 must be

included to blocked combinations. Setting x opt = [0, 1, 0, 1]T , fopt = 6.

2) Branching with respect to x1: assuming that x1 = 1.

There is no block for the current equality constraint x1 = 1.

3) The constraints are updated according to branching point; setting x1 = 1 (equality

constraint x1 = 1 added to LP program solved with Franke-Wolfe algorithm, replacing

of the previously added constraint x1 = 0).

16 Ignaczak Michał, Dariusz Horla

4) Cost-to-go for the current branch 13.5− 6 = 7.5.

Iteration 3

1) Solution to LP problem is x∗ = [1, 0.8, 0, 0.8]T and aim functions f(x∗) = −13.8
(since 13.8 is not a natural number, this combination is not blocked).

2) Branching with respect to x2: assuming that x2 = 0.

Equality constraints have the form x1 = 1, x2 = 0, and these variables are fixed

(blocked), thus this branch is no longer considered. Due to the history of previous

iterations, combinations [x1, x2] of the form:

[0, 0] ,

[0, 1]

are blocked and no longer considered.

3) The following equality constraints are generated: x1 = 1, x2 = 0.

4) Cost-to-go for the current branch 13.5−13.8 = −0.3. Minimum cost min(7.5, −0.3) =
−0.3.

Iteration 4

1) Solution to LP problem is x∗ = [1, 0, 0, 0]T and aim functions f(x∗) = −9. Since 9
is a natural number, the current solution is blocked (x1 = 1).

2) Branching with respect to x2: assuming that x2 = 1.

Equality constraints have the form x1 = 1, x2 = 1, and this combination is not

blocked.

3) The following equality constraints are generated: x1 = 1, x2 = 1.

4) Cost-to-go for the current branch 13.8− 9 = 4.8.

Iteration 5

1) Solution to LP problem is x∗ = [1, 1, 0, 0]T and aim functions f(x∗) = −14. Since

14 is a natural number, the current solution is blocked (x1 = 1, x2 = 1).

2) Branching with respect to x3: assuming that x3 = 0.

Equality constraints have the form x1 = 1, x2 = 1, x3 = 0 and this combination is

blocked, thus this branch is no longer considered.

Due to the history of previous iterations, combinations [x1, x2, x3] of the form:

[0, 0, 0] ,

[0, 0, 1] ,

[0, 1, 0] ,

[0, 1, 1] ,

[1, 0, 0] ,

[1, 0, 1] ,

[1, 1, 0] ,

[1, 1, 1]

are blocked and no longer considered.

PERFORMANCE EVALUATION OF BASIC OPTIMIZATION METHODS. . . 17

3) Cost-to-go for the current branch 13.8−14 = −0.2. Minimum cost min(4.8, −0.2) =
−0.2.

Iteration 6

2) Branching with respect to x4: assuming that x4 = 0.

Equality constraints have the form x1 = 0, x2 = 0, x3 = 0, and these variables are

blocked, similarly to all the remaining combinations.

The optimal solution becomes x∗ = [1, 1, 0, 0]T , f(x∗) = 14.

4. CUTTING PLANES METHOD

Let us consider a binary problem with a linear aim function and nonlinear constraints of

the form [4]

max
x

f(x) =
n
∑

i=1

cixi

s.t. γi =

pi
∑

κ=1

aiκ





∏

j∈Siκ

xj



 6 βi (i = 1, . . . , m) ,

x ∈ {0, 1}n ,

where Siκ ⊂ {1, . . . , n}. The general idea of the cutting planes method is to replace the

nonlinear constraints with linear functions without introducing neither additional variables

nor new constraints, leading to generation of a generalised covering relaxation (GCR) from

nonlinear constraints. The resulting problem should be solvable using standard LP algorithms

for binary programs.

Let us consider a constraint of the form

∑

j∈N



aj
∏

i∈Sj

xi



 6 β ,

where N and Sj are non-empty sets of indexes and ∪j∈N Sj = {1, . . . , n}. Let us define:

N + = {j ∈ N : aj > 0} ,

N − = {j ∈ N : aj < 0} ,

and assume that
∑

j∈N + aj > b, since γ(x) 6 β is satisfied for every combination.

Let us define

γ+(x) =
∑

j∈N +



aj
∏

i∈Sj

xi



 ,

γ−(x) =
∑

j∈N −



aj
∏

i∈Sj

xi



 .

18 Ignaczak Michał, Dariusz Horla

The set M ⊆ N is a cover of the inequality of

∑

j∈M

|aj | > b =
∑

j∈N −

aj .

A simple conclusion is that N is a relaxation of the given constraint function as long as

it holds that
∑

j∈N + aj > 0. A cover M is minimal if none of its subsets are covers.

The algorithm can be summarized as follows:

0) Put k = 0. Generate a set of relaxed constraints and generate initial GCR problem for

a single constraint that is violated and label the problem as GCRk.

1) Solve GCRk problem with a binary LP solver. Let x(k) be the optimal solution of

GCRk. If this solution satisfies constraints of the original problem, terminate the algo-

rithm and consider x(k) to be the optimal solution to the binary polynomial program-

ming problem.

2) For every function defining constraints of the form γi(x) 6 βi that is violated for the

decision variables x(k) generate a generalised covering inequality and add it to GCRk

problem, and, next, using LP solver find the optimal solution of the resulting linear

programming task. If this solution is feasible in the original problem, terminate the

algorithm, otherwise put k := k + 1 and go to Step 1.

Suppose that constraints are in the form

γ(x) =
∑

j∈N

ai
∏

j∈Si

xj 6 β ,

for nonempty N with nonempty sets Si with ∩j∈N Sj = {1, . . . , n}.

Now, let us define the following sets of indexes:

G 1(x) =







j ∈ N + :
∏

i∈Sj

xi = 1







,

G 0(x) =







j ∈ N − :
∏

i∈Sj

xi = 0







,

G (x) = G 0(x) ∪ G 1(x) .

and then from
∑

i∈G (x)

|ai|+
∑

j∈N −

aj > b

it turns out that G (x) is a cover for the presented constraint.

Now, let M ⊆ G (x) be any cover for the presented constraint. For i ∈ G 0(x) let φ(i) be

a mapping of indexes for which xφ(i) = 0, and

GM = ∪i∈(M∩G 1(x))Si ,

Gφ =
{

j = φ(i) : i ∈ (M ∩ G 0(x)
}

.

PERFORMANCE EVALUATION OF BASIC OPTIMIZATION METHODS. . . 19

Then the generalized covering inequality becomes

∑

i∈GM

(1− xi) +
∑

j∈Gφ

xj > 1 .

As an example, let us consider the following problem:

max
x

−3x1 − 5x2 − 6x3 − x6 − x5 − 5x6 ,

s.t. 7x1 + 2x2 − x5x6 + 4x3 + 6x6 6 14 ,

4x1x3 + 8x2x3 + 3x1x2x3 − 2x3x4 − 3x5x6 + 7x6 6 11 ,

3x1x2 + 4x3 − x4x5 6 15 ,

5x1x3 + 4x2x6 + 2x3 − 4x1x4 − x4x5x6 6 14 ,

x ∈ {0, 1}6 .

Initial combination has the form x = [1, 1, 1, 1, 1, 1]T .

Iteration 1

1) Generation of relaxed constraints

The constraint 7x1+2x2−x5x6+4x3+6x6 6 14 is violated by x = [1, 1, 1, 1, 1, 1]T .

The GCR0 is generated:

N = {1, 2, 3, 4, 5} ,

N + = {1, 2, 4, 5} ,

N − = {3} ,

aN = {7, 2, 4, 6} ,

aN + = {7, 2, 4, 6} ,

aN − = ∅ .

The current point violates the constraint.

Now, taking indexes from N + the set G 1 is updated:

7x1 → 7 > 0 index 1 added to G 1 ,

2x2 → 2 > 0 index 2 added to G 1 ,

4x3 → 4 > 0 index 4 added to G 1 ,

6x6 → 6 > 0 index 5 added to G 1 ,

finally, G 1 = {1, 2, 4, 5}.

Taking indexes from N − the set G 0 is updated:

−x5x6 → −1 6= 0 index 3 is not added to G 0 ,

finally, G 0 = ∅.

After calculations, G = G 1 ∪ G 0, GM = G 1.

20 Ignaczak Michał, Dariusz Horla

Now, the GCR0 takes the form

(1 − x1) + (1− x2) + (1− x3) + (1 − x6) > 1 .

The constraint 4x1x3+8x2x3+3x1x2x3−2x3x4−3x5x6+7x6 6 11 is also violated

by x = [1, 1, 1, 1, 1, 1]T . The GCR1 is generated:

N = {1, 2, 3, 4, 5, 6} ,

N + = {1, 2, 3, 6} ,

N − = {4, 5} ,

aN = {4, 8, 3, 2, 3, 7} ,

aN + = {4, 8, 3, 7} ,

aN − = {2, 3} .

As in the latter case, the generated combination does not satisfy constraints, and G 1 =
{1, 2, 3, 6}, G 0 = ∅.

After calculations, G = G 1 ∪ G 0, GM = G 1.

Now, the GCR1 takes the form

(1 − x1) + (1− x2) + (1− x3) + (1 − x6) > 1 .

The remaining two constraints are satisfied by the proposed point.

2) The problem with four constraints replaced by two new constraints is solved, and as

the result x∗ = [0, 1, 1, 1, 1, 1]T , f(x∗) = 6, what satisfies original constraints

7 · 0 + 2 · 0− 1 · 1 + 4 · 0 + 6 · 1 = 5 6 14 ,

4 · 0 · 0 + 8 · 0 · 0 + 3 · 0 · 0 · 0− 2 · 0 · 0− 3 · 1 · 1 + 7 · 1 = 4 6 11 ,

3 · 0 · 0 + 4 · 0− 0 · 1 = 0 6 15 ,

5 · 0 · 0 + 4 · 0 · 1 + 2 · 0− 4 · 0 · 0− 0 · 1 · 1 = 0 6 14 .

The optimal solution has the form:

x∗ = [0, 1, 1, 1, 1, 1]T ,

f(x∗) = 6 ,

and is achieved in a single iteration.

5. QUADRATIC BINARY KNAPSACK PROBLEM

In this case, the problem takes the form (qij = qji for i > j) [4, 5]:

max
x

f(x) =

n
∑

i=1



qii +
1

2

∑

j 6=i

qijxj



 xj

s.t.

n
∑

i=1

aixi 6 b ,

x ∈ {0, 1}n .

PERFORMANCE EVALUATION OF BASIC OPTIMIZATION METHODS. . . 21

A unique feature of the algorithm solving this problem is that greater attention is paid to

ai coefficients than to the price vector. The first combination of variables to be considered is

this for which the constraint function has the maximum value, and in consecutive iterations

other combinations are considered. As a result, decision variables are at maximum levels.

The algorithm can be summarized as follows:

1) Calculate

ci = qii +
1

2

∑

j 6=i

qij ,

and pi =
ci
ai

(i = 1, . . . , n). Set K1 = ∅ and K0 = {1, . . . , n} as the set of indexes

of all decision variables, I = K0 and s = b.

2) Compute κ = argmaxi∈I pi. If
∑

i∈K1∪{κ} ai > b set I := I \ {κ}. If I = ∅, go

to Step 4. If
∑

i∈K1∪{κ} ai 6 b set K1 := K1∪{κ} and K0 := K0\ {κ}, s := s−aκ.

Proceed to Step 3.

3) If s < mini∈K0
ai go to Step 4. Otherwise, put

pi := pi −
qκi
2ai

for i ∈ K0. Set I = K0 and return to Step 2.

4) For indexes i ∈ K0 set xi = 0, and for j ∈ K1 set xj = 1. Stop the algorithm.

As an example, let us consider the following problem:

max
x

(x1 + 4x2 + x3 + 2x4 + 6x5 + 5x6 + 6x1x2 + 4x1x3 + 10x1x4+

+x2x3 + 5x2x4 + 4x3x4 + x4x5 + x6x3 + x7x4) ,

s.t. 7x1 + 5x2 + 4x3 + 2x4 + 3x5 + 4x6 + 6x7 6 16

x ∈ {0, 1}7 .

22 Ignaczak Michał, Dariusz Horla

1) In order to start the algorithm, the following must be calculated:

c1 = 1 + 0.5 (6 + 4 + 10) = 11 ,

c2 = 4 + 0.5 (6 + 1 + 5) = 10 ,

c3 = 1 + 0.5 (4 + 1 + 4 + 1) = 6 ,

c4 = 2 + 0.5 (10 + 5 + 4 + 1 + 1) = 12.5 ,

c5 = 6 + 0.5 = 6.5 ,

c6 = 5 + 0.5 = 5.5 ,

c7 = 0.5 ,

c = [11, 10, 6, 12.5, 6.5, 5.5, 0.5]T ,

p1 =
11

7
,

p2 =
10

5
,

p3 =
6

4
,

p4 =
12.5

2
,

p5 =
6.5

3
,

p6 =
5.5

4
,

p7 =
0.5

6
,

p = [1.5714, 2, 1.5, 6.25, 2.1667, 1.375, 0.0833]T ,

s = 16 ,

K = ∅ ,

K = (1, 2, 3, 4, 5, 6, 7} ,

I = K0 .

Iteration 1

2)

κ = argmax
i∈I

pi = 4 ,

∑

i∈K1∪{4}

ai = a4 = 2 6 16 ,

K1 = {4} ,

K0 = {1, 2, 3, 5, 6, 7} ,

s := 16− 2 = 14 .

PERFORMANCE EVALUATION OF BASIC OPTIMIZATION METHODS. . . 23

3) 14 ≮ mini∈K0
ai = 3,

p1 := p1 −
q41
2a1

= 1.5714−
10

14
,

p2 := p2 −
q42
2a2

= 2−
5

10
,

p3 := p3 −
q43
2a3

= 1.5−
4

8
,

p5 := p5 −
q45
2a5

= 2.1667−
1

6
,

p6 := p6 −
q46
2a6

= 1.3750−
0

8
,

p7 := p7 −
q47
2a7

= 0.0833−
1

12
,

p = [0.85714, 1.5, 1, 2.1667, 1.37, 0.083333]T ,

I = {1, 2, 3, 5, 6, 7} .

Iteration 2

2)

κ = argmax
i∈I

pi = 5 ,

∑

i∈K1∪{5}

ai = a4 + a5 = 5 6 14 ,

K1 = {4, 5} ,

K0 = {1, 2, 3, 6, 7} ,

s := 14− 3 = 11 .

3) 11 ≮ mini∈K0
ai = 4,

p = [0.8571, 1.5, 1, 1.375, 0.0833]T ,

I = {1, 2, 3, 6, 7} .

Iteration 3

2)

κ = argmax
i∈I

pi = 2 ,

∑

i∈K1∪{2}

ai = a4 + a5 + a2 = 10 6 14 ,

K1 = {4, 5, 2} ,

K0 = {1, 3, 6, 7} ,

s := 11− 5 = 6 .

24 Ignaczak Michał, Dariusz Horla

3) 11 ≮ mini∈K0
ai = 4,

p = [0.4286, 1, 1.375, .0833]T ,

I = {1, 3, 6, 7} .

Iteration 4

2)

κ = argmax
i∈I

pi = 6 ,

∑

i∈K1∪{6}

ai = a4 + a5 + a2 + a6 = 14 6 14 ,

K1 = {4, 5, 2, 6} ,

K0 = {1, 3, 7} ,

s := 6− 4 = 2 .

3) 11 ≮ mini∈K0
ai = 4,

p = [0.4286, 1, 0.0833]T ,

I = {1, 3, 7} .

Iteration 5

2)

κ = argmax
i∈I

pi = 7 ,

∑

i∈K1∪{7}

ai = a4 + a5 + a2 + a6 + a7 = 20 > 14 ,

I = {1, 3} .

Iteration 6

2)

κ = argmax
i∈I

pi = 1 ,

∑

i∈K1∪{1}

ai = a4 + a5 + a2 + a6 + a7 + a1 = 27 > 14 ,

I = {3} .

PERFORMANCE EVALUATION OF BASIC OPTIMIZATION METHODS. . . 25

Iteration 7

2)

κ = argmax
i∈I

pi = 3 ,

∑

i∈K1∪{3}

ai = a4 + a5 + a2 + a6 + a7 + a1 + a3 = 31 > 14 ,

I = ∅ .

Optimal solution found in 6 iterations:

x∗ = [0, 1, 0, 1, 1, 1, 0]T ,

f(x∗) = 23 .

6. BRANCH AND BOUND METHOD BASED ON LAGRANGE RELAXATION

For this method, the main problem has the form as in the case of a Quadratic Knapsack

Problem (QKP).

The main QKP problem is rewritten to the form [4]

L(x, λ) = f(x)− λ(g(x)− b) ,

where λ > 0 is the Lagrange multiplier that is calculated in every iteration.

The dual Lagrange function is of the form

d(λ) = max
λ

(L(x, λ) : x ∈ {0, 1}n) .

The Lagrange multiplier is defined by the formula

λk = max
x

(

f(x)− f(x(l−1))

g(x)− g(x(l−1))

)

,

where l is the index denoting a previous value of a vector of decision variables.

At every branching point it is necessary to obtain value of the Lagrange multiplier on the

basis of the maximal value of the aim function and constraint function and current combina-

tion of decision variables. On this basis, a vector is generated, from which the multiplier is

sought according to the maximum formula.

Branching process is based on the weight of the decision variables in the problem, from

the constraint function. The only feature that changes during the algorithm is a method to

select variables to branch. To do this Lagrange relaxation is used. Value s denotes the current

constraint values.

Algorithm can be described as follows.

Main Step I

Create the set of indexes of decision variables I = {1, . . . , n}, and find a feasible

solution using QKP algorithm. Set this solution as the current optimal solution. If it does not

exist, terminate the algorithm.

26 Ignaczak Michał, Dariusz Horla

Main Step II (selection of variables)

1) From the initial function obtain Lagrange multiplier h, and formulate the dual function

d(h) = max
x

(

Q(x)− h(aTx− b))
)

,

where Q denotes the aim function, a is the constraint vector, and b is the right-hand

side of the constraint.

2) set J = ∅ and j = 1,

3) Include {j} to J if 1 − xj = 1, otherwise include {−j}. Include {−κ} to J
for every κ ∈ I /J such that aκ > b −

∑

i∈J ai is satisfied. Next, calculate the

solution to the subproblem with xi = 0 whenever −i ∈ J or xj = 1 whenever

j ∈ J . If the Lagrangean bound of the subproblem satisfies dj 6 fopt (current

optimal solution), change {j} in set J to
{

−j
}

or change {−j} in set J to
{

j
}

and

remove all underlined indexes to its right from J .

4) Unless j < n set j := j + 1 and go to Step 3. Otherwise, proceed to Main Step 3.

Main Step III

1) Update the constraint for prior branching points

s = b−
∑

j∈J

aj ,

and if s < 0, to go step 6.

2) Update J – for every j ∈ I /J add
{

−j
}

to J if aj > s.

3) Calculate Lagrange multiplier and create Lagrange dual function for its variables (xi =
0 if −i ∈ J or xi = 1 if i ∈ J). If the solution of the Lagrange dual problem

D 6 fopt, proceed to Step 6.

4) Solve Lagrange dual problem by substituting the current combination, if x∗ is feasible

and improves the current optimal value of the function – set this combination as current

optimal. If constraint becomes active proceed to Step 6.

5) For every index j ∈ I \J find the smallest cost-to-go pi = L(x∗, λ∗) − L(yj , λ∗)

with L(x, λ) = Q(x) − λ(aTx − b) and yji = x∗
i for i 6= j, yjj = 1 − x∗

j . Select j as

the index of the smallest cost and include this index to J if x∗
j = 0 or negative index

if x∗
j = 1. Go to Step 1.

6) Find moving from right to left the first j or −j index that is not underlined. If there

is no index to branch, the current solution is optimal. Otherwise, move all indexes to

the right of the found index out from J and change {j} in set J to
{

−j
}

or change

{−j} in set J to
{

j
}

. Proceed to Step 1.

As an example, let us consider again the previous example, after [4], with x(0) = [1, 0, 1, 1]T ,

f(x(0)) = 22 (x opt = [1, 0, 1, 1]T , fopt = 22.

PERFORMANCE EVALUATION OF BASIC OPTIMIZATION METHODS. . . 27

Step II

1) Lagrange multiplier h = 2.1111, and

d(h) = 2.1111 · 13 + x1 + 4x2 + x3 + 2x4 + 6x1x2 + 4x1x3 + 10x1x4 + x2x3 + 5x2x4 +

+4x3x4 − 2.1111(7x1 + 5x2 + 4x3 + 2x4) = 27.4444

with x∗ = [0, 0, 0, 0]T .

2) Let J = ∅. It is impossible to create constraint in dual problem for d1 = 25 since

fopt is exceeded.

It is impossible to create constraint in dual problem for d2 = 25.7273 since fopt is

exceeded.

It is impossible to create constraint in dual problem for d3 = 25.0833 since fopt is

exceeded.

It is impossible to create constraint in dual problem for d4 = 26.75 since fopt is ex-

ceeded.

No variable can be fixed

Step III

1) Setting s = 13.

3) By solving the dual problem with J = ∅ we get

h = 2.1111 ,

d(h) = 27.4444 > fopt ,

x∗ = [0, 0, 0, 0]T .

5) Costs-to-go become:

p = [27.4444− 13.6667, 27.4444− 28.8889, 27.4444− 20, 27.4444− 25.2222]T =

= [13.7778, 6.5555, 7.4444, 2.2222]T ,

min
j

pj = 2.2222 ,

j = 4 ,

{4} included to J

1)

s = 13− 2 = 11

3) By solving the dual problem with J = {4} we get

h = 2.25 ,

d(h) = 26.75 > fopt ,

x∗ = [0, 0, 0, 1]T .

28 Ignaczak Michał, Dariusz Horla

5) Costs-to-go become:

p = [4.75, 2.25, 4]T ,

min
j

pj = 2.25 ,

j = 2 ,

{2} included to J

1)

s = 11− 5 = 6

2) Since a1 = 7 > 6 = s, J = {4, 2, −1}.

4) By solving the dual problem with J = {4, 2, −1} we get

h = 0 ,

d(h) = 17 6 fopt ,

x∗ = [0, 1, 1, 1]T .

6) Backtracking, J = {4, −2}

2)

s = 13− 2 = 11

4) By solving the dual problem with J = {4, −2} we get

h = 0 ,

d(h) = 22 = fopt ,

x∗ = [1, 0, 1, 1]T .

6) Backtracking, J = {−4}

2)

s = 13

4) By solving the dual problem with J = {−4} we get

h = 1.0625 ,

d(h) = 13.9125 < fopt ,

x∗ = [0, 0, 0, 0]T .

7) There are no non-underlined indexes in J , stopping the algorithm.

The response to the problem becomes:

x∗ = [1, 0, 1, 1]T ,

f(x∗) = 22 .

PERFORMANCE EVALUATION OF BASIC OPTIMIZATION METHODS. . . 29

7. COMPARISON OF PERFORMANCE OF SELECTED ALGORITHMS

In order to test the presented algorithms general test must be conducted, enabling one to

compare them in a unique fashion. The basic algorithm without constraints is the simplest,

with a fixed number of iterations, related directly to the number of variables. The tests have

been carried for n = 1, . . . , 20 and m = 1, . . . , 20, assuming that in the worst case the

aim function consists of products of 8 variables of arbitrary index for a randomly generated

problem with given dimensions. Coefficients of aim functions have taken on values from the

span [0, 10], left-hand side coefficients of linear constraints from [0, 10], and right-hand side

from [0, 20].

Tab. 1. Performance evaluation of the branch and bound method with penalty function

m \ n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1.00 1.40 3.10 3.40 4.45 5.34 6.23 7.12 8.01 8.90 9.79 10.68 11.57 12.46 13.35 14.24 15.13 16.02 16.91 17.80
2 1.00 1.70 2.70 2.90 3.75 4.42 5.09 5.76 6.43 8.00 8.13 8.85 9.57 10.29 11.01 11.73 12.44 13.16 13.88 14.60
3 1.00 1.40 2.30 3.60 4.25 5.12 5.99 6.86 7.73 8.60 9.47 10.34 11.21 12.08 12.95 13.82 14.69 15.56 16.43 17.30
4 1.00 1.50 2.80 4.10 5.00 6.06 7.12 8.18 9.24 10.30 11.36 12.42 13.48 14.54 15.60 16.66 17.72 18.78 19.84 20.90
5 1.00 1.40 2.90 4.00 4.95 6.00 7.05 8.10 9.15 10.20 11.25 12.30 13.35 14.40 15.45 16.50 17.55 18.60 19.65 20.70
6 1.00 1.40 3.00 4.10 5.10 6.19 7.28 8.37 9.46 10.55 11.64 12.73 13.82 14.91 16.00 17.09 18.18 19.27 20.36 21.45
7 1.00 1.50 3.20 4.00 5.10 6.17 7.24 8.31 9.38 10.45 11.52 12.59 13.66 14.73 15.80 16.87 17.94 19.01 20.08 21.15
8 1.00 1.40 3.30 4.50 5.65 6.89 8.13 9.37 10.61 11.85 13.09 14.33 15.57 16.81 18.05 19.29 20.53 21.77 23.01 24.25
9 1.00 1.50 3.40 3.60 4.80 5.77 6.74 7.71 8.68 9.65 10.62 11.59 12.56 13.53 14.50 15.47 16.44 17.41 18.38 19.35
10 1.00 1.60 3.00 3.70 4.70 5.65 6.60 7.55 8.50 9.45 10.40 11.35 12.30 13.25 14.20 15.15 16.10 17.05 18.00 18.95
11 1.00 1.49 3.31 4.19 5.34 6.48 7.62 8.76 9.90 10.91 12.12 13.25 14.39 15.52 16.65 17.78 18.91 20.04 21.17 22.31
12 1.00 1.50 3.38 4.26 5.45 6.61 7.78 8.94 10.11 11.12 12.38 13.53 14.69 15.85 17.01 18.16 19.32 20.48 21.63 22.79
13 1.00 1.50 3.44 4.33 5.55 6.74 7.94 9.13 10.32 11.32 12.63 13.81 15.00 16.18 17.36 18.54 19.73 20.91 22.09 23.27
14 1.00 1.50 3.50 4.40 5.65 6.87 8.10 9.32 10.54 11.52 12.88 14.09 15.30 16.51 17.72 18.93 20.13 21.34 22.55 23.76
15 1.00 1.50 3.56 4.48 5.76 7.01 8.25 9.50 10.75 11.73 13.14 14.37 15.61 16.84 18.07 19.31 20.54 21.77 23.01 24.24
16 1.00 1.51 3.63 4.55 5.86 7.14 8.41 9.69 10.96 11.93 13.39 14.65 15.91 17.17 18.43 19.69 20.95 22.21 23.47 24.73
17 1.00 1.51 3.69 4.62 5.96 7.27 8.57 9.87 11.18 12.13 13.65 14.93 16.22 17.50 18.79 20.07 21.36 22.64 23.92 25.21
18 1.00 1.51 3.75 4.69 6.07 7.40 8.73 10.06 11.39 12.34 13.90 15.21 16.52 17.83 19.14 20.45 21.76 23.07 24.38 25.69
19 1.00 1.51 3.81 4.76 6.17 7.53 8.89 10.25 11.61 12.54 14.15 15.49 16.83 18.16 19.50 20.83 22.17 23.51 24.84 26.18
20 1.00 1.52 3.88 4.84 6.27 7.66 9.05 10.43 11.82 12.74 14.41 15.77 17.13 18.49 19.85 21.22 22.58 23.94 25.30 26.66

0

5

10

15

20

25

30

35

0 4 8 12 16 20

n

no. of iters.
Branch and bound (penalty)

1.3349n − 1.8081

Branch and bound

1.9713n − 1.0856

Cutting planes

0.0503n + 0.9884

Fig. 1. Performance evaluation of selected methods with m

n
= 1

30 Ignaczak Michał, Dariusz Horla

Tab. 2. Performance evaluation of the branch and bound method without penalty function

m \ n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1.00 1.40 5.40 6.70 8.90 11.01 13.12 15.23 17.34 19.45 21.56 23.67 25.78 27.89 30.00 32.11 34.22 36.33 38.44 40.55
2 1.00 1.70 5.00 6.70 8.70 10.74 12.78 14.82 16.86 18.90 20.94 22.98 25.02 27.06 29.10 31.14 33.18 35.22 37.26 39.30
3 1.00 1.40 4.90 6.80 8.75 10.84 12.93 15.02 17.11 19.20 21.29 23.38 25.47 27.56 29.65 31.74 33.83 35.92 38.01 40.10
4 1.00 1.50 5.20 6.70 8.80 10.88 12.96 15.04 17.12 19.20 21.28 23.36 25.44 27.52 29.60 31.68 33.76 35.84 37.92 40.00
5 1.00 1.40 4.95 6.75 8.73 10.81 12.89 14.97 17.05 19.13 21.21 23.29 25.37 27.45 29.53 31.61 33.69 35.77 37.85 39.93
6 1.00 1.40 4.88 6.76 8.70 10.78 12.85 14.93 17.00 19.08 21.16 23.23 25.31 27.38 29.46 31.54 33.61 35.69 37.76 39.84
7 1.00 1.50 4.81 6.77 8.68 10.74 12.80 14.86 16.92 18.99 21.05 23.11 25.17 27.23 29.30 31.36 33.42 35.48 37.54 39.61
8 1.00 1.40 4.74 6.78 8.65 10.72 12.79 14.85 16.92 18.99 21.06 23.13 25.19 27.26 29.33 31.40 33.47 35.53 37.60 39.67
9 1.00 1.50 4.67 6.79 8.63 10.68 12.73 14.79 16.84 18.90 20.95 23.00 25.06 27.11 29.17 31.22 33.27 35.33 37.38 39.44
10 1.00 1.60 4.60 6.80 8.60 10.64 12.68 14.72 16.76 18.80 20.84 22.88 24.92 26.96 29.00 31.04 33.08 35.12 37.16 39.20
11 1.00 1.49 4.53 6.81 8.58 10.62 12.67 14.72 16.76 18.81 20.86 22.90 24.95 27.00 29.04 31.09 33.14 35.18 37.23 39.28
12 1.00 1.50 4.46 6.82 8.55 10.59 12.63 14.68 16.72 18.76 20.80 22.85 24.89 26.93 28.97 31.02 33.06 35.10 37.14 39.19
13 1.00 1.50 4.39 6.83 8.53 10.56 12.60 14.64 16.68 18.72 20.75 22.79 24.83 26.87 28.91 30.95 32.98 35.02 37.06 39.10
14 1.00 1.50 4.32 6.84 8.50 10.53 12.57 14.60 16.64 18.67 20.70 22.74 24.77 26.81 28.84 30.87 32.91 34.94 36.98 39.01
15 1.00 1.50 4.25 6.85 8.48 10.50 12.53 14.56 16.59 18.62 20.65 22.68 24.71 26.74 28.77 30.80 32.83 34.86 36.89 38.92
16 1.00 1.51 4.18 6.86 8.45 10.48 12.50 14.53 16.55 18.58 20.60 22.63 24.65 26.68 28.70 30.73 32.76 34.78 36.81 38.83
17 1.00 1.51 4.11 6.87 8.43 10.45 12.47 14.49 16.51 18.53 20.55 22.57 24.59 26.62 28.64 30.66 32.68 34.70 36.72 38.74
18 1.00 1.51 4.04 6.88 8.40 10.42 12.43 14.45 16.47 18.48 20.50 22.52 24.54 26.55 28.57 30.59 32.60 34.62 36.64 38.65
19 1.00 1.51 3.97 6.89 8.38 10.39 12.40 14.41 16.43 18.44 20.45 22.46 24.48 26.49 28.50 30.52 32.53 34.54 36.55 38.57
20 1.00 1.52 3.90 6.90 8.35 10.36 12.37 14.38 16.38 18.39 20.40 22.41 24.42 26.43 28.43 30.44 32.45 34.46 36.47 38.48

Tab. 3. Performance evaluation of the cutting-planes method

m \ n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1.00 1.10 1.20 1.10 1.10 1.10 1.09 1.08 1.07 1.06 1.08 1.08 1.08 1.07 1.07 1.07 1.07 1.07 1.07 1.06
2 1.00 1.20 1.30 1.20 1.20 1.20 1.19 1.18 1.17 1.16 1.20 1.20 1.21 1.21 1.21 1.22 1.22 1.23 1.23 1.23
3 1.00 1.10 1.40 1.10 1.10 1.10 1.07 1.04 1.01 0.98 1.00 0.98 0.97 0.95 0.93 0.92 0.90 0.89 0.87 0.85
4 1.00 1.30 1.50 1.30 1.30 1.30 1.28 1.26 1.24 1.22 1.28 1.28 1.28 1.29 1.29 1.29 1.29 1.29 1.29 1.30
5 1.00 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.30 1.36 1.38 1.39 1.41 1.43 1.44 1.46 1.47 1.49 1.51
6 1.00 1.35 1.20 1.35 1.35 1.35 1.37 1.38 1.40 1.41 1.48 1.51 1.54 1.57 1.60 1.63 1.66 1.69 1.72 1.75
7 1.00 1.30 1.10 1.30 1.30 1.30 1.32 1.34 1.36 1.38 1.44 1.47 1.50 1.53 1.56 1.59 1.63 1.66 1.69 1.72
8 1.00 1.20 1.00 1.20 1.20 1.20 1.22 1.24 1.26 1.28 1.32 1.35 1.37 1.40 1.42 1.45 1.47 1.50 1.52 1.55
9 1.00 1.30 1.20 1.30 1.30 1.30 1.31 1.32 1.33 1.34 1.40 1.42 1.45 1.47 1.49 1.52 1.54 1.57 1.59 1.61
10 1.00 1.20 1.30 1.20 1.20 1.20 1.19 1.18 1.17 1.16 1.20 1.20 1.21 1.21 1.21 1.22 1.22 1.23 1.23 1.23
11 1.00 1.31 1.15 1.31 1.31 1.31 1.32 1.34 1.35 1.37 1.43 1.46 1.49 1.52 1.55 1.57 1.60 1.63 1.66 1.69
12 1.00 1.32 1.13 1.32 1.32 1.32 1.34 1.36 1.38 1.40 1.46 1.49 1.52 1.55 1.59 1.62 1.65 1.68 1.71 1.74
13 1.00 1.33 1.11 1.33 1.33 1.33 1.36 1.38 1.40 1.42 1.49 1.52 1.56 1.59 1.63 1.66 1.70 1.73 1.76 1.80
14 1.00 1.35 1.09 1.35 1.35 1.35 1.37 1.40 1.42 1.45 1.52 1.55 1.59 1.63 1.67 1.70 1.74 1.78 1.82 1.85
15 1.00 1.36 1.07 1.36 1.36 1.36 1.39 1.42 1.44 1.47 1.55 1.59 1.63 1.67 1.71 1.75 1.79 1.83 1.87 1.91
16 1.00 1.37 1.05 1.37 1.37 1.37 1.40 1.44 1.47 1.50 1.57 1.62 1.66 1.70 1.75 1.79 1.83 1.88 1.92 1.97
17 1.00 1.38 1.03 1.38 1.38 1.38 1.42 1.46 1.49 1.53 1.60 1.65 1.70 1.74 1.79 1.83 1.88 1.93 1.97 2.02
18 1.00 1.40 1.02 1.40 1.40 1.40 1.44 1.47 1.51 1.55 1.63 1.68 1.73 1.78 1.83 1.88 1.93 1.98 2.03 2.08
19 1.00 1.41 1.00 1.41 1.41 1.41 1.45 1.49 1.54 1.58 1.66 1.71 1.76 1.82 1.87 1.92 1.97 2.03 2.08 2.13
20 1.00 1.42 0.98 1.42 1.42 1.42 1.47 1.51 1.56 1.60 1.69 1.74 1.80 1.85 1.91 1.97 2.02 2.08 2.13 2.19

PERFORMANCE EVALUATION OF BASIC OPTIMIZATION METHODS. . . 31

Tab. 4. Comparison of performance of selected methods with: a) m

n
= 1, b) m

n
= 2, c) m

n
= 0.5

a)

n m BBP BB CP

1 1 1.00 1.00 1.00

2 2 1.40 1.70 1.20

3 3 2.30 4.90 1.40

4 4 4.10 6.70 1.30

5 5 4.95 8.73 1.30

6 6 6.19 10.78 1.35

7 7 7.24 12.80 1.32

8 8 9.37 14.85 1.24

9 9 8.68 16.84 1.33

10 10 9.45 18.80 1.16

11 11 12.12 20.86 1.43

12 12 13.53 22.85 1.49

13 13 15.00 24.83 1.56

14 14 16.51 26.81 1.63

15 15 18.07 28.77 1.71

16 16 19.69 30.73 1.79

17 17 21.36 32.68 1.88

18 18 23.07 34.62 1.98

19 19 24.84 36.55 2.08

20 20 25.30 36.47 2.19

b)

n m n+m BBP BB CP

1 2 3 1.00 1.00 1.00

2 4 6 1.50 1.50 1.30

3 6 9 3.00 4.88 1.35

4 8 12 4.50 6.78 1.20

5 10 15 4.70 8.60 1.23

6 12 18 6.61 10.59 1.32

7 14 21 8.10 12.57 1.37

8 16 24 9.69 14.53 1.44

9 18 27 11.39 16.47 1.51

10 20 30 12.74 18.39 1.60

c)

n m n+m BBP BB CP

2 1 3 1.40 1.40 1.10

4 2 6 2.90 6.70 1.20

6 3 9 5.12 10.84 1.10

8 4 12 8.18 15.04 1.26

10 5 15 10.20 19.13 1.30

12 6 18 12.73 23.23 1.51

14 7 21 14.73 27.23 1.53

16 8 24 19.29 31.40 1.45

18 9 27 17.41 35.33 1.57

20 10 30 22.31 39.20 1.51

Tab. 5. Comparison of performance of selected methods for the problem with a single constraint

n QKP LR

1 1.0 1.0

2 1.8 2.8

3 2.9 4.5

4 4.2 6.1

5 4.9 7.0

6 5.8 8.0

7 6.9 11.0

8 8.2 11.2

9 9.1 13.0

10 11.1 13.6

20 19.6 29.0

30 26.0 43.0

40 40.1 59.0

50 50.5 57.0

32 Ignaczak Michał, Dariusz Horla

0

5

10

15

20

25

30

35

0 2 4 6 8 10

n

no. of iters.
Branch and bound (penalty)

1.1600n − 1.3327

Branch and bound

2.0730n − 1.8527

Cutting planes

0.0549n + 1.0513

Fig. 2. Performance evaluation of selected methods with m

n
= 2

0

5

10

15

20

25

30

35

0 4 8 12 16 20

n

no. of iters.

Branch and bound

2.073n− 1.8527

Branch and bound (penalty)

1.16n− 1.3327

Cutting planes

0.0274n + 1.0513

Fig. 3. Performance evaluation of selected methods with m

n
= 0.5

Tables 1–5 show mean numbers of iterations vs. m and n for 10 problems solved for the

given dimension of the program. The graphical interplay between problem dimensions has

been presented in Figures 1–4.

As can be seen, introduction of the penalty function to branch and bound algorithm re-

duces mean burden expressed by the number of iterations, by approximately 25%. The cutting

planes method requires less iterations to solve given problems, nevertheless, it is to be borne

in mind that the time consumed to terminate is greater (LP problems solved along the way).

Figures suggest that the presented algorithms have linear computational complexity, with

specific L1 regression line equations presented in respectful Figures.

The cutting planes method is most appealing when solving problems, independently of

the ratio m : n, the branch and bound method with penalty function has the intermediate

performance, and the worst method turns out to be the basic branch and bound algorithm.

PERFORMANCE EVALUATION OF BASIC OPTIMIZATION METHODS. . . 33

0

10

20

30

40

50

60

70

0 10 20 30 40 50

n

no. of iters.
QKP

0.9846n + 0.0080

LR

1.2772n + 1.2262

Fig. 4. Performance evaluation of selected methods with a single constraint

8. SUMMARY

The paper aimed at comparing performance of different 0-1 polynomial programming

solvers taking number of constraints and number of decision variables into account. In the

case of every algorithm, a sample problem has been explicitly solved, with a general outline

of the algorithm presented, to enable the reader to fully understand the course of solution.

As a result of the presented comparison, the most-appealing method has been chosen,

namely cutting planes method for problems with multiple constraints, and, in the case of

single-constraint programs, the method dedicated for QKP problem, applied even for prob-

lems with large number of decision variables, reaching n = 50.

It is to be stressed that any more general comparison is impossible, since virtually all

algorithms solve problems with different structures.

REFERENCES

[1] J. Arora. Introduction to Optimum Design. Elsevier Academic Press, 2nd edition, 2004.

[2] D. Bertsimas, D. Iancu, and D. Katz. A general purpose local search algorithm for binary optimiza-

tion (manuscript). 2008.

[3] D. Granot and D. Granot. Generalized covering relaxation for 0-1 programs. Operations Research,

28(6):1442–1450, 1980.

[4] D. Li and S. Xiaoling. Nonlinear Integer Programming. USA, Springer, 2006.

[5] D. Pisinger, A. Rasmussen, and R. Sandvik. Solution of large-sized quadratic knapsack problems

through aggressive reduction. Technical Report 2004/11, University of Copenhagen, 2004.

[6] M. Syslo, N. Deo, and J. Kowalik. Algorytmy optymalizacji dyskretnej z programami w jezyku

Pascal. Wydawnictwo Naukowe PWN, Warszawa, 1995.

[7] P. Venkataraman. Applied Optimization with Matlab Programming. Wiley, 2009.

ABSTRACT

The paper considers performance issues of a class of iterative minimization methods of binary programs

with polynomial functions. Problem structures that assure superior performance of a specific method

have been stipulated with appropriate conclusions drawn.

34 Ignaczak Michał, Dariusz Horla

OCENA EFEKTYWNOŚCI METOD OPTYMALIZACJI DLA ZADAŃ PROGRAMOWANIA 0-1

Z FUNKCJAMI WIELOMIANOWYMI

Ignaczak Michał, Dariusz Horla

W artykule poruszono zagadnienie szybkości działania metod optymalizacji dla zadań z wielomianową

funckją celu i 0-1 zmiennymi decyzyjnymi. Wskazano przypadki, dla których konkretna metoda działa

szybciej niż pozostałe oraz wyciągnięto wnioski odnośnie takiego stanu rzeczy.

Received: 2016-10-05

Revised: 2016-12-17

Accepted: 2017-01-10

