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thermodynamics, electricity and magnetism. Its crowning was the book “The Basis of Balancing Mass,
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The English translation “The Balance Equations of Mass, Momentum, Energy and Entropy Based on
the Referential Principle” was done in 1975 and has not been published yet. The electronic version of
the book presented here is its first publication.

Prof. Rutkowski’s achievement was also establishing in ITE the Research Group for investigating
micropolar fluid,, magnetohydrodynamics, moving interfacial barrier and the theory of phase
transitions. In 1976-81 prof. Rutkowski took part in the program of the Polish-American Research
Collaboration of the ITE.

He lectured “The phenomenological modeling of physical processes” at the MPAE Department.

Prof. Rutkowski’s hobby were ships and sea battles. He published several articles on the subject and
among them “The Jutland Battle”. In the battle in 1916 close to Jutland Peninsula, British Grand Fleet
and German Hochseeflotte were engaged. The article was published in the lllustrated Daily Courier in
1936 in Warsaw. Prof. Rutkowski cooperated with Jane’s Fighting Ships publishing data on warships
of all navies around the world.

It is worth to mention the opinion @ of a well known scientist prof. J. Groszkowski who is famous for
decoding the control systems of V-2 rocket used by Nazi Germany during WW II:

“Jerzy Rutkowski is a type of the scientist who does not confine himself to a narrow technical
specialty but continuously broadens the range of his interests in the search for new applications of
solutions of formerly solved problems. His scientific achievements are characterized by the gradual
transition from the experimental tools of cognition via research methods to the mining of the heart of
investigated phenomena and theoretical generalizations. Such type of a scientist is needed for the
Polish science today when the qualitative steps of the new technology depend on the integration of
different scientific disciplines under the umbrella of technical physics”.

Prof. Jerzy Rutkowski died on 14.09.2012 in Warsaw.

(*) the opinion requested for professor title
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Preface

This book has been designed as a texibook on the phenomenolog-
ical theory of balance equations for extensive gquantvities in non-
relativistic conditions. The final goal of reasoning 1s to expose
universal methods of formulating (though not solving) the balance
equations, and to apply them to the balances of mass, momentum,
energy, and entropy. Though the present work touches many problems
of the continuum mechanics, thermodynamics, chemical kinetics, and
electromagnetics, it does not claim to be a textbook on physics.

Some physical phenomena and laws will be presented otherwise
than along traditional lines. Some formuilations may Seem CONvro-
versial when confronted with the orthodox habits of thinking, such
as the frequent use of particular and simplified models, consider-
ing stagnation and rest as a starting point for all the reasoning,
identifying any veloclvy with the velocity of a material body, Se-
parate treatment of thermomechanical and electromagnetic phenomena,
accepting historical inconSequences in a few formulations, and a
tendency to generalize sSome 0ld nosions which preserve thelr uni-
vocal meaning only in parvicular cases.

Tt seems Lo the present autvhor that there are three main featu-
res of his approach: a broad kinematic generalization of the bal-
ance referemces, the phenomenological concreteness of physical
guantiiies and processes, and a composite treatvment of thermomecha-
nical and electromagnetic phenomena, with the traditional bulkhead
of isolation completely removed.

Tn the classical thermodynamics Wwe find a conirary approach.
The balance references are modest, being limited o the closed and
open systems in sSpace, and to very, if nov infinitely, slow proc-
esses in time. Though the thermodynamic concepis of work and heat

are intended to be of widest generality, they display adegquacy ©o
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physically specific phenomena in trivial cases only, being not
helped by different and differemt but inconsistent definitions.
This is the cause why the present author remains sceptical about
the "universal®" formulation of the Pirst Law of Thermodynamics
(see Sec. 5.16). According %o his opinien, the only definite des~
cription of work is the scalar product of force and displacement
(Sec. 5.9), and the word "heat" remains univocal oaly when connec—
ted with a specific phenomenori (e.g. specific heat, Joule's heat,
atc.). The general concepts of work and heat are not necessary atb
all in the balance equabtions which contain terms representing the
gubstantiated conversions and vransfers of energy.

Tn the classical electromagnetics all the physical guantities
are specific at any arbitrary time-space variability of the fields,
but the consititutive eguations (phenomenclogical relations) and the
balance equations are formulated under a tacivy assumpiion of medium
at rest, thus the electromechanical energy convarsion cannot bve
revealed. Though the relativistic elecirodynamics does not restrict
any kinematic frames of reference, neverthneless it does not deal
with any integral balances in the deformahle regions.

I+ is supposed vo be obvious in thermodynamics and fluid mecha-
nics that the subsiance is the site of all exvensive quantities.
Such an assumption disregards ithe only convincing distribuvion mo-
del for the esleciromagnetic energy, which can be stored in #he
vacunm as well. This is why in the thermodynamics the crucial dis-
tinction beitween the extensive guantity and its sub-category named
+he substantial quentity becomes blurred. Another implication of
such a way of thinking is identification of amy body force with
its sub-category named the mass force. Bul the Conlomb and Lorentiz

forces are of charge and current nature afier all!
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The nonequilibrium thermodynamics 1s atv pains to treat all the
physical phenomena (including the electromagnetic ones) on a bro-
ader basis with the help of some unspecified potential energy
being connscted with locally time-constant potentials and poven—
+tial forces. Such a model remains true for the graviiy phenomenon
in terresirial conditions and for a very particular case of svavio-
nary electromagnevics. In the itime-varisble fields neither the el-
ectrodynamic force nor the electromagneivic energy preserve vheir
potential characver.

There is no need, however, 10 usSe any ancnymous physical guan-
tities in the specific balance equations, provided we had a deep-
er look into the essence of phenomenological model of mavter dis-
cussed in Chapter 2 of the present book. If the so-called apparenv
1imit (denoted by a new symbol 1imf) does exisv, then we are allo-
wed to classify the motions of substance and the force fields dis-
tinetly. It leads next to the specification of 4 and only 4 pheno-
menclogically defined kinds of enexgy.

Chapter 3 convains & brief sketch of the theory of kinematic
raferences for the balances. It deals with the hehaviour of physi-
cal Tields in arbitrarily moving geomevric objects called vhe

referential objects {(as they were named by the present author in

1962, see Bibliography 1, 2). In physical applications, an absir-
active referential region may take specific shape of the substan-
' +ial or componential region, the combusiion zone, etc., each of
them having definite geometric and physical properties.
Consequently, the well-known substantial derivative (frequenvly
used in the fluid mechanics) is a parvicular case of the referen-—
+tial derivative, and the theorems of Reynolds (concerning ihe
transport of substantial quantity), Helmholtz (on the fluid vor-
ticity), and Thomson (on the fluid velocivy circulation) are no-

thing else than applications of the Teibniz's refersntvial trans-—



>
formation group. At this stage, the so-called time-space Opera-
tors show their utility. One of them, the Helmholtizian, is alrea-
dy known &n the fluid mechanics. The remaining two have been named
the Ryenoldsian and the Thomsoniam by the present author.

The concept of Reynoldsian is of fundamental imporvance VG any
differentiazl balsnce equation. It is not the time—derivative butv
the Reynoldsian that describes the rate of change of an extensive
quantity at a moving poinv.

The scope of application of the referential theory outgrows the
problems of balancing. It covers the general field theory, as well
as 211 the branches of phenomenological physics.

The referential Strouhal number shows its usefulness as a crit-
erion for checking ithe fields whether they can be considered as
guasi-stationary or guasi-homogenous (Sec. 3.9). The general laws
ruling the switch-cver of kinematic references allow very simple
deduction of equations for the relative flow, and for the motion
of rocket (see Bxs. 5.13, 14 in 3ec. 5.8). Lastly, in Sec. 3,40
(Ex. %.20), the author has explained how the relation between the
electric field intensity and the velocity of reference point can
be obtained by means of the Leibnig-Reynolds referential transfor-
mation, without use of the relativistic Iorenvz transformation.

Chapter 4 begins with the discussion of the basic balance con-

cepts of storage, production, and transfer of an extensive guantci-~

ty. It has been emphasized that the rate of change of storage, as
a derivatvive, and vhe tramsfer, as a process subjected to the cap-
ture effect (Bg. £4.20), are of referential cheracter.

When discussing ihe concept of the transfer-flux density, hit-
herto explained by particular examples of the mass and momenvum
transport, the author used the model of directional transmission,
being adopted from photometry. Owing <vo it, the simple algebraic

transformation (4.1%b) mekes it easier to understand why the
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transfer—-flux density of a vectorial extensive guantitvy must be
a second-rank tensor.

Oon account of unification of the tramsfer terms in all the spe-
cific balsnces and phenomenclogical relatvions, the present author
has followed Bird and others in using the stress sign convention
opposed tc the traditional one (Sec. 4.8). This apparently shocking
replacement (as well as using vhe viscosity coefficient twice as
large as the conventional one, Sec. 5.6) is but a correction of
historical inconsequence.

So far, too little attention has been drawn to the notions of
storage, production, and transfer. The ignorance of mentioned terms
brings about, in traditional taxtbooks of thermodynamics, half-page
verbal descriptions of the Second Law of Thermodynamics, though it
is possible to replace them by a one-line universal mathemasvical
inequality (Eg. 7.23). The indistinciion peiween storage and prod-
zetion in the chemical kinetics leads to erroneous (in the general
case) presenvatvion of “he reaction rate as a total derivasive of
concentration (Sec. 6.1), and tc wordy descripiions of the differ-
ences beitween the kinetic and diffusive combustiions, while Tthey
can be replaced with two short formulae (6.20), It is due %0 the
ignorance of the Lelbniz refereniial transformations that in some
works we find the balance equatiions of component's momencum with
false physical interpretation (Sec. €6.8).

As mentioned above, it is very common %o place the equalitcy
sign between the extensive and subsitantial quantity. According to
the present author's classification, bthe substantial and componen-—
tial gquantities are buv particular cases of an extensive quantity.
For each of those guantities the author has set together the defi-
nitions of various categories of densities, trapnsformations of the
Reynoldsisns, and classifications of different kinds of itransfer

(e.g. the convective, non-conveciive, diffusive, non-diffusive).
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The subsitantial character of reference in all the phenomeno-
logical relations (which describe purely non-convectlve transfer)
has been emphasized. For example the traditional denotation of
Ohm's law is, generally, not true, keeping its validity only in

the particular case of resting substance (Sec. 4.14).

The present author has endeavoured to emphasize the practical
importance of the theorem on equivalence of balances (Sec. 4.10).
Universal recipes =2llow direct change from one form of a balance
equation to another, according to the switch-over of the kinemavic
reference, for any physically specified extensive gquantivy, with
no need of arduous mathematical transformations in each individual
case. It would be impossible to work out the recipes mentioned
without using the concepts of the referential velocity, referenti-
2l derivative, and the Heynoldslan.

This kind of approach to the balance tvhecry has been elaboraced
during 1962-1972, and is presented herein for the first time as a
systematic whole. The theory is consistent to the effect that the-
re are various ways leading to the same mathematical formulavions.
Tor example it is possible to deduce Egs.(4.20) for the capture
effect by means of geometric and kinematic reasoning, as well as
with the help of a purely analytical method (Ex. 4.3 in Sec. 4.10).

In the balances of momentum, energy, and entropy, the present
author takes the eleciromagnetic phenomena into fall account, wivh-
cut imposing any restrictions save for the assumption of the non-
relativisiic conditions. The electromagnetic terms in the balances
mentioned are fully specified. They originatve from Maxwell's equ-—
ations and the so-called improved balance of electromagnetic ener-
gy (Sec. 4.15), deduced by the present author in 1970. This equa-
tion, valid for any kind of medium, reveals the effecis of the
hysteresis and electromechanical conversion. It also discerns the
energy transfer'by means of conduction of current and radiation of

wavedb.
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Since all the phenomenologically crucial effects are specifi-
ed, it is possible to make a synthetic review of various kinds of
the energy conversion and transfer (Sec. T7.2), and to examine the
energy balance of a universal electro-roto-flow sysiem (Sec. T.5).
Such a discussion seems purposeful in view of the prospective dev-
elopment of the new sources of energy and propulsion.

The applications of the general balance Theory contained in this
book are not complete. There was no space available to consider the
balances of the electromegnetic momentum and the inirinsic angular
momentum. For the same reason, the intrinsic rotation in the polar
fluid could not be taken into account in the balances of momentum,
kinetic energy, and electromagnetiic energy. Chapier 6 on the bal-
ances of componential quantities is abridged. The presentv author's
balance equation (6.56) for the componential kinevic energy leads
to the balance of the diffusion energy, which has deliberately been
deleted for economy of space. The theory of balances for the dis-~
continuisvy surfaces (e.g. for the detonation wavefront) has been
omitted completely~

Despite the customary way, the chapter on the mathematical sym-—
bols, definitions and relations has been placed av the beginning
of the book. This is because all the exposition 18 written by means
of =n unconventional bar system notation for the vectors and ten-
sors, supplemented with the arrow symbols of referentiality. ITus
simple rules should be acguired by the reader before studying vhe
virtual contents of the book.

The choice of notation resulied from long consideravions. In &
work dealing with numerous quantities of every branch of physics,
nearly all the resources of the Roman and Greek alphabetvs are con-
sumed for ihe kernel and suffix letters. In such circumstances the
use of the customary index notation for the vectors and tensors

would prove troublesome.
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On the other hand, the print (Gibbs') notation, with boldface
letters, is very stirenuous as applied to the "chalk and blackbo-
ard® practice, handwriting, and adjusting a typescript.

Tn the mentioned system, the veciors and itensors are hardly
distinguishable each from the ovher, and the denctation of trans-

poses and transpositional operators is not as simple as in the

13

bar system. None of the index and print notations reveals the ten-—
sorial rank of a product, Or qifferential operator, av first sight.

There was alsc another problem to solve. Since the balances may
have references to differently moving poincs and regions, it was
reguired to introduce special symbols for the referentiality, vo-
+a] derivatives of various types, and the time-sSpace OPeratorsS.

The use of different letters or suffices for the referential
and non-referential quantities would be wasting the nearly exhaus-—
ted contents of both alphabets. It would be also an irratvional
fortuity to replace 4 with D, or to put dods or accenv S5igns, in
order to mske the substantial and componential derivatives distin-
guishable.

For =1l ithose reasons an adaptatvion of either of the most pop-
wlar novations would creatve an inconsequent and confused hybrid
system. To avoid this, the present suthor has elaborated (1959-
£6) the bar system novailon, principally based on a standard ty-—
pewriter keyboard, and perfectly fit %o the nchalk and blackboard®
use.

In his own system, the author makes use of the prefixes as sym-
hols for all the differential operators. In the denotations of old
operators, sSuch as the divergence, vae prefixes are the tradition-
al abbreviaiions of Latin words (for thatv reason +he author Ifavour:
rot instead of the familiar but nﬂn_Latin,ﬁEE})‘ The new time-Spac

operators, such as the Reynoldsian, are denoted with prefixes ori-

41

ginatving from sciensists' names. The anihor does not Tfavour vae
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nabla symbol, since it is non-applicable to the vranspositional
operators (see Sec. 1.5).

The principle of the proper numbexr of the integral signs, as
well as of the proper infinitesimality order (Sec. 1.4), has been
strictly observed. This is nov a pedantry but é necessity, espec-—
ially in Secs. 3.12, 13, where we are dealing with infinitesimally
thin slices and infinitesimally narrow siripes. And, as far as the
volume is concerned, the thermodynamic AV is something different
from d-V appearing in many integrals (Sec. 5.14).

The present textbook has resulted from 4 years of lectures of
the subject "Principles of Balance Bguations® at the Warsaw Tech-
nical University. Practical teaching induced The auvhor To save
some space in the bhook by transferring several proofs, deductions,
transformations, and applications to 70 exercises. dave for The
easiest ones, they are supplied with the indispensable instrucwions

and rasults.
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1. Basic Mathematical Symbols, Definitions and Relations

1.1. Notvation

The bar systenm notation for veciors and tensors has been used

in the present exposition for the easiness of implementation in a
standard typescript, as well as ;n the practice of "chalk and
blackboard”.

The tensor rank corresponds to the number of bars over a letter
symbol {a scalar - no bar, a vecvor - gingle bar, a tensor - double
bar). In the notation of a product all the factors are covered with
as many bars as the tenmsorial rank of the maltiplication result is.
Only the scalar product is deprived of the common bar but enclosed
within parenthbeses (which may be also used to enclose the terms
being added or multiplied in an ordinary way, provided it does mnot
bring confusion). The cross % between the factors indicates the
alternating enticommutabllity of the product, the dotv between the
upper bars of the facviors marks the iranspositional anticommutabi-
lity. The denotation of a differential operator (gradieni, diver-
gence, curl, Reynoldsian, Helmholtzian, Thomsonisn) contains as
many bars over the prefix as the tensorial rank of the result of
operavion is.

t more imporitani definitions the symbols in the usual print
(Gibbs') notation asnd the index notation will be given for compar-—
ative purposes.

The print notation (abbreviation: [prinﬁl) distinguishes ten-—

ittt

sors of various ranks by different characiers (regular for a scal-

ar, boldface for =2 vector, narrow boldface for a tensor). The sign
beitween the factors indicates the type of product and the reduci-~

ion of tensorial rank of the multiplication result with respect

4o +the sum of the factor ranks: the cross X (reduction by 1), the

dot ¢ (by 2), and the double dot § (by 4). The lack of any sign
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means preservation of tensorial rank. The differential operators
are denoted by the assoclation of symbolic wvector nabla V (with
Cariesian components /%, »MRy, d/=z) with an appropriaie mulvi-

plicavion sign.

In the index notation (abbreviation: [index|) the tensor of
any rank (including the product and differential operaior) is
written in form of its symbolie component, distinguished by a
group of the coordinate indices (i, j, k, ...) at the kernel let-
ter or letters. The non-repeated (free) coordinate indices iden~
tify the symbolic component, the number of them being equal ©o
the %tensor rank. The indices repeated in pairs (dummy indices)
symbolize the shortened notation of a sum according to Einstelin's

convention. In the notation of products and differential operators

some suxiliary operators are used: the Kronecker delva 5 5 (equal
rie—O—when—2—ameng—S—ingices—are—identicat;—and to—i—for—3—gifferenti

to 0 for i # j, and to 1 for i = j), and the alternating triadic
eijk (equal to O when 2 among 3 indices are identical, and to £ 1
for 3 different indices, at their sequence +he same or opposite as
witlh-respeet—sel the cyclic order of coordinates, respeciively).
The differential operatoré may be denoted with the comma system
(after the last index of +he differentiated expression we put a
comma znd the index of the differentiation variable).

At the definitions of vectors, tensors, their products and dif-
ferential operators, the matrices of thelr specific components
will be given by way of example of the Cartesisn coordinate system
X, ¥, Z, in the ordinary three-dimensional space.

The prefix A indicates an interval or increment, and b a small
interval or increment. In order to emphasize that some guantiity

is a function of quantity [i , the latier will be enclosed with

the angle bracketis: o{(p>.
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1.2. Scalars, Vectors, and Tensors

(1.1) A scalar (zeroth rank tensor) has 30 = 1 component <

A vector (first Al
(2.2) { rank tensor) has A= Ay , A\[}rinﬁ], Ay [indexl
31 = 3 components A,

Any vecwvor L is the product of ivs scalarx magnitude A and its

unit vector TA (having the dimensionless magnitude of 1):
(1.3) =1, 4

A self-contained unit vector points sonme direction (with the

sense included) in space.

A tensor (of the a

\ xx? axy’ axzi
(1.4) { second rank) has | 3= I - ayZé, &Qprintj, aij[;ndex]

32 = 9 components 2,0 azy, azzl

: a i1,0,0 - {(the

The unlul F 37! oo .

(1.5a8) . 7 1= “O 1 Ol { {print 5. . Vindex i?ronecker
tensorxr 1020;1 ! L____J L (,___l Delta)

. ] "Ny 0, Ol

he sphericall x _
(1.50) tensor ,} Ixx =40, =, Ol

(1.6) If the tensors 2 and B have the components aij = bji Then
one of the tensors is the transpose (symbol: 7 } of the

other, snd vice versa: a = ﬁ: 5 = 2.

(1.72) If the components aij = + aji then the tensor 3 is symmetri
(1.7b) If the components a;; = — 243 then the tensor a is anti-
symmetric.
(1.8a) The symmetric part 3> of tensor a:
=s _ 1,= 1 .
a” = E(a + i), -Q-(aij N aj.) [1ndexq

i,
(1.8b) The antisymmetric part B8 of tensor &:

-1 -9, (- ayy) lnex]
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(1.9) The decomposition of a tensor into symmeiric and antisym-—

metric part:
s

ol

E + B0, a,. = slagy + aji) + %(aij - aji) lindex |
g s =a
= a

il

(1.10a) The symmeiry symbol for a %temsor: a = 2% (since a°> = 0).
(1.10b) The antisymmeiry symbol for a tensor: a2 = 3> (since 3° = 0).

(1.11a) The scalar or the trace of a tensor:

Tr a = Bey ¥ gy T Bypo a5 [}ndexl
Tr 2 =1Tr 2 = Tr &, Tr 2> = 0
(1.11b) Tr I = 3, Tr(Ted) = 3

1
Wﬁ(azy - ayz)

( ) The (pseudo—)} _ 1( ) 1( ) [
1.12 vector of Vec a = Ji=(a - a a.. = & . indegj
o tomsor . o\ xy, zZX » TVEIA ij i

1

ﬁ(ayx - axy)

Note: in a more freguent use is another definivion, viz.
%(aij - aji) [&ndei}, corresponding to -~ Vec 2 in the bar

system notation.

(1.13a) The deviator {or deviatorial part) 34 of a tensor a:
d=8-3m3, zda - 38, Tr 3% = 0

(1.1%b) The decomposition of a tensor into spherical, deviatorial-

~symmetric and antisymmetiric part: a = % Tr 2 + a  + a

1.3. The Products of Vectors and Tensors

(1.14a) The scalar product of vectors % and B (a scalar):
(F) = (FE) = AB, +AB +4B8, AB Lprint-_\ , 4B, [index]
(1.14b) The square of vector % (a scalar): (A &) = (IZ) = A2

(1.15a) The wvector product of vecior T by vector B (a vector):

L  {IAB, - .3y ‘
EXE = - BxE = A B - AB I, AXB [print], € 58485 (index |
AB - ABL

J e

(1.15b) AXE =0
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(1.16a) The dyadic product of vecior X by vector B (a tensor):

AXBX’ Ax?y’ AXBZ

B=FK=|aB, al,adl|, AB fprint], A3, [index |
sz’ Asz’ AZBZ
T LB = (X B), VecI"TB'-—--%-KX'E
(1.16b) The dyadic of vector & (a temsor): X A
Tr I = (E%) = B2, Voo I'E = 0

(1.17a) The scalar product of tensors a and b (a scalar):
(2 5) = (F 3) =
axxbxx+axybxy+axszg+ayxbyx+ayybyy+ayzbyz+aszzx+azybzy+azz
Lindex |

bzz’

aijbij
Nove: in a more frequent use is another definition, viz.

853Dy E;nde%j, corresponding o M:b (print} and (2 ﬁ)

in ‘the bar system notation; if 5 = B°, and conseguently
T =%, then (35) = (8 ).
(1.17b) The square of tensor 2 (a scalar): (& 8) = (32)
(1.17¢) (I 8) = ¢ 3, (1.178) (I D) = (3% = I=73
(1.17e) (2 B) = (E° %), provided 3 = 3°, since (3~ §%) = 0.

(1.17¢) (39%3) = (%%2), since (T 89%) = mr 5%° = 0, (§%%5®) = 0.

(1.18a) The affinor product of vector & by *tensor & {(a vector):

— — Axaxx + Ayayx + AzazX . .
Aa=248A-= Axaxy + Ayayy + Azazy s £\WL[?Ilnul, Aiaij E%ndex]
A_a + A_sa + A a_ i

x" Xz vy yz zzz ||

(1.18b) The affinor product of itensor 2 by vector & (a vector):

|

o
=]
I

The vectors X, '3, a A have, in general, different directions

(see Fig. 4.6 in Sec. 4.7).
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(1.18¢) £'2 = 8%, provided z = 3°, & = g

(1.18d) The identity product of a vector: A 1 = 1A = 4
(1.192) The mixed product of 3 vectors: (E ExT) = (EXB T)
(1.19b) (A Ax3B) =0

(1.20a) (X B)T = A BT, (1.200) E(ET) =%X'E ¢

(1.21) (E'58) = (X 5'8) = (B 3)

1.4. The Geometric and Field Quantities

The position wvector _ *
(1.22) 4 of a point in ordinary r =\\y
z

3—-dimensional space

(1.2%2) A line 1 consisis of infinitesimal elements 4l.
. e me o sn s Do - 2
(1.23b) A surface s consists of infinitesimal elements d™s = 1Sd S,
where 1. is the unit vector (normal to the surface), and

dgs is

ck U

he magnitude (scalar area).

(1.2%¢c) The nonparallel elaments dTi and dig form a surface
element d°5 = d'11X&T2.

(1.23%334) 4 spatvial region V consists of infinitesimal cells of vol-
ume 4V = (a1 d2§), formed by the nonparallel vector ele-

ments dI and 4°S.

An upper index at d indicates the infinitesimality order of
geometric element, i.e. the number of ivs infinitesimal dimension-
ality. For the sake of convenience the index 1 will be omitted,
e.g. we write d1 instead of a¥T. The area of an infinitesimally
narrow stripe (see Fig. 3.7 in Sec. 3.13%) is dls = ds. The volume
of an infinitesimally thin slice (see Pig. 3.6 in Sec., 3.12) is

dl

vV = dv.
The iniegral over a geometric object gives non-infinitesimal
value, provided the multiplicity of integration (of the sign g)

is egual to the infinitesimality order of geometric elemenv:
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Integral along

(1.24a) ;;g;a%iiéong} Ji..dI, (1.24b) closed line, }?...dI
1 oY contour

1
Integral
Invegral _ = _
(1.24c) over oPen} L( ...d°5, (1.244) O‘S'gf;igsed}# ...4%5
— . 1
surface ) g or shell s

(1.24e) Integral over spatial rsgion 'HI.,.d3V
v

The expressions for specific components of vectvors and tensors
are based on the principles of:

(1) right-handed orienvavion between amny open surface s and
its constour 1,

(2) outward orientation of any shell s with respect to enclosed
spatial region V.

A field quantity (e.g. the temperature, or the fluid veloclity)
is function of its location defined by the position vector r, and
time . It has a spatial distribubtion and a time process, SO iv
forms a time-space field. We shall assume this field to be contin-
uous and differentisble always and everywhere, unless an appropri-
ate provision is made.

A non-field guantity can be located in a single selecved point
or region (ireated as an entirety), mobile or immobille. It has no
spatial distribution and is a funcition of time only (e.g. the
velocity of an isolated material point, ihe relative position of
“wo selected points of a deforming elasvic body).

To +the non-field quantities belong vhe integral quantities, 1l.e.
the integrals of field quantities over mobile or immobile geomet-
rig objects. As a result of spatial integration, the described
type of guantity remains a function of time only (e.g. “he momen-
tum of a definite body).

We assume that the spatial differentiation and integration of
the field gquantities is %taking place at a "frozen" time insvant

e

bt = consv.



1.5, Differential Operators of the Space Fields

(1.25a) of scalar o L

The gradient
(a vector)

V0 ¥

v [print], X [ index]

The gradient) ___ 1 =5=7=
{1.25b) of vactor & grad A = lim.v %{d A
(a tensor) V=0 7 -
VA [pl‘ln.uj , Al,j J.ndex]

(1.25¢) of vector &

The divergence _
div A
(a scalar)

VoA [print), 4, ; lindex]

The divergence)

(1.25d) of tensor @ (div z = linm % i’s'3
(a vector) V0 é
Q. {ﬂprint:\, 855 4 Linde:c]
The curl,
or rotation T T - 14m & 2=
(1.25e) of vector L ( Tov - %,i‘lg VS@‘G’ SXA

{(a vector) S

VXA [print], €5 51y 1

Brad = 1mv#d2§ & =

22

2
AX
AW
DY
éci
D2
be bAy bAZ
AX T A ? ax
MX .bAy aAZ
¥ °dy C ey
24, aAy BAZ\
az * 22 7 a2z
BAK + h%y‘+ %Az
ax vy az
baxx . anX . aazx
_X 2y A2
Bax Aa éaz
3% T >y Y
da 3a da
Xz Y2 ZZ
sx DY * 3z
BAZ _ AA
Sy dZ
-an _ aAz
T DX
A4 _ BAx
ax Y

(1.25f) The symbol of curl (or rosaition) of tensor a (a tensor):

cHi
i

o

Hil

(its definitional formula contains an integrated alternat-—

ing-type tvensor product of vector d2§ by tensor a)

The transpositional operators:
(1.26a) The antigradient of vector:

(1.26b) The antidivergence of iensor:

(1.26c) The anticurl of tensor: 8ro

SR T - 553 X
=17 %

= o

= ~ rot a



(1.27) gradient

The affinox’
2 vector)

B:VA [prini], BiAs ;3 [in

Transformations of differentia

. DA
dexj B. —2 + B —=Z + B el
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| DAL . BAXF[
By By 55 + By 55
— dA A 24|
BLE = By 53 + By 55 + B, Séx

DA dA

"X ™x Yy oy Z Az

1l operators:

(1.282) grad(A B) = A'52¥24 B + T =srad &

(1.28b) Erad(E°) = 2 E'357aq E, (1.28c) zrad §t= - 7%5 zrad o
(1.29a) Tr grad & = (I EFad &) = div &

(1.29%) Vec grad K = - 5 o1 X

(1.30a) div(id) = x div & + (& Zrad &)

(1.30%) div 3% = (E Tiv 8) + (& Erad &)

(1.30¢) div ExB = (B zo% &) - (R 70% B), (1.304) div 7ot & = O
(1.31a) TAv(xT) = 5788 v, (1.31b) A '8 = 3 div & + L1'z7ad B
(1.31¢) IV ETal K = 3(3Tv E753 I + grad aiv X)

(1.314) dqiv ¥0% & = 0O

(1.322) 10t AXE =B'grad £ - A'zrad B + & div B - E div &

(1.32b) ot grad & = 0, (1.3%32¢) Yot zos A

rotv div grad A =

(1.324)

= grad div K - div grad &

div grad rov A

(1.33)

1.6. Integral Transformations of

B (38754 & - grad L) = BEXTo

i

ch

the Space Fields

The Gauss-Green-Cstrogradsky theorem (abbreviation: GG0O):

ﬂlev iy dBV,

The Stokes theorem:

f}ﬁ(d‘f ) = ﬁ

1

(1.5@)% (3°5 I)
s

(1.35)

(1. 34b)5§> ’s"%

Jﬂdlv a d3V

(d2§ T0t A)
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The integral along an open line beginning and ending at points
1 and 2, respectively (at t = const, so 41 being not the displace-
ment!):
2 2
(1.362) [ (4T ZFad o) = &y ~ o, (1.36v) | aT'EFEA & = Ky - &
1 1

Small field increments ox and $X along 2 small line segment &1:

(1.37a) Sx= (3T grad ), (1.37b) $E = $1°B¥ad X

2. Phenomenological Model of Structure and Processes of Matter

gy

2.1. Phenomenological Model Versus Microphysical Reality

The kind of mathematical description of physical phenomena dep-
ends on the assumed model of strumture of matter. In reality, the
microstructure of substance is of grain nature (molecules, atoms,
elementary particles), and the physical processes are of quantum
character (collisions, electron transitions, etc.). As far as the
technology is concerned, however, only the phenomenological results
of physical processes play any role. They reveal in a macrosScopic
scale which blurs all the individual properties of the grains, as
well as the very grain-structure of matver.

Within the time-space intervals proper o the tiniest and most
rapidly-zcting elements of technical devices the grains of micro-
structure and the quanta of microprocesses are sc vastly numerous
that the matter can be regarded as a contvinuum with sufficient
accuracy. In vhis approach thes matier forms the spatrially-contin-
uous medium being subjecved to itime-continuous processes.

There is, however, an essential distinction between the mathem-
atical and the phenomenologically-physical definition of contvinui-
ty. The first one is based on the concept of limit at the incremen-
ts of funetion and variadble both tending vo zero. The second one

is conditioned by the existence of the apparent limit (symbolized
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by limf = limes fictus) comnected with +he finite intervals of the

phenomenological averaging 0vVer time and space. The intervals men-—
tioned should be sufficiently small to preserve the macrosScopic
changes but large enough %o blur the microscopic variabllity due
to the grain and gquantum structure of matier.

Consider the average value of a physical guantity calculated
either as a sum of disgrete portions, Oor as an integral, in both
cases divided by the corresponding time—interval or spatial inver-—
val (regarded as the integration interval in the second case). In
+he course of changing the denominator of the quotient we shall
obtain different resultis of averaging. At large intervals it will
be due o variability of considered guaniiiy in the macroscopic
scale of time or space. At sufficiently diminishing intervals, the
average value will tend to jump more and more because of the micro-
variability of fields among the grains of substance, the discrete
character of the structurs of matter, and the stochastic nature of
the guantum phenomena.

In many cases, however, the average value remains constant with-
in a wide range of changes in the averaging interval, and it forms
an apparent limit which distincily divides the domains of the mac-
roscopic and the microscoplc scale.

The existence of an apparent limit allows us to consider the
guantity to bve phenomenologically continuous in the macroscoplc
scale. The values of the macroscopic physical fields are ascribed
to points, though they should be allocated to very small time-spa-
ce intervals in reality. The finite increments of the field gquan-
tities divided by small incremenis of time, O of the position
coordinate, are considered as the time—derivatives, or the differ-
entvial operators, respeciively.

Since the gquanitities mentioned can be subjected to the same

e

treatment as the mathematically continmous funciions, the descr-—
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iption of physical phenomena is made considerably easier. If only
the apparent limit does exist, this idealization does not imply

any practical errors.

2.2. The Criteria for Existence of the Apparent Limit

The criteria for existence of the apparent limit may be express-
ed in terms of times and dimensions characteristic of the macro-
scopic field on one hand, and of the microsiructure and microproc-—

esses of mat®er on the other.

The macroscopic variability of the field is described by the

characseristic time ® of increase of the process, and the charac-

terigstic linear dimension L of the spatial distribution.

Consider a macroscopic time-space field of some scalar guantkty
o¢. It is shown in Fig. 2.1 in two shapes: as a time—process o(<t)
at a fixed position T = comst, and as a distribution along some
selected position variable, e.g.tx(x), at a frozen instant t =
const. We look for the point of the biggest slope of each cuxrve
and compute the largest absolute value of the derivative
!buyﬁt[max or Tbuy}x\max. Then we determine the difference |Ao( ]
between the maximum and minimum value of function o in this part-
icular interval of the monotonic growth or decrease of < which
contains the biggest slope. The characteristic vime ©@ and dimen-
sion. L are defined as

(A
o/3% t max

(2.12) ® = m}g‘g‘ >0, (2.) L=y S0

| max

Fig. 2.1 shows the graphical way of determination of & and L
as +the horizontal side of a right triangle, in which the hypoten-
use is tangent to the curve at the point of bizzest slope. For
several functions it is quite easy to determine & and L by means
of analytical reasoning, though in some cases the problem cannct

be solved im any way. Since it is sufficient %o evaluate the orde:
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Fig.2.1l. Graphic determination of:
a) the characteristic time

b

laa!
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e | 3% lmax
x_;
—‘.E monotornic
decrease

8 for transient increase
b)the characteristic linear dimension L of
the macroscopic field quantity « distribution
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of @ and T (but not their exact values), we use the intuition
very often. If no other way is available, we take the characier—
istic linear dimension of considered system for L.
The time-space microvariability is determined by the discrete

quentities: the characteristic microvime T (e.g. the averaged

ylinear )
intra—collision time), and the characterisiictmicrodimension A

(e.g. the averaged free path of molecules, the intra-atomic dist-—
ance) .
If the phenomenological intsrvals of averaging in time it and

in linear dimension 51 fulfil the inequalities
(2.22) T &L O, (2.20) A& 81K

then the considered physical quantity can be macroscopically des-—
cribed by means of a convinuous time-space field. In such circum-
stances the intervals bt and §1 secure the disappearance of the
discreteness of mattier, the macrovariability being still preserved.

The inequalities (2.2) are matvisfied in most problems of pheno-
menological physics and technology but not in all of them. For
example a considerably rarefied gas cannot be treated as a conuin-
wous medium as long as the mean free path of the molecules is of
the same order as the dimensions of the vessel.

There are cases when the time-sSpace field remains phenomenolog-
ically continuous with the exception of isolated instants and pla-
ces in which conditions (2.2) are nov fulfilled. In such cases we
consider the field to be phenomenclogically discontinuous av some
distinect suxrfaces {(2.g. the free surface petween the liguid and
the gas), and at definite instants (e.g. the tramsition of the

shock wave through a fixed point).

2.3, Averaging the Densities of Discrete Sets

Amo the extensive quantities, i.e. the uansities seaved in
ex _ s Qq

a geometric region, we distinguish the substantial guantities
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allocated to all the grains of substance, and the componential

quantities assigned to the grains of - definite components of a

mixture (the classification of quanbities will be discussed in
detail in Secs. 4.1, 5.2, 6.5). The substantial or componentvial
guantity contained within volume V with n grains is a sum of dis-
crete set of n portions allocated to individual grains.
Particularly, if m, is the mass of the y-th grain taken from
the set of all grains, and My is the mass of the iv-th grain of
i-th component in the mixture, then the totval mass m of all the

grains, and the toval mass m. of all the i-th grains, are, respec-

tively:

n g

5 v j—ﬁ
(2'38') m = {9! mu ] (2-3b) mi = = miv

Dividing the substantial guantity (as well as the componenvial
one) contained within a region by the volume V or mass m, we ohiain
the average volume—density or mass-—density, respectively. The
quotient of i-th componeniial quantity by mass m. gives the aver-
age partial density.

The apparent limits of the demsities mentioned become the field
quantities in the macroscopic meaning. We need only %o take into
consideration that the linear interval of phenomenclogical averag-
ing Sl corresponds to a small volume é?v (of the order of 613), a
small mass §3m of all the grains, and a small mass SBmi of grains
of i-th species. Therefore we are allowed to apply the symbol limf

to any gquotient which satisfies the condition (2.2b) indirectly:

o Ty
(2.4a) The volume-—density = lim A‘%”' = limf éﬁ%Ll
N
- Y
(2.4b) The mass~density = 1im E:;" = 1imf LJ&"
m%gm
5o Y ..
(2.4c¢) The partial density = lim ““é" = 1limf L“ﬁ_
i i

n P,
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For example the (volume-) densities of total mass ¢ , and of

mass of i-th species in the mixture Qi, are the respective limfs:
(2.5a) 9 = limf Zgiﬁ_ s (2.5b) Qi = 1imf“§;$£1

Pig. 2.2 shows how the field density g 1s obtained from the ave-
rage density Z m, /V, in particular case of a gas flow along the
conical channel (Fig. a). The averaging region 1s placed in the
axis of chapmmel. It has the shape of rectangular parallelepiped
of constan®t cross-section area 312, variable length x, and volume
V= %lgx. Phe average density depends on the position and volume
of the region. A large value of X, of the same order as the char-—
acteristic dimension I, does not allow o reveal the macroscopic
variability of ¢ (Fig. b shows the average densities as the heights
of steps). A small value of X, of the same order as the free path
of molecules’% , or smaller (possible to be exhibited with the help
of the logarithmic scale only, Fig. c¢), reveals the influence of
the discreite structure of matter. It is manifested in vhe random
jumps, according as the region is empity or comvains some few grains
In the intermediate interval of x (of the width of a few decades),

the average densiiy reaches iils apparens limit equal o ¢.

2.4. The Barycentric and Componential Velocities
—_p y M

Assume that each y-ih grain with mass mv has a definite position
T, =nd velocily Ey at the instant given. The discrete set of grains
in some region may be considered as a system with mass m determined
by Eq.(2.3a), and momentum equal %o z: mﬁﬁv. Both quantities are
located at the insitantaneous centre of sysiem's mass, having the

position zjnNE$,®L The apparent limit of the mass-densiiy (BEg.

2.4b) of momentum is called the barycentric velocity, or velocity
~= e i bt et

of substance u:

228y

(2.6a) T = limf =
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Fig. 2.2, Averaging mass density of gas flowing along the cone~
shaped channel
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Next, consider the same region but taking into account the
grains of i~th species only, with masses m,, and velocities Eiﬁ‘
This time the set of grains will have mass m; determined by Eg.
(2.3b), and momentum equal %o Z miﬁaj.v’ both guantities being
located at the instantaneous cenire of componential mass. The
apparent limit of the partial densivy (Eg. 2.4c) of component's

momentum is called the componential velocity ﬁi:

M. .
(2.6b) T, = limf Z‘-—'-——-\’—-—";_ul"
i

The velocities @ and Ei are field quantities which determine
the motion of local centres of mass. In the fluid mechamics, u
and Ei ars meant as the velocities of a very small element of flu-
id or fluid's component, respectively. In realivy, such an elements
does not coniain the same grains all the time buv it exchanges
them with the neighbouring elements, because of the disordered
motioﬁ of molecules. Hence, with the lapse of itime, the same local
centre of mass moving with velocity u or Ei refers to a different
grain set every now and again.

The individual grain veloclity Ev less the barycentric velocity
T gives grain's individual thermal velocity Eﬁ, and Hj miltiplied
by m, is called the individual thermal momenvum:

(2.7a) WX =4, - 4, (2.70) m@h = m3, - a,@

v y ¥

The thermal motion is & relative motion with respect to local
centra of mass. At not too low temperature and moderate flow, The
thermal motion predominates the macroscopic one, because on an
average Iﬁvk§>lﬁl.

Summing up Eq.(2.7b) over the set of grains within region QBV,

and using Bgs.(2.6a), (2.3%a), we obtaj_n:z:mv"ﬁp = Imi, (Elmv)ﬁ = mi,

and.

(2.7¢) Zmyﬁf =0



31

The vector-wise addition of thermal momenta of grains in g small
region results in their mutual compensation to zero. Thus the ther-
mal motion gives no contvribution to phenomenological momenvum.

The case of the kinetic energy looks different. According to

Eq.(2.7a) the kinetic energy of the v-th grain is
1 -2 w2 L g =X -
(2.8a) 5 my(uu) = % mv(u ) + mv(u uy) + % mv(ufz)

Summing up Eg.(2.82) over the set of grains within region S3v,

and using Egs.(2.7e¢), (2.%a), we obtain: GEE:nwﬁ;J = 0, and

1 =2 1 =2 S_'l k2
(2.8b m.(u’) = = m(u“) + 3 5w/ (u")
kinevic energy phenomenclogical -
of set of grains kinetic energy thermal energy

Thus the kinetic energy of the set of grains is the sum of phe-
nomenological kinetic energy {(due to the macroscopic motion), and

thermal energy (due to %the microscopic motion, with compensated

momentun) .

2.5. Smoothening the Processes and Distribuvions.

The phenomenological averaging may be applied to coniinuous (but
not necessarily differentiable) fields that reveal sireng variabi-—
1ity within intervals of the orders of microtimes T and microdimen-
sions ?\, due to the grain structure of matter and the processes
occurring therein,

The +ime- and space—-smoothening method lies in vhe averaging by
means of integration of the actually instantaneous or local fleld
™ y. The integral averaging of a process ofy {%) tekes place within
the +time interval At, at consiant position. The integral averaging
of a linear distribution &, X) takes place within the interval Ax
of the position variaﬁle, at constant time. If the condiiions (2.2)
are satisfied, the integral average value reaches its apparent

limi%t, called the smoothed process &{t), or the smoothed distribu-

€

tion o{x) :
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1 s 1 & 4 . 1 . +
(2.92) 0({1,} = 4]-_‘3;1[;4- AT Jr0<%<<b> dt = limf AT [ O%K(b) dv
7] (a3 73 3 de A.t

(2.9b)  oKx) limf —t Ic:{*('x)dx
Ax

A
. 1
1im ——— D(‘&§dx
AX er X\
Axs&L Ax

2.3 3ince the Fourier transformation may be applied To a process or
distribution, ithe fulfilmenit of conditions (2.2) resolves itself
into the existence of a sufficiently wide gap in the amplivude
spectrum as a function of frequency (Fig. 2.3c¢), or of the wave
number. Then the spectrum of the acvual field‘xgq breakes up into
two distinct parvs. The first one corresponds %o the macroscopic
(smoothed) field © of weak variability (characterized by the time
&, or dimension L). The second one is connected with the micro-
field «* of strong variability (characterized by the microvime ‘%,
or microdimension A) (Fig. 2.32,b). The sirongly-variable component
may take shape of a regular function, as well as of a stochastic
flucvtuasion.

The microfield Nﬁcmay be regarded as an instantaneous or local

excess of the actual field D(fSF over the smoothed macrofield ©f:
(2.10) x* = oy, - X

+ resulis from the fulfilment of condition (2.2) that the phe~
nomenological averaging of the smoothed field & gives simply & .
Taking this into account and considering definivions (2.9), we find
+that the microfield vanishes in the course of phenomenological ave-

raging:

(2.112) g%; fo(?‘{t}dt = 0, (2.11b) Z:‘L-E qu(@dx = 0
&t 5%

<

Thus the smoothed process or distribution ¢ preserves the mac-
roscopic variability, blurring the microscopic one.

The time-smoothening method originates from the turbulent flow
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Fig. 2.3.The smoothing of the time run. Temporal real field o, (a) is
a sum of smoothed macro-field o and micro-field o* (b)
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theory: the actual fluid velocity is considered to be a Superposi-
tion of slow-varying process and fast-varying fluctuation (the
time-scale of turbulence, however, is much larger than ithe time T
characteristic of the intra-molecular collisions). In some astro-
physical phenomena the spectrum of electromagnetic radiation may
be split up into two distinct parts, due to the radio-waves of con-
siderable length, and relatively short-wave radiation of thermal,

visual, and uliraviclet types.

2.6. The Force Fields of Short and Iong Range

The forces exertved on the substance are due to influence of some
vector fields (e.g. of the gravitationszl and elecvromagnetic types)
on the masses and charges of the grains.

Since each avom contains both the positive and negative charges,
the local structure of electiromagnetic field inside of the grains
and in their nearest surroundings is extiremely intricate. In the
dense substance (the solids and liguids), the local eleciric field
vector alternates its direction several times within the intra-ato-
mic or intra-molecular distance A. If each grain of the body is
electrically neutral (i.e. does not contain any surplus charge of
definite sign), the electric field generated by its electvrons and
protons has practical range of the order of A, and therefore is

called the short-range field. Irrespeciive of this, the substance

may be influenced by the long range electric field, its sources

being located in the conglomeratvions of surplus charge. It is pro-

per 1o remark that the gravitational field carries purely long-ran-

ge influence, because the mass bears the positive sign only.
According to considerations in Sec. 2.5, the actual electric

field E, is a superposition of the macrofield E and microfield T*

(2.12) Ey=E + E¥X

The phenomenological averaging of the field Ey within volume
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$3v (of the order of &13) gives the macroscopic component E only,

because the mean EX vanishes (see Eq.2.11b):

(2.13a) %71; M ’E’kdBV = E, (2.13b) -—3341}

v :

O e,

We shall consider the smoothed field E to be electric field in
the phenomenological meaning.

Even in the absence of the macroscopic field E, strong electric
microfields appear within the substance, at least inside of the
grains. The shori-range field T binds the neighbouring atoms in
the so0lid body, making it cohesive and resisitent to strain.

Though the average microfield =¥ vanishes (in the same way as
the resultentv thermal momentum, Bq.2.7b), nevertheless the force
of the grain bonds remains. This kind of interaction 1is phenomeno-
logically described by the stress vensor, usually with no mention
to its very (electric) nature.

The expression for the actual (volume-) density of electric

enexrgy %(Ei) may be developed as follows, according to BEq.(2.12):
Lg%y = L(z2 5 = 1 =2
(2.142) 2(b¥)—-2(h } + (B L*)%~§(ﬁ )

Now we integrate the above expression over the phenomenclogical
averaging region EBV,‘where E remains constant. Recording that the

integral of E™ vanishes (Eg.2.13%b), we obtain:

(2.14) [[$@2a3v = Lysdv [ﬁ L@*?)ady
$77 Sy
The leftv-~hand side is the electric energy of the aciual field Ex
stored within SBV. It consists of two paris connected with the
smoothed macroscopic field T and the microfield E*ﬁ respeciively.
In the phenomenological meaning, only the first term is regarded
as the electric energy. 3ince it is connected with the bonds of sub

svance, we include the second term in the iniernal Energy.
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Eq.(2.14b) is valid for the bodies not subjected to electric pol-
arization. Generally, the density of phencmenological eleciric en-
ergy (i.e. energy of the long-range field) is equal to %(E D),

where D denotes the electric displacement vector (see Eg.4.38).

2.7. Phenomenological {lassification of Energies

From the viewpoint of microphysics, the total energy of a system
consists of energy of motions of all vhe subsStance grains within
this system, and energy of all the force fields within the system.
While the energy of movions depends on the velocivies and masses
located within the sysvtem only, the field energy is influenced by
vhe distvributions of mass, charge, and electric current boih insi-
de and outside of the system. Thus the substvance is the site of
the motion energy, while the field energy may be stored in any
place where the field itself does exist, even in the vacuum.

Strictly speaking, to the energies mentioned we have to add the
rest energy of mass contvained within thé system. This term, how-
ever, is practically constant as long as the grain velocities re-
main negligibly small compared to the velocity of light. Since the
following reasoning will be cénfinea to the nonrelativistic condi-
tions, the rest energy problem is out of our consideration.

In the phenomenological approach 1t 1s convenlent to divide the
energy of the system into two categories. The firstv one, called the

external energy, is attributed to macroscopic phenomena and depends

on the phenomenologically averaged quantitiss (the barycentric vel-
ocity, the long-range field intensities). The second one, called

the internal energy, is connecved with the microscopic phenomena

(the thermel motion, the short-range interaction).
The following table displays two ways of classification of the

energies:
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(2.15) The Classification of Energies

Phenomenological
clagsificavi
vion External energ ternal energy
MiorophysicE (macroscopic phenomena) |(microscopic phenomena)
classification

(phenomenoclogical)
Motion energy Kinetic energy
(macroscopic motion)

Thermal energy
(thermal motion)

Gravitational energy
(long-range field)

(phenomenological)
Field energy Electromagneiic energy
(long-range fields)

Bond ensrgy
(shori-range fields)

The external energy consists of three distincit componentis:
(1) the energy of macroscopic motion of substance, i.e. the

kinevic energy (in the phenomenological meaning),

(2) the energy of gravitational field (which is of long-range

nature), i.e. the gravitational energy,

(3) the energy of long-range electromagnetic fields, i.e. the

electromagnetic energy {in the phenomenological meaning).

According to the phenomenological classification, the fourth
and the last Xind of energy is the internal energy. It consists
of the thermal enerzy due to thermal motion of substance, and the
bond energy attributed to short-range fields.

In the multicomponent mixture two kinds of motion convribute
no resuliant momentum: the ordered motion of grains belonging to
particular components in the process of diffusion, and the disor-

dered motion of all the grains of mixture, at svatvistical equipar-

el

ition of all directions in space. The diffusion energy (see Sec.
6.10) is included in the thermal energy, as well as the energy of
disordered motion.

To the bond energy belong: the energy of intra-molecular bonds

in the fluid and intra-atomic bonds in the solid (the elastic
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energy), the enexrgy of internal molecular and atomic bonds (the
chemical and ionization energies), and the energy of internal
nuclear bonds (the nuclear energy).

Since it is hard to separate the shares of thermal and bond
energies in many cases, the phenomenclogical thermodynamics deals
with the iniernal energy as a whole, consldering, however, its in-
crements due to various casesS.

Since the grains are the carriers of thermal energy, and the
short-range fields occur in the grain-filled regions only, we are
allowed to make a phenomenological assumption that all ‘the internal
energy is located in the substance.

Phe same kind of location (in the mass of substance) may be ac-
cepted for the gravitational energy in terrestrial conditions (see

Sec. 5.11). In such circumstances the sum of kinetic energy and

gravitational energy may be called the mechanical enexrgy (see Sec.
5.11). |

From all those considerations we conclude that among four kinds
of phenomenological energies the three {kinetic, gravitational,
and internal) are substantial quantities, whereas one (electromag-
netic) is a non-suvstantial quaniiiy.

In the given classification the radian®s energy (of eleciromag-
netic zradiation) has been omittied. Since from the phenomenological
viewpoint it cannot be stored, the radiant energy is considered as
a kind of transfer of electromagnetic energy (the radio-wave rad-

iation) and internal energy (the thermal radiation).
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5. The Referentiial Quantities

5.1. Physical Quantities and Motion

There are physical quantities defined or experimentvally measur-
ed with respect to some frames or objects, and depending on the
motion of their references. Imagine we use a mobile point-size
gauge or probe in order vo examine the physical fields in space

. o  theught .
av any velocity, and let perform the following gedankenexperiments
on the basis of real observations.

If two infinitesimal gauges could cross the same point at the
same time instant dut with different velocities, they would give
different resulsvs of measurement of ﬁhe electric field intensity.

It has been found long time ago that the acceleratvions of the
same body with respect 0 Two reference systems being in relavive
rotary motion are differentw.

In the siatvionary flow through a nozzle, the immobile probe
shows constant fluid velocity, while the probe convected with The
stream records vime-variability of velocity at the instantv when
hoth point-probes cover each other.

If at the same instant a substance element and an acoustic wave-
front are passing some immobile point with different velocities,
then the differentiating device may record three different values
of the time-derivative of pressure, depending on whether vhe probe
rests, is convecvad with the substance, oxr "flows™ with the wave.

A flow-mever bveing capable of moving along the pipe shows read-
ings dependentv on its velocity with respect to the fluid, particul-
arly zero when it is convected with the stream.

Last of all examples, imagine an examinatvion of the phenomenon
of diffusion in the mlticomponent mixture dy means of the point-
~gauges convected with the streams of particular components. If vhe
gauges could cross the same poini at the same instant, each of Therm

would show a different value of the tofal mass (of all the componer
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in the mixture) flown through unit area per unit time.

From the given examples we see that some physical guantities
are influenced by motion, which is not necessarily the motion of
substance. Therefore it seems purposeful, especially when dealing
with a balance problem, to use an abstractive motion of reference
points or systems at the first stage, and subsiituie some paysical-
ly specific movion (e.g. the flow of substance oxr 1us components,

the wave-motion) at a later stage of reasoning.

%,2., Definitions and Denotations of Referential Quantvitvies

The gquantities which describe the generalized motion and the
guantities depending on the generalized motion are called the

referential gquantities. The name has bheen introduced by Rutkowskl

in 1962, in order to manifest "the reference of a quantity vo an
abstractive state of metion".
The vasic quantity which describes vhe generalized motion 1is

the referential velocity w. This is either the velocity of a sel-

ected reference poini in space, being called the referential point,
2 :

or the velocity of a continunous set of referential points forming

the referential region. In the latter case the vector w forms a

-

time-space field of referential veloeity, which determines the dis-
placement, deformaiion, and dilatation of the referential region
per uniti vime.

The referential point and region are universally-abstraet 0bj-
scts, and, generally speaking, they need noi be identified witvh
the real grains of substance or phenomenclogically conivinuous sub-—
stance. It is only when we replace w with a physically specified
velocity that the referential point and region gain definive prop-

erties of substantiality, componentiality, etc.

To the geometric referential guantities belonsg all the geometri

—

objects (points, lines, surfaces, spavial regions) being in a siav
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of generalized motion. The instantaneous and local displacement
of such an object is described by the referential velocity field W.
A E@ysical referentvial quantity is characterized by ivs depen—

dence on the generalized motion, especially on zhe referential

velocity W.

Since our considerations are of nonrelativistic character, we
shall determine the referential velociiy with respect to a ceriain
stiff frame of reference, assumed as absclute. The geomevlric oObgect!
which rest in this system, the physical quantities referred vo the
objects meniioned, as well as the physical quantities independent

of the siate of motion, are callsd the non-referential guantities.

Since the state of rest (w = Q) is a particular case of the stave
of motion, the referential quantity bears more general character
than the non-referential one.

While the non-referential gquantities will be denoted conventio-
nally, the referential guaniities will be distinguished by an arrow
symbol -»W below the proper letvter. For example_gﬁ,_gg,_%a. denocve
the referential spatial region, surface, and line, respectively,
o, E_ the referential field quantities of scalar and vector char-
W e [case of _
acter, respeciively. In the particularisiave of rest (w = 0) the
lower arrow symbol is omitted, because the denoted quantity beco-
mes non-referential.

The arrow symbol, though necessary in the general theory, 1s a
1ittle arduous as applied to specific physical eguavions. There-
fore we shall make deviations from the mentioned principle of no-
tation in some cases. Foriunately, many of the physical field quan-
tities do not depend on the motion of reference point, and those

are called the referential invariasnts symbolized by inv{#).

For the sake of easier notation of the integrals with respect
to the referential geometric objects, we shall omit the symbol ~=>\

under the differential of integration (dI, d2§, d°7). The arrow



41
symbol, however, will be rigorously placed under the sign of inte-
gral. The GGDO and Stokes theorems are applicable To intvegrals of
both non-referentvial and referential field gquantivies, with respecs
to the geometric objects both immobile and referential, because

the integration process takes place at a frozen instant ¢ = const.

3.3. The Substantial Region

From the phenomenclogical viewpoint, the substance 1s continuo-
usly distributed in space (with possible existence of certain sur-—
faces of disconitinuity of the mass density) and moves according %o
the barycenitric velocity field u. The geometric objects containing

always the same (phenomenclogical) elements of substance are called

the substantvial region V_, substantial surface s_, and substantvial
- U~ ~>u :

line .

1
U 1is formed of;
Bach of the mentioned objecis\fexms & Set of gubstaniial points

which are the instantanesous and local cenvres of mass within very
small regions of the size determined by the apparent limit (see
Sec. 2.4). The substantial points must not be identified with the
grains of substance. Only in the solid bhody the subsvancial poinzs
are connectied with the svructure of the material. In vhe fluid, the
close surroundings of a substantial point contains different mole-
cules every now and again, being continually exchanged with the
outlying surroundings.

It results from the definition of barycentric velocity u that
there is no phenomenological flow of mass through any substantial
surface 25' However, such a surface may be penetrated by the indi-
vidual grains in their disordered motions, as well as by the dif-
ferent species of grains in their ordered motions (the phenomenon
of diffusion). The substantial region contains a constant amount
of the grain mass, though the identity of the grains need not bde

maintained with the lapse of time.
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The shell of a substantial region is the substantial surface
in its entirety. If a region is surrounded by shell composed of
substantial surface and another surface devoid of such a Propervy,
then it is no® a substaniial region. In the thermodynamics, the
substantial region is called the closed system (closed for the
flow of mass), and the region with partly non-substantvial shell
_ the open sysiem (e.g. a segment of pipe).

The physically-substantial region has its entire shell in the

form of a discontinuity surface of the mass density (e.g. the wall
of tank with a fluid, the interface beiween WO different solids
or non-miscible ligquids, the free surface of a non-vaporizing
liquid).

On the shell of the imaginary substantial region the mass den-

sity field is continuous everywhere. It is a region "cuti-out of the
space", which does not convain, intersect and touch any inverface

of phases of substance.

3.,4. The Componential Region

A

The fluid substance may form a mixiure of differently meving
components. In the phenomenological approach we assume that any
i-th component is convinuously distribuied in space and moves 2cC-
cording to the componential velocity field Ei. The instanvaneous
and lccal centres of i-th mass are considered as the i-th compon-

ential points. The componential region YE and componential surfa-
i = = \"’i,

2

ce Eﬁﬁ.are the seis of the points menvioned.

+ results from the definition of componential velocity uy that
there is no phenomenological flow of i-th mass through any compon-
ential surface_gi;. However, such a surface may be penetrated by
+the i-th grains, as well as the grains of any other species.

There are as many componential Tregilons as the components of mix

ture. Since the grains of different species are thoroughly mixed,
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all the componential regions occupy the same place in Space, pene-
trate each other, and penetrate the sole substantial region which
contvains the mixﬁure as a whole.,

At any point of space the velocities Ei of particular componentis
are, generally speaking, different. Thus each componential region
displaces in a different way. If at an instant two componenvial
surfaces fﬁi and 5.5 cover each other precisely, then av the next

&
instant they will be separated (Fig. 35.1).

3.5. The Non-Substantial Regions

There are spatial regions amd surfaces with distinct physical
properties or boundaries, nevertheless moving oTherwise than The
substance. Since the substance may flow across their boundaries,

they are called the physical non-substantial regions.

If we are able Lo deitermine the phase in a wave of electromag-
netic, acoustic, or elastic character, then some specific veloeivy
can be assigned Tc each point of the region. Such a wave-region is
composed of the continuous setv of constanv-phase wave-surfaces
which move with the wave velocity ¢, differing from the velocity
of substance u.

Because of the inflow of reactants and outflow of products, the
combustion zone is a kind of non-substantial region. In case of the
detonation combustion, this zone reduces to a very thin layer. From
the phenomenological viewpoint, it is a non-substantvial discontinul
ty surface moving with the velocity of tThe detonation wave. The sam
model can be applied to the shock-wave surface, the shell of a
vapour—bubble in the boiling liquid, or the shell of a fuel droplet

vaporizing in hot-—gas sSiream.

%3.6. The Referential Differential and Derivative

When a physical guantity is associated, as far as its locavion

is concerned, with some referential point or geomeiric object, iv
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Fig. 3.1. Displacements in time 3t of componential surfaces Szi and

Sﬁf which were in line at the time t
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eventually becomes a funciion of time t only, and its increment
takes shape of a2 iotal differential which inecludes the indirecw
influence of the position variability in time.

The total differential of a physical quantity along the displa-
cement (or displacement field) w 4t made at the referential velo-

city W is called the referential differential, and denoted by d.....

The total derivative of a physical guantity determining the

time-variability at the referential velocity (or velocity field) W

is called the referential derivative, and denoted by 3™ .

Both the field and non-field quantities may have referentvial

differentials and derivatives. In case of a point-located quanzity,
the discussed notions describe ihe variability at the velocity w
of the reference point. In case of an integral guantvity, the varia-
bility is comnected with the velocity field W existing within =
geometric object of reference (the derivative must have the same
velocity suffix as that of the region of integration).

While the integral of a non-referential field quantiiuvy over a
referential region remains the non-referentvial quantity (the integ-
ration takes place at the frozen time instant), the time-derivative
of such an initegral becomes a referential guantity because of the
time-variability of the integration limits. Within the present ex-
position we shall deal with the referential derivatives of non-ref-

erential guaniities only.

3.7. The Substantial, Componential, Undulatory, and Tocal Derivativ

The referential derivative is of universal character. Substi-
tuting some specific physical velocities for w we Obtain parvicular

categories of tovtal derivavives:
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Symbol and name of derivaiive Reference velocliy

(3.1a) %€+§ referential referential (arbitrary) W '
k3.1b) %5+5 substantial barycentric o

(3.1c)<%5+31 componential | componential Ei _
(3.1d) %Eéf undulatory wave velocity ¢

(3.1e) %f-m = % local immoﬁilit& (0)

The purpose of distinguishing various categories of derivatives

of the Egggzquantity may be illustrated by a suggesiive though not
too precilse example (the idea borrowed from Bird, Stewart & Light-
foot, see Bibliography 3).

Imagine thai we are measuring the time rate of change of the fist
concentration in shallow coastal waters subjected to currenvs and
waving. When the motorboat equipped with the instrument sails with
the help of its own propulsion at eny arbitrary speed and course,
the meier reading corresponds to the referential derivative. When
the boat lies adrift, we obtain the substaniial derivative. If the
fish shoal were dense enough to “carry” the voat, the instrument
would show the componential derivative (with respect to fish as a
component of the mixiure composed of water and fish). When at sone
speed and course the motorboat remains always at uhe wave-crest,
we obtain the undulatory derivative. When the boat is anchored,
the instrument shows The local derivative.

The arrow-type denotation of derivavives is necessary in the
general theory and in some specific physical problems which requi-
re to distinguish various rates of change of the same quantivy.

In the fluid mechanics and nonequilibrium thermodynamics, the sub-
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stantial derivative is frequently denoted by %%, the customary
symbol of the total dexrivative %% being used as well. This kind
of notation, however, disregards the existence of any other vel-

cecity than the flow velocity.

%,.8. Referential Derivative of a Field Quantvity

The physical field gquantities, e.g. vhe scalars o, B, ¥, are
characterized by two kinds of functional relations: the physical
dependence of one gquantity on the others, e.g. the state eguavion
of the type X<{p,§y, and the time-space dependence 6&@,?> on time
t and position T.

Consider at first a simple example of a scalar field of which 1is

ada

function of time %, and of %he only position variable x (Fig. 3.2).
+ +he earlier and later instants, t' and t*, respectively, differ-

ing by a small time interval §t = " - t'> 0, the field &« has

two different spatial distributions %{t',x) and ®{&",x). Assume
that the referential point is moving with some velocity, the x-th
component of which being W and aitains the coordinatve values x!
and x" at the instants t' and t", respectively. The difference in
the coordinate values is the referential displacement x" - X' =

Sx = wkﬁt.

It resulis from both analytic and graphic reasoning (Fig. 3.2)
that the referential increment of & equal o §g&?‘&(t2x"> —-u(t;xﬂ)
can be decomposed into two parts. The first one 1is the incrementw
occurred during time &%t at constant position x = x', and is appro-—-
ximately equal to {t",x'> - X(%',x') = %% $%. The second one is
the increment occurred along the displacement $x a% constant time
t = t", being approximately equal to KCE,x") - x{E",x') =-%% $x =

L

W U

x 3%
Now we divide the referential increment consisting of two parus

by ©t, approach the limit ($+d), and obtain the referential deri-

vavive of a scalar one-dimensional field:
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In general, the referential derivative of the spatial differ-
ential operator (gradient, divergence, curl) is unequal to the oper-
avor of the referential derivative, save for the case of W = O,

when for example

d div A ) i D> ¥0tv A —— JA
(3.52) 2804 = qiv \%-x_c-, (3.5b) -——%—5—2——& = 753 %%

becaunse the succession of partial differentiation with respect o

time and position variables may be arbitrary.

3.9. The Stationary and Homogenous Fields. The Referenvial Strouhal

Number

The shares of the first and second term in the decomposed refer-
ential derivative (Eg.3.3) depend on the predomination of either
time-wise or space-wise variability of the field. Cne of the terms

vanishes in two extreme cases of the stationary field, not varying

in time at any immobile point ( /t = 0), and of the homogenous

field of constant distiribution (zero gradient) at any instanti:

(3.62) 955 = (7 zrad ), Sisv = w'Evad &
for stationary field, 2%/t = 0, AULBL = 0
o - 2 di, - _ Bk

(3.60) F>3 = 3% ol
for homogenous field, grad W = 0, grad & = O

The only time-change of a stationary field may result from the
motion of the referential point, provided the field has variable
spatial distribution. In a homogenous field the referential znd
local derivatives are equal at any velociiy w.

© results from the definitions of characteristic time of incre-
ase Gﬁ(ﬁ@,Q.ia) and characteristic linear dimension L (Eg.2.1b)
that vthe order of the ratio of the second and first term in the

referential derivative (#q.3.3) is debtermined by so-called refer-

ential 3trouhal numbher 3trr:
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1w 273 )| / ’%f—‘
(3.7) is of the |WlE® _
ppep—— l (3K order of = L
wegraa At / \SE

The 3%rr nurber obviously depends on the referential veloeciv
Y

% (the substantial Strouhal number 3%r = (W@ /L, kmown in the

£iuid mechanics, is bub a particular case of 3trr at w = u). Com-
e, b ]

paring Egs.(3.6) and (3.7) we conclude that, at a given velociiy W,
in case of Strr > 1 the field can be rezarded as quasi-svationary,

while in case of Strrﬂél as guasi-homogenous.

;Lg. 3.3 Exercise 3.l1. Show that for a plane non-deforming wave (Fig. 3.3

propagated with constant velocity [wl = \T| = ¢ we have Strr = 1,

Instructions. The described type of wave can be represented by

the one-dimensional field x{t,x) with distributions at the instants
tY and t" = t¢* + §t identical in shape but shifted along the x
axis by &x = ¢ %, so there is no referential increment of the
field X at a point moving with velocity c. We use tvhis property
in Eq.(3.2a) at w_ = ¢ and compute the ravio of absolute values in
Bq.(3.7) which is equal to 1, because for the wave considered it is

always L = c@®,

Exercise 3.2. Show that in case of a spatial acoustic or elasvic

wave of small damping and velocivy lE{ mach biggexr than the veloci-
ty of subsvance [E\, the acceleration of substvance can be approXi-
mately expressed as ithe partial derivaiive AU/ Dk

Instructions. The acceleration of substance is the subsianvial

derivative of .

(3.8a) %#%ﬁ = %% + U grad u

u

and the undulatory derivative of U at small damping (nearly non-de-

forming wave) approximately equals zero (see Ex. 3.1)

(3.89) ot = 88 | TprEd 4 20 (Strr ¥ 1 for ¥ = &)

dat 2%




Fig. 3.3. Plane non-deforming wave
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We substitute Eg.(3.8b) into Eq.(3.8a), take into account the
inequality !3D$lﬁ\, use Eq.(3.8b) once again, and finally conclude
that the substantial and partvial derivatvives of T are practiically

equal.

3.10. Referential Derivative of Small Line Slement

While being in motion, a referential geomeiric object may be
subjected to deformation. Consider the simples? geometric elament
which is a very small orisnted line segment 51 moving in accordan—
ce with the referential velocity field W. The rate of chamge of vec
tor $1 is expressed by %%ijﬁ . This kind of referential derivative,
however, cammot be decomposed with the help of rule (3.3b), becau-
se we deal with one selected segment only, which is not a field
quanvity.

The segment 51 describes the relative position of iwo close ref-

(7

erential poinss

iZ. 3.4). The beginning point (') and the end
point{") of wvectoxr §T are displacing along paths (') and ("}, res-—
pectively. During time dt both pointis are subjected to translatvi-
ons Wt'd:t and wW"dt. At the instants t and t + dt the mobile segment
igentifies itself with definitely situated vectors SiI and 5L ;.

1f §T is small enough to neglect the curvature of the displace-

ment trajectories, then it results from th

1Y

disposition of veciors

shown in Fig. 3.4 that

(3.9) SIII ~ §I; = Whdt - wtat

The lefi-hand side is the referential increment of The non-fiel
vector 5L, i.e. Q§Zﬁ’ The increment of the veloeity field w on the
right—-hand side occurs along ihe line element §1, and according %o
rule (1.37b) is expressed by W' - ®w' = $T'57ad w. Laking this int

account in BEg.(3.9) and dividing by dt we obtain the referential

derivative of line element %I:



?’2} { in time )
trajectory {* ) trajectory (")

Fig. 3.4. Displacement of the small segment &l during the time dt
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(3.10a) i—g'—hu ¥ $1'Z¥ad w

The above relavion is approximate. It becomes precise when the
small segment 51 approaches the limit of infinitesimal line element
dl.

A similar Formula is known in the elasticity theory. When each
substantial point of a body is subjectzsd to finite but small defor-
mative displacement bT with respect %o its undistorted shape, then

the finite but small increment of the line element 57T is:

(3.40Db) 5(sT) = YTI°5Fad BT

3.11. Deformation of a Referential Region

It is nov only a line but alsoc a surface and spaiial region ihas
can be built-up on an array of line elementvs, which change in time
according o Bq.(3.102) (at $I-3dI). For that reason the deformation
of referential region per unit time may be expressed in a most gene-
ral way by the tensor field of the deformation rate Z¥ad W. Accord-
ing to runles (1.13%b) and (1.29a) it may be decomposed into three

terms:

(3.11) Zrad w =

il

The first term is a spherical tensor, its sScalar trace
Tr(% div w) = div w (see BEq.1.11b) being called the dilatation rate.
It is the btime rate of change of sum of the relative elongations of
any three line elements 41, provided they are triply orthogonal at
the instant given. On the other hand, it is the rate of relative
change of volume dBV of an elementary cell of the region {(see Eg.3.:

The third term is an antisymmetric tensor. Its pseudo-vector Wit
opposite sign - V8¢ Zradw = % Tt W (see Egs.1.29b, 1.12), called
the rotation rate, is the average angular velocity of any three linc
elements di, provided they are itriply orthogonal at the instant

given.
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Last of all, the second term with the form of a symmetric devi-
ator EFEACSwW, is called the pure strain rate (or the rate of sirain
of shape). It describes the time rate of change of the angles bet-
ween line elsments d1, which are triply orihogonal at the insvtant
given and form an elsmentary cell.

Teaving the detailed analysis of deformaiion ouv, we shall illu-—
strate the process by an example of a plane figure shown in Fig.
3.5, I+ is a square which has been converted into =2 rotated and
diminished trapezium, atv exaggeratved changes of angles and lengths
of sides. The resultant process of deformation has been decomposed
into three phases: the rovaiion (the sguare roiated by the angle
of % Yot w dt, its shape and size being preserved), the pure sirain
(the square converted into trapezium of the sSame area and identvical
axes of symmetry), and the dilatation (idenitical relative diminutior
of both orvhogonal dimensions by % div w d%, the shape and angular
position being preserved).

Tn the theory of elasticity, the symmetric deviator of pure
strain gfzidséf_ and the scalar of dilatation div & are usually
extracted out of the deformaiicn tensor Zrad Sr.

Some particular properties characterize the incompressible reg-

jon (e.g. filled with incompressible liquid), which is non-dilata-

ting (or keeping its volume unchanged)
(3.12a) div W = O always and everywhere in incompressible region,

and the rigid region (e.g. rigid body), which is submitied neither
to dilatation nor the pure strain, but may rotate as a whole in

accordance with a homogenous field of angular velocity‘&%

(3.12v) 5¥53°% = 0, ZT53 w = gradw, &, = -;:- 7% 7 = const{T)

always and everywhere in rigid region




square rotated and diminished

intime t trapezium in time t+dt
| __deformation / h
T ~ T {X

Mm“j on displacement w dt e
7~ F -
[ ] 2]
Lth"‘““"ﬁ‘;‘:f:_% ) d\k“"-«\“:\]"m
rotation pure strain dilatation

Fig. 3.5. Transformation of a plane figure resulting from the
referential displacement of its points
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3,12, The Leibniz-Reynolds Transformation

Tn order Lo compube the rate of change of a volume integral
within mobile limits we have to consider a referential spatial
region_};G and its shell_g%. + 4two close insitants differing by ot
the moving region iakes iwo definite positions (Fig. 3,6}

[ = e — 4 N e £ _ . o
Y:QE Vl, §3§2 545 ?§£;St, = V2, Eﬁ;+&d> = Sy Wnhile the volu-

mes V,, V,> O are positive, the increment &V = v, - Vlit 0 may be
of either positive or negative sign, depending on expansion or
contraction of the region.

The change in volume results from the displacement of shelljim.
During time 4% it sweeps a thin spatial slice of local thickness
w 6%. Bach surface element d2§l forms a base for the volume elem—
ent of ihe slice swept (compare Eg.1.23d)
>0 at acute angle 7

(3.13) a2(%V) = (a5 %t){ \
<0 at obtuse angle]

between d2§1 and w
Thé difference of swo integrals of a scalar field «, or a vec-
tor field X, over the regions V, amd Vy but at the same instant +
is equal to the integral over the slice 4V, because The contribut-
ions of overlapping parts of V1 and V2 cancel each other. Since the
thickness of the slice is finite, %he mentioned difference is buv
a double integral over the shell Sq (Eg.3%.13), so we can apply the
@GO theorem (1.34), snd, in case of the field X, the rule (1.202)

in addition:
(3.143) ﬂfg;(t)dBV —jﬁ'x(t}dBV = ffof a?(57) = & 9% CEAR
‘vg vy &Y 1

- jﬂ‘div Fx) 4V
AL

i

I



intime #+ g% 2V, S I

slice YV

v _
-

shice d

.

intime 2: ¥ , S

Fig. 3.6. Small displacement of the referential spatial region



(3.14D) ﬂJK{;c}d?v - ﬁf‘ﬁ(t}d?)v = ﬂ?&: a2(57) = 4% 365 (%5, M =
Vo vy 2V Sq

= 9% %QQE;%?E = 5% M‘Z«? %% adv
Sq V1

For a very small 5§t and at immobile point,we have
0’( VN /‘.:. — \)K n
(3.45a) X{t+oty - xE) = 56, (3.15b) ECi+st) - A< = <% St

Conseguentcl we transform tne difference of integrals computed
q s )

at slightly differing instants but over the same region V2:

(3. 16a) JE%( L8080V - Jﬂo«t‘)d%
\F

. 4oy

|
kN
<te==—
9/
a/l_l &

V2 2
(= : 7 0N
(3.16Db) JJ E{t+ t>d3v - ﬂgA(t)dBV = ¢t J)Ij %% a3
V2 v2 Vz

Let prefix_éﬁ.denote a small referential increment of the volume
integral, being the difference in values of integral for the region
v, at the instant t+6t, and for the region V4, av the instant t.
Adding and subtracting an identical term we obtain the sum of two
differences of integrals: the firstv one concerns the same region
V2 but two different times, while the second one - differenv regi-
ons at the same instant t. Substituting Egs.(3.16) and (3.14)

e

8 e = 1ﬂ wrsya®v - JJacwadv + [Jaca’v - [ ocera®v =
o 2 o V2 V1
é*( ﬂ %+ JU div(ﬁn()d3v}
7y |
épaJHA d_3v = Jﬂi(‘c+it>d3v - mx{ﬁ}dBV + ﬁJK{t>d5V _ JJJK<t>d3v _
j‘;: v2 vg V2 Vl
= §% {mé a3y + ﬂf I WA d%}
v vy

then dividing boith sides by &% and approaching the limit (5-~2d,
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Vs Yy >"V ), we obtain the Leibniz-Reynolds transformation:

(3.17a) —-—;rw mq v = W{ + div(ﬁoq)}d% for scalar field £
i

~3%
d _ ks _ 3 w‘bi .—..:: 3 _
(3.17b) E;w j A4V = J &3? + div w'A{da’v for vector field A
L

Exercise 3.3. Find such forms of the transformations (3.17)

which contain the surface integrals of (d s W) and (d S W)A on

the right-hand sides.

Insiructions. Apply the GGO ‘theorem (1.%4) and rule (1.20a) to
the proper parts of the volume integrals on the righi-hand sides

of Egs.(3.17a,b).

a 3. 13. The Leibniz-Helmholtz Transformation
; @LVECuOI tield A (as a scalar ?rgdu0u;}*%~—%r~q
ig. 3.7 In order to compute The rate 0z change of a surface invegral ofx

within mobile limits we have

to consider a referential open surfa-

Ce»ir and its contour 1 . At Two close instants

)
takes two definite positions (Fig. 3.7): s{i) = s 13 <‘> =1y,
]
_j;é?+bﬁ> = S,, lj;+%t> = 1,

During time &t the surface s_ sweeps a thin spatial slice §V of
~5d

the moving surface

local thicknsss w 8%. Each surface element d2§1 forms & base for
the volume element of the slice swept dz(SV), being defined by
Eq.(3.13). At the same time the referential conbour 1. sweeps a
naxrow closed svuripe SSB of local widsh w %%, bordered by the con-
tours 1, and 1,. Zach line element dI, forms a base for the sur-

face element of the siripe swept (compare Eq.l.23c)
(3.18) d(SEB) = @.‘le%‘ St

The succession of factors in the vector product is such that at
the righi-handed orisntation between surface 54 and its contour li

the stripe $s. is outwardly bound with respect to slice &V.

cF W

Notice that the shell s  of the slice OV consists of 3 open




intime ¢ d{; s, ig"\ﬁ_

| t;‘?&g?: | stripe dsy
intime ¢: 8, {;~~

Fig. 3.7. Small displacement of the referential open surface
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surfaces Sy, Sy, and 533, among which only S4 is inwardly bound.
We denose this with the help of symbolic equation

=(-— Si)+ S, + 553, 0r S, = 8y = S, - 583
Consequently, the difference belween integrals over S, end 54
at the same instant t is egual to the integral over the shell 5,
minus the integral over the stiripe 553. To the first one the GGO
theorem {1.%4a) can be applied. Since the widvh of siripe is fini-
te, the second one is but a single integral along the coniour 11,
and thus subject to Stokes'! theorem (1.35). Taking all this into

consideration and using Egs.(3.18), (3.13), and the rule (1.1%a),

we obtalin

(5.19) [ Bepra®s) - | Blwa®s) = § & &%) - [ & as5,)) =

=P Sl ER bés |

jdw z a° (5V) - ""3[)(6."1 Xw L) = b*[ div & (ctzgi%) - (1{(6."3: ?ﬁx}{)} =
N 14 '

= (% Jy(iw div & - Tot v&<A}d S)
51

According to Eq.(3.15b) the difference of integrals computed av

1,

-t

slightly differing instants but over the same surface S5 is

’ =
(5.20) J{ (Eb+5tpas) - (I (Kya%s) = st || 2 &%)
JJ J )
So 2 o
The referential increment of the surface ilntegral is vhe differ-
ence in value of Integral for the surface Sq at the instant t+£t,

and for the surface S4 st t. Using the same procedure as in Sec.

3,12, substituting Egs.(3.20) and (3.19)

Lot - 195 g - 5y a%
_ﬂi ﬁ(A(wb )d S) ﬂ(A {&Hds) +g (AGya ) J’( E(thd

&0~
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then dividing bith sides by &t, and approaching the limit (b--4d,

S4s 85> 8 ), we obtain the Leibniz-Helmholtz transformatvion:
d - O Y e e | P
(3.21) — (X ¢°s) = ( = +w div 4 -~ 105 WAA{ATS)
av 4 v
-l ~»%

Tt is possible to show (Ex. 3.5) that if 5. is a shell, then
W

d — -!ll
(3.22) -—MB%&(A S) = ({ + W div }d s)
at .
~Aig

E.'I

Exercise 3.4. Find such a form of itransformation (3.21), the

——

right-hand side of which contains the intvegral of (WX a1) along

the contour 1.
~—myl

Instruction. Apply Stokes' theorem (1.35) to the proper pars of

the surface integral on the right-hand side of Eq.(3.21).

Exercise 3.5. Prove transformation (3%.22) in two different ways.

Instructions. In the first method, we use the result of Bx. 3.4

adapted for the case of vanishing contouy ;§E(When the open surface
becomes a shell). In the second method we apply the GGO Theorem
(1.34a), transformation (%.17a), and rule (3.52) to the left-hand
side of Eq.(3.22). Using the GGO theorem (1.34a) reversely, we Ob-

tain the right-hand side of Eg.(3.22).

3.14. The Leibniz~Thomson Transformation

Teaving out the proof, we present the Leibniz-Thomson transfor-

G e — -
of a vector field A scalar product )
Tmatl0Tl Tor & inuegralvalong thne re erenblal open line 1

d T ——— T ———
(5.23) —% J (X aI) = f (3% + R ) - FxTo% :{}a‘i)
ds
1

= 5

T+ is possible to show (Ex. 3.7) thatv if %J;is a contour, then

d w
Gan e - § - R
73 1.— _

Exercise 3.6. Find such form of transformation (3.23), the
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right-hand side of which conteains the difference
(Fnl, - [Fnl,
of values of the field (w A) at the end-point 2 and the beginning-
~point 1 of the line 1..

v

Instruction. Apply the rule (1.36a) to the proper part of the

integral on the right-hand side of Eg.(3.23).

Exercise 3.7. Prove transfomation (3.24) in two different ways.

Instiructions. In the first method, we use the result of Ex. 3.6

for the points 1 and 2 covering each other (when the open line be-

comes a conitour). In the second method, we apply Stokes' theorem

ct

(1.35), transformation (3.21), and rules (1.304), (%3.5b) to the
left-hand side of Eg.(3.24). Using Stokes' theorem (1.35) reverse-

1y, we obtain the right-hand side of tramsformation (3.24).

3.15. The Referential Operators of Reynolds, Helmholtz, and Thomson

it is possible to denote concisely the two~ and three—term ex-
pressions on the right-hand gides of tfansformations given in Secs.
3,12 t0 %.14 with the help of the referential operators named afier
Reynolds, Helmholtz, and Thomson. They are functions of referential
velocity and of the fields subjected to operation. Here are the

names, symbols and optional forms of the referential operators:

= the Reynoldsian _ L -

(3.25a) (of 2 scalar) ;gx?.m:— =t div(iw) = = + X div w

" the Reynoldsian e BE | e o AR -

(3.25b) (of & veotor) | Loy A=<z +divw A=gW+ Adivw

(3.25¢c) the Helmholtzian helm & = %% + W adiv £ - 0% WXA =
-3

-3, WY WA -LEFA v s g + L aiv W - K EFAL W

(%.25d) the Thomsonian EE&? K = -% + grad(w k) - wXTot & =
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At W = 0, the referential operators (now deprived of the lower

arrow symbol)} are simply equal to the local derivatives of fields:
(3.206) reyn & = /i, Teyn A = helm A = thom A = dA/>%

The referential operators satisfy the following relatvions:

(3.272) Teyn A - helm & = & grad w
-5 3
(3.27b) Teyn & - Thom A = & div w —- K agrad w
=W paar
(3.27c) Thom A + helm & ~ reyn & = %%eﬁ'+ L xXTot W
—Pwl —>v —3 W L
e s _ pYN e
(%3.282a) reyn div A = div @3%? i = dlv(SE + w div &)
(3.28b) helm rov & = rot vhom A = rot(é% - WXT0% A)
g >3 R

Substituting the referential velocity w for X in Eq.(3.25c) and

taking the rule (1.15b) into account, we obtain

(3.29) nelm W = ¢ + w div w

Exercise 3.8. Prove the equivalence of the alternative forus of

the Reynoldsiams (3.25a,b).

Tnstruction. Use the rules (3.3a,b), (1.3%0a), and (1.31b).

Exercise 3.9. Prove the equivalence of the firsi and second form
of the Helmholtzian (3.25c).

Instruction. Use the rules (1.3%2a) and (1.31b).

Exercise 3.10. Prove the equivalence of all three forms of the

Thomsonian (3.25d).

Instruction. Use the rules (1.3%3), (3.3b), and (1.28a).
Exercise 3.11. Prove Eq.(3.27c).

Instruction. Use the rule (1.33).

Exercise 3.12. Prove the transformation (3.28a).

Instructions. Substitute % = div X into Eq.(3.25a), consider Eq.

(%.5a), and use the rule (1.304) in Eq.(3.25c).
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Exercise 3.13. Prove the transformation (3.28b).

Instructions, Replace A by T0%v A in Eq.(3.25¢c), consider Egs.

(1.304), (3.5b), and use the rule (1.32b) in Eg.(3.25d).

3,16, The Leibniz Transformation Group

As a matter of fact, the transformations (3.17a,b), (3.21), and
(3.23) originate from Ieibniz's formmla for the derivative of an

integral within variable limits. They form the Leibniz's group of

transformations, which, as denoted concisely with the help of refer

ential operators (3.25), is as follows:

(3.30a) (3.3Ch)
a [ a [
T mo(. v = Jﬂ reyn o AV — HJ I axw = ‘H To3n & a0V
dt % 7 > at g T35
~¥a ~5W —¥ 5
(3.30¢) (3.304)

d i d
— J((A dQS) = {(hel}‘n A d2'§) —ay J(K dI) = J(thom A dI)
at 4 e dv W
- S 1- 1.
3 —¢ ~>w ~¥W
In vhe cases of shell s . surrounding a region V., and of conto~
—w =
ur.ﬁ_ bordering an open surfacehg_,'the transformations (%.3Cc,d)
Ay

may take alternative forms (see Exs. 3.14, 15):

& _ 4 o _ _ 3
(3.31a) —»i §§(A a%s) = ﬂTdiv helm & 4°V = ||| reyn div 4 4°V
15 J J =3 ) ST

: V_
—3u —Iw 3w

d - e e e o
(3.31b) ——u ’7( (R d3) = [(ro‘c thom A d2'§) = ﬂ(helm rot A (3.25)
= -

flaaton --'Sa.'ﬁ' 3w

At W = 0, the referential geometric objects become the immobile
integration regions V, s, 1, and the referenivial derivatives and

operators btake shape of partial time-derivatives (Egqs.3.le, 3.26),

which can be transferred across the integration sign directly:

> ' |
(3.32) ; Jdr-[‘(l&—d
‘' V,s,1 v,s,1



5§ €1
If at any point of the region the funcition is equal to zero,
then itvs integral over the sSame region must be zero. If the integ-
ral mentioned is a time-derivatvive of another integral, then the
latter integral must keep consvant value in time. As applied to

trensformations (3.30), this leads to the following theorems:

If at any point of the region of integration

il

(3.33a) reyn X = 0, then “ﬂ]oqd3v cons (Y
Yo

£

(3.33b) reyn A = 0, then ﬁgﬁ a7V = const o
~F p)
V.
—>w
(3.33c) helm & = ¢, then ﬁi{(ﬁ a%s) = const{t)
-3
(3.33d) Thom A = 0, then f‘(K dl) = const<t)
— =4
AT

Reciprocal theorems are nowv, in general, valid. A time~constant
value of an integral does not mean that the appropriste referential
operator is egual to zero over all the region of integration.

Bxercise 3.14, Derive the transformation (3.31a).

Instruction. Apply the GGO theorem (1.34a), transformation (3.30:

and Eg.(3.28a) to the left-hand side of Eg.(3.31a).

Exercise 3%.15. Derive the transformation (3.31b).

Instruction. Apply Stokes' theorem (1.35), transformation (3.30c,

and Eq.(3.28b) to the left-hand side of Eq.(3.31b).

3.,17. Some Applications of the Leibniz Transformation Group

Because of the practical needs of the fluid mechanics, the Lelb-—
niz transformation group has been formulated for the first time as
"Reynold's transpori theorem” (Egs.3.17 at W = TU), "Helmholiz's
vorticity theorem" (Bx. 3.17), and "Thomson's circulation theorem”
(Ex. 3.21). Since the referential‘velocity was still unknown in the

16th century, those theorems concerned particular cases only. To-da
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in their generalized forms, the iransformations (3.30) have versa-
tile applications to the balance theory (Chapter 4) and continuum
mechanics, as well as vo the nonrelativistic electrodynamics (RExs.
3.18, 19, 20, 23, 25). |

Exercise 3.16. Prove that for a referential region the dilata—

tion rate (or the rate of relative change of volume) is

(5.34) 1 a(a’v) -

3 = div w
a-v at

Instruction. Substitute ¥ = 1 into the itransformation (3.17a),

and confine the invegration region to elemenvary cell of volume dSV.

Exercise 3.17. Prove Helmholtz's theorem stating that in an in-

compressible fluid of specific volume v = 1/¢ = const and shear vis-
cosity coefficiens ﬂs = const, moving with velocity u, the vortici-

ty o o= % Tot u satisfies the relation

(3.35) L9057 = {'EFAT U + 5 vy, div 57Ad O

Instructions. The described fluid complies with the Navier-3Stokes

equation (5.33a) (given in a further chapier), which, afier substi-
tuting Eq.(5.23b) and transferring v = const behind the gradient
sign, may be presented as follows:
(3.36) Bz = Loy, T 350 T - EmEA + pv)
7
According to the rules (3.3b), (1.28b), (1.33), (3.5b), and
(1.32b), we have

—— r—rr— Sttt

%%&'G=§%+g_r'§€(%—)~2"ﬁxa, %rot%%—;»ﬁ:%—rotﬁxa

The right-hand side of the latter eguation is the firsv form of
the substantial Helmholtzian (3.25c), because of div (3= 0 (see
Bg.1.304). Since the substantial regionﬁﬁa filled with incompres-
sible fluid satisfies the requirement (3.12a) at W = @, the Helm-

holtzian can be expressed by the third form of Eq.(3.25¢c) as well.
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Finally, according to rules (1.32b,d), one-half of the curl of the
right-kend side of 2q.(3.36) gives & vy  TIv Zrad 3.

Exercise 3.183. Prove that in a conducving fluid of rzsistivity

T = const and permeability p = const, moving with velocivy u, the

magnetic induction B satisfies the relation

rr————— 2 e —— — - —
(3.37) felm B = &2 Tiv E7ad B
—3 W

(the constant ¢ is equal to velocity of light in vacuum) .

Instructions. We start from the three Maxwell's eguavions

— 1 3B - - _
(3.38a) Y0v & = -~ g —% (%.38b) 0% H = % i, (3.38¢c) div B = 0O
and two phenomenclogical relations
(3.392) B = g, (3.39b) “I = T + = GX3

where E and B denote the vectors of eleciric and magnstiic Tield,
respectively, and 1 stands for the current density. While Egs.
(3.38a,c) ars wniversally valid, Eq.(3.38b) keeps sufficlents accu-—
racy for a conducting medium, bheing a simplified form of Zg. (4.35Db)
written in a further chapier

The magnetonydrodynamic fluids (plasma, liguid metal) comply wit!
the approximate relations (3.3%39a,b). Eg.(3.39b) is a spscific Zorm
of Chm's law (see Zgs.4.45 end 4.33%a,b, given in a further chapter)
for alectrically neutral (Qe = ) and homogsnous (Eﬁ = () fluid.

We compute the curl of Eg.(3.39b), subsiitute Egs.(3.38a,b,c)

and (3.3%a), then use the rule (1.32c), and obtain

2ot o

55 Cc ™\
X B = S div
R

rad B

(3.40)

e
?ﬂwl
1
34
]
<H
s‘l
el

The left-hand side of the result is the first form of the subs-—
tantial Helmholizian (3.25c), because of the condition (3.38c¢).

Exercise-%.19. Transform the relation (3.37) into
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(3.41a) %§+G = B'srad U ~ B div 1 + Eéﬂ‘dlv Frad B

— 2 L
{(3.41b) Qiﬂﬁl»u (vB) ZFad u + c ;L div g¥ad B

where v = 1/¢ 1is the specific volume of fluid.

j’

Instruction rs Bg.(3.41b). Use Bg.(5.4c) given in a further

cnapiexr.

Bxercls

¢}
N

.20. Deduce the following nonreletivistic relation

e

between elzcsvric field vecvors ﬁ and &, assigned to the rsiersn-

tial and immobile point, respectively (at the instant of covering
each other):
, J—
(3.42) W B

= B +

Jotell
Ol

':3

making no use of the relativistic Lorentz transformation.

Instructions. The stariing point is Faraday's integral law of

induction presented in terms of referentialivy

r (T aT) T
(3.43) @ (2 1=-—--C—-_--5'J(Bds)
1. dt
S .
W ; LW ’
electromotive force magnet%c induction fluy
through open surface
along convour 1o vordered by contour 1 250

—

To the left—hand side we apply Sitokes' theorem (1.35), and in
the right-hand side we use the Leibniz~Helmholtz transformatvion
(3.21), with the substitution of universally valid Maxwell's equa-
tions (3.38a,c). Tramsferring all the terms to one side, we oblain
a surface integral which is equal %o zexo for arbitrarily small
surface, because of the assumed contvinulty of fields.

Hence the initegrated function must vanish always snd everywhere:

ey o 1 =05 da “
rot(&_ - E ~ 3 wXB) = C. According to the rule (1.32b), the soluw-

>y
jon of this equation assumes the shape of gradient of any scalar

Tield:

- = 1= =  —
g) E - % wXB = grad «. We canmot, however, accept whe
e

infinite number of solutions, because, from the physical viewpoint
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all the guantities on the left-hand side are univocally definite
and experimentally measurable. The only paysical soluiion results
from subsiituiion o = 0. The Final result (3.42) keeps sufficiens
accuracy in the nonrelativistic conditions (|w|<«ec).

Additional exercise. Show how %o obtain Maxwell's equation (3.3%Ba

from PFaraday's law (3.43) at w = O.

Exercise 3%.21. Prove Thomson's theorem stating that ihe circula-—

tion integral of velocity of the incompressible and inviscid fluid

along a subsitantial contour rewains constant in time:

(3.44) > {7 41) = constily

Instruciions. If ws apply Stokes' theorem (1.35) to vhe left-
hand side of Eq.(3.44) and take into accounti the theorem (3.33%c)
and Bg.(3.28b), then nothing else is reguired than to prove thav
helm rot Q= rov vhom u = O, or, according to the third form of
—~30 A
Thomsonian (3.254), that rot(afau + U agrad u) = O. This can be
achieved by applying Bg.(3.36) at Pg =0 (inviscid fluid) and usi-

ng the rulss (1.28b) and (1.32b).

3,18, Convection and Diffusion of the Vector Fisld Lines

The geometric image of a vector field A consists of set of lines
to which the vector & is tangent ab every point. A small arc 3L of
the field line amd an identically situated field wvecvor % are paral-

lel:
(%.45) 81 = At A

§x being a scalar proportionality factor,

Tn some circumsiances the time-space changes of the vector field

L may be interpreted as convection of all its lines. They are being

carried away with the convective region V. which moves in accordan
[

ce with some particular velocity field ﬁc. In such case, as it
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results from the substitution of Eg.(3.45) into the relation (3.10a)

at w = %c’ we have

(3.46) %%E*GL - TEE v, = s, + X A5 7

The velocity field %c mist not be arbiirary and sometimes cannot
be uniquely defined. We shall confine our reasoning to a case ruled

by the following theorem:

(3.47) If a wvector field A satisfies the relation %%+q;= L Brad ﬁc

-+

at some particular veloecity field ﬁc, then the convection
of the field & occurs with velocity ﬁc, and the factor

X = comst at each point of the convective region V. .
[

Teaving the rigorous proof out, we shall merely meniion that if
the same type of equation describes the changes of vectors ¢1 and
% (defined by Bqs.3.46 and 3.47), then at each convective point the
vector K is not only parallel o 5T, but also the ratio of magnitu-
des of both vectors remains constent. If in its motion & sSmall seg-
mant 5T of the Tield line grows longer, then the magnitude of A ine
cresases proportionally. Indeed, if we substiiuie Eqs.(3.47) and
(3.45) into Eq.(3.46), then obviously g%%#GQ

Tf a vecior Tield & satisfies the diffusion-type sgquavion

= O.

(3.48) =3 Tv z¥Ad X

s
{1
el
=il

where ﬁ is the diffusion coeffieisnt, then the changes of the field
lines are no more interpreted as a motion but as a diffusive "flow-
away" (i.e. spatial equalizing of the density of field lines with
the time lapsing).

If a vector field K sabtisfies the following type of eguation

(3.49) db,;, - T'EFAG W, + p div EFAd &
y \ VRN /
convecuion diffusion

of the vector field lines
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then the changes of the field lines may be interpreted as the sim-—
ultaneous conveciilon and diffusion. A% f = 0, the relation (3%.49)
talces form of equation of the pure convection (3.47), and at ﬁc =0,
of equation of the pure diffusion (3.48).

In particular circumstances the fields of the vorticity & and
magnetic induction B are subjected to pure convecvion in a fluid
streaming with velocity T (Exs. %.22, 23). The lines of those fields
keep "stuck" to the substance and are being deformated in the same
way as the fluid. A substaniial point once situated on & particul-
ar line of field & or B will remain there forever.

Exercise 3.22. Prove %hat the vortiewity field & = 13558 of in-

2
compressible and inviscid fluid is subjected Lo pure convectiion with

the velocity of substance u.

Instruction. Use Bg.(3.35) at Ty = 0 and 2pply the theorem (3.47)

Exercise 3.2%. Prove that in a compressible but perfectly conduc-
ting fluid, the field vB = B/¢ (v = 1/¢ denotes the specific volume,
and B the magnetic induction) is subjected ©o pure convection with

the velocity of substance u.

Instruction. Use Eq.(3.41b) at infinite conductivitey 1/, and

apply the theorem (3.47).

Exercise 3.24. Prove in two different ways that the flux of vor-

ticity & through a subsvantial surface S_ remaing constant in <vinme
=i,

[}

(5.50) ff@ 3°%5)

S
—>

const{t) for incompressible and inviscid fluid

Instructions. Compute helm & from the thard form of Bg.(3.25¢),
)

consider the incompressibility condition (3.12a) at W = u, and Bg.

(3.35) at M, = 0, then use the theorem (3.%%¢). The second method

[

lies in substituting & = = TOT U ifdto the lefi~hand side of Ea.

)

(%.50), and applying the theorems of Stokes (1.35) and Thomson (3.4

Exercise 3.25. Prove that the elsctromotive force along a sub-—

stantial contour vanishes

1-
S
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- —
(3.51) §>(E_ dl) =0 in perfectly conducting fluid.
A
1 _
—

Instructions. Compute helm B from the third form of &g.(3.25¢),
[vF

take into account Eg.(3.41a) and the condition of perfect conducti-

vity (L= 0), then apply the theorem (3.33c) and PFaraday's law of

o

induction (3.43).

4. The Balances of Extensive Quantitiss

4.1. The Extensive Quantity, its Storage, Production and Transfer

The extensive gquantiivy, or EQ, as abbreviated, is a geometric

or physical quantity which can be stored in a region. The amount
of stored E) will be called the storage. AV any arbitrary division

£

of a region into sub-regions, the storage ascribed to the whole re-
gion is a sum of storages of all the sub~-regions. Such & propersy
is peculiar vo all the scalar EQs, e.g. the volume, mass, electiric
charge, energy, or entropy, and to all the vecltor EQs, e.g. the
momentum, Or angular momentum.

The site of an EQ is the space, either filled with substance, or
noi. In the traditional thermodynamic nemenclature, the sive of EQ
is resitricted vo the mass only. This particular kind of EJ, accor-
ding +to our classification, will be called the substantial guanitizy
(see Chapter 5).

The EQ is an integral -quantity ascribed to a system formed of
some spatial region of finite dimensions. The distribuvion of a won:
tinuous EJ in space is described by the field of the siorage densi-
Ty of HQ.

A conirary to the ) is an intensive guantity {(e.g. the itempera-
ture, or pressure), which cannotv form any storage in a region. Be-
ing assigned w0 a point in space, a fieldvquantity 1s never an H}.

Thus, vhe storage density of an HQ ceases to be tvhe exiensive
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quantity, and becomes an intensive quantity, though it sounds para-

doxically.

We distinguish two causes of change of the EQ stored in a sys-—
tem (Pig. 4.1).

Tha first one concerns the phenomena occurring solely within the
system and giving occasion vo creavion or annihilation of EQ. Both

processes consildered together are called the production of EJ.

A particular BQ can be crszaved or annihilaied av the eXpense oOr

for +the benefit of another EQ coexisting within the same system.

Such a process is callad the conversion beitween two OX among more

E)s. The sum of productions of mutually convertible s, forming a
closed set within the system, is always zero.

The second cause of change of the storage is the interaction be-
tween the system and its surroundings, and this occurs across the
boundary of the system. In case of a scalar ), e.g. the mass or
energy, such an interaction may be pictured as a flow, viz. an
inflow inito the system, or an outflow to the surroundings. In case
of the momentum, which is a vector EQ, the interaciion takes shape
of ithe surface force. All the processes mentioned are covered by
common name of transfer of EQ beitwesn the system and its surround-
ings.

In case of a positive~valued =G, the creation and the inflow con
tribute o the increase of storage, while the annihilation and the
outflow cause the decrease of storage, so the following sign conven
tion will stand:

creation > O, annihilation < O,
inflow > C, outflow <G,
production = creavion + annihilation%? 0,

transfer

it

inflow + outvflow %% 0.
The sign convention hecomes useless in case of a vector EQ. Its

production and transfer are no longer scalars but vactors, defined
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production within the system

’

%7 creation anihilation ﬁ

BALANCE SYSTEM {spatial region ¥ }
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ke L L Lty Gt s b LAt 73303 3 i kdad

SYSTEM BOUNDARY (shell $5)

SURROUNDINGS

L/
N/

\ i
interaction between the system and its surroundings

Fig. 4.1. Scheme of causes changing the storage of extensive
quantity
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by direction instead of sign. For example a body moving along the

circular orbitv experiences a "itransverse' produciion of momentum.

4.2. The Balance Axiom and the Basic Balance

Since the causes of change of the storage have been classified,

the nextv step is to formalate the following balance axiom for an RY:

transferred
(4.1) {change of I storedl _ " B) produced } f-b tween system and
’ within system J 7 lwithin system léurrouadlnos hroug!
sysvem's boundary

Relating the given balance to the univ time, we obtain the rates
of change of storage, production, and transfer, as particular verms.
Being deliberately not too rigorous in the meaning of words for the
benefit of conciseness, the raves of changs of production and Tran-
sfer we shall call simply the "productvion" and the "transfer", res—
pecivively, bearing in mind thav they are already related to vhe unit
time.

Denoting the storage, producticn, and transfsxr of a scalar HY by

5 o . N . ; o
.,ﬁ),J s respectively, and the same notions for a vector H) by~g s

c,..

J , respectively, we tramnslate the verbal eguation (4.1) into a

balance carried out during time dt in an immobile system:
(4.2a) a8 = P dt + T dt, (4.2b) a8 =79 at + T at

Considering a more general case of the mobile system, we meet a
gquestion whether the terms of balance are referential guantities,
or not. The motion of boundary makes the storage of surroundings
captured by the system, or vice versa., For that reason the transfer
through the boundary of a referential systenm (E#,Eiﬁ) is notv the
same as in case of the immobile system, at the instant when both
systems cover each other.

In the nonrelativistic conditioans the productvion and the stor-

age are not influenced by the motion of system (they keep non-ref-

erential character). In a mobile system,however, the change of
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svorage during vime dt becomes a referential increment @%h, as._
W 3w

of the non-referential quantityig,igz since the boundary has been

ey

displaced by w dt, the contribution of slice of that thickness
must be taken into account.

Consequently, the balance for a referential sysiem is

(4.32) a8 = P as + 7. at, (4.3b) 4§ = P at + T _dt
9 = ~=4 59

From now on, we shall only deal with the balznces relaied 4o %he

unitv time. Dividing Egs.(4.3) by dit, we obiain the basic balences:

as - - e ~ )
(4.42) TV = s + A for scalsr EQ
(4.4D) %5;5 = T; + 5:* for vector EQ
) d ! \ J '\ vl /

rate of change

roducsi A Fa
of storage production cransfar

by

The analysis of annual change of number of cars in some country

example of the balance (4.22). The change resul-

o

is & demonstraciv

4

s from the manufactured output (creation) and scrapping (annihilae
tion) within the country, as well as from the foreign irade (trans-
fer): the importation (inflow) end %the exporistion (ouitflow).

The balance (4.3%a) may be illustrated by the change of number
of vhe wvehicles in the circumstances of wsr, when Some of the coun-
try's frontiers are mobile fronts (boundaries of refereniial region
In such circumstances, the transfer should contain the capture =f-

fect, resulting from vhe equipment taken from the enemy in attack,

and abandoned fcr enemy's benefii in retreas.

4.5. The Continuous Extvensive Quanviiy

From now on, our consideravions will be restricted to the con-
tiﬁuous Ms. Their densities of storage, production, and transfer
are assumed tc be time-space-continuous and differentiable fields.
However, we must keep the vhenomenoclogical character of continuity

and differentiability in mind, because the densities themselves
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are the apparent limits (limfs, see Sec. 2.1) for very small but

N

not infinitesimal regions.

The three~dimensional region is the site of storagze of I, as
well as the place where the production of BQ occurs. 3ince the vol-
ume 1s a scalasr measure for such a region, the densities of storage

and productvion are defined as follows:
i8]

-~

) ]
L Denotatvion for |
Category of ithe P

<z Defin 0 Scalar | vector .
{volume—) density L0l vion CEQ m ;
storage s stvored EQ O = '
(4.5) densizvy of FQJ ~ Limf Vo ilume ' P %

production \ . .. produced E) =

(4.6) density of Q) lims tTime . volume Y R

The "density" deprived of any adjective will be meant as the
"volume-density of storage". In cases of the substantizl and compon-
ential quantities, we shall also use the mass—densities and- the
partiel densities.

oince the storage and production are non-referentizl guantitvies,
their densities do nov depend on the motiion of the balance sysien.
Consequently, the storage and production of the scaler and vecicr

EQ within a referential region are expressed as follows:

(4.72) § =Efﬁ’ a’v, (4.70) §=ﬂf§ v
:gﬁ ~

(4.8a) P = M‘PdBV, (4.,8D) 3_:!. zj"j"g a2y
| I3 La

4.,4. The Transport of an Extensive Quantity

In <the balsnce writtven for =z system, we consider the transfer
through the boundary surface only. The transport process of =Q
occcurs, however, in the whole three-dimensional interior of the

system, It results from the assuned contvinuity of E) that av
¥
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imaginary way of division of the balance region into even the smal-
lest sub-regions, there exists a possibility of transfer across
arbitrarily situated interfaces.

In the microphysical realiiy, the process of transport lies in
the carrying of discrete storages of EQ by the grains of subsiance
and phovons, which move in various direciions through very small
imaginary spatial region. All the possible dirsctions of velocities
0F HQ's carriers can be allocated o narrow cones, having a common
vertex and producing the tctal solid angle 4r aliogether. This way ,

the real transport of B} is nothing else but a directional irapns-—

mission.
Consider a flow of EQ) across a very small surface element {com—

pare Eq.1.23b)

2= (2

A ,Qg = g

(4.9a) d Sp im S,

and wivhin an infinite set of identical narrow cones with vertexes

covering all the points of SQE . The cones are unidirected, each of
Ay :

them being described by the vectorial solid angle
(4.90) $%1 = T, 8%

Both 82§ﬁ_and $°%. have the same unit vechor Zﬁ: thus the axis
of the solid angle is normal tc the surface element (Fig. 4.2a).
Since the surface element is imaginary, it does not hinder the tran-
sport of HEQ in any direction. This time, however, we tazke into ac-
count only those velocity direciions of B 's carriers which are not
much deviated with respect to the unit vecior Ti:

In order to examine the directionszl characteristic of transport,
we swivel the cone set with the purpose vo cover all possible dir-
ections of 1,. While measuring the amounti of tramsmitied EQ, we
keep the cone axes perpendicular %o the surface element (Fiz.4.2b).

Also the magnitudes of vectors é%ﬁ*(i.e. the scalar solid angle

é?ﬁg and Szﬁ\(i.e. the scalar area g2%n)’ as well as the time



Fig. 4.2. Directional transmission of extensive cquantity (flow
directions of EQ are marked by broad arrows)
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interval $t, are kept constant.
Within the apperent limit, the amount of BQ transmitved along

- ¢ D= n —_ . . "
the cones &,ﬁ_ and across the surfacs element 32§D during time 3t

. . - 2
remains proporiional to three scalars: 3t, 52§p, and é_Q‘. Conse~

guently, we define the next category of density, which is:

transmission s transmitted HQ
(4.10) density of m\| limf time . area . solid angle
rscalar Q: HT
Denovavion for o
vector EQ: ?P

The density of itransmission is a function of three variables:
the unit vector I, of direction in space, the position T in space,

S

and the time +.

4.5, The Transfer-Flux Density

Since ithe directional tramsmission is something alike the centi-
rifugsl flow of EQ ouv of a very small sphere (Fig. 4.2b), it con-
tributes to the negative transfer of ). According to definitvion
(4.10), the EQ flown out of the sphere through its cross-section

surface element bgg within the cone %%ﬁ_ per unit Time 1s:
YN

(4.11a) - $47. = 5Q§2§Q§2 . (4.11p) - §5 = Tnézsnﬁgﬁ_

—
=
Now we consider the flow of EBQ through another very small ima-

ginary surface element

(4.122) $95 = Iss2s

of constant area %25 and consitant direction Is' The centres of sur-

face elements, both the Tixed one $25 and the swivelling ome 55 ,

. . . . N i - 2""' A
are positioned identicall whereas the projeccion of 55 on the
P s J )

plane normal to iﬁ_covers Eﬁﬁﬁ_precisely 2t any direction of IKL

(Fig. 4.2¢). This way the area of the swivelling element is propox-

tional to the cosine of the angle between I, and 15, or to the

scalar product of unit vectors (Isjf):
[
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(4.120) %5, = ¥ (I,1) = (8% )

Now we apply Egs.(4.12b) and (4.9b) to Egs.(4.11), reach the
apparent limit (S*bd), and use the rule (1.20Ca) to obtain the tran-—

sfer of EQ through fixed surface element a8 within the cone d°% :

(4.13a) - a*T, = (6% a%m)E,
S —-ﬁ:“::::
(4.17%b) - a%f = (a% d_:)_)T = a%s 4% T

The transfer through the same surface element bit within all the
cones covering the totvel solid angle is a double invegral with res-
pect o d%E~; pleacing d2§, as a constant vector, before the integ-

ration sign, we have:

(4.14a) - 42T = (a sxfj[ PLE ), (4.140) = a°T = a%s @ T,

The directional Integravion of the transmission density gives a
finite gquantity which characterizes the spatial net flux of EQ, all
possible directions being taken into account. The resulis of integ~
ratvion are called the vransfer-flux densiiies of scalar and vector

EQ:

(4.152) B =a®in (4.150) T = 2%,

Y

While the transmission density of EQ (Eij T,) is of the same

tensor rank as the HQ itself, the transfer—flux density (H, T)

has the rank higher by one.

The directional integration reveals the predomination of sone
cones of vransmission over the others, and makes possible to dis-
close the directvion of the resultvant transport of H3.

Being an integrated productv of a vector and a scalar, the vecw
tor H shows the direction of the resultant transport of scalar IEQ
outright. In case of the transport of mass, the vector H is prop-

ortional to the barycentric velocity u. When u = 0, it does not

mean that there 1s no transmission of mass at all buv 1t proves
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either the directional compensation of itransmission (the contribut-
ions of the opposite cones cancel each other), or isotropy of Tran-
smission (the coniribubtions of all the cones are identical), pecu-
liar to the purely thermal motion of grains of substance. Similar-
ly, in case of the isoiropic radiation, the energy 1is transmicted
e¥enly in all the directiions, resuliing in the transfer-flux densi-
ty equal To zero.

Being an integrated dyadic product of itwo vectors, the jensor E
conjugates the direction of the vector H) itself with the direction
of its resulitant tramsport. It is peculiar to the momentum trans-
port in gas at macroscopic rest that for any transmission cone the

2

vectors’jp and a“P. are directed identically (Fig. 4.2b), and the

i

magnitude of ?ﬂiis isotropic. Cwing to this, the transfer-flux den
sity % becomes a spherical tensor Tp (the scalar p stands for the
pressure of gas), having no distinguished directions.

Thnile the transfer-flux density describes a three-dimensional
transport process independent of any gecometric reference, the ele-

mentary btransfer depends on the direcvion of dgg, as it results

from substitution of Egs(4.15) into Bgs.(4.14):

(4.168) — 42T = (d¢°5 H), (4.16b) - d°T = G5

=]

If +the resulkant tramsport of a scalar ) occurs tangentially
to the surface element (ﬁj_dzg), there is no transfer through a°s
at all, despite of non-zero flux density H. In macroscopically res-
ting gas, the momentum transfer vecvor is always normal to the sux-

face element d°5 and equal to - D a°s, as it results from substi-

tution of T = 1p into Eq.(4.16b) and the use of rule (1.184).

4.6. The Capture Effecy

The exposition given in the preceding section has been based on
the assumption that the densities H and T are assigned to a resvim

point, and the transfer is occurring through an immobhile surface
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2'_' - Lo e
element d°s. At eny motion of the surface, however, the transier

will be altered by an additional effect of capiure.

2

Consider two surface elements: the immohile one 4 s and the ref-

erential one d2§;. At the instant + they cover each other and have
—>¥
2

1dentical oriemtation: d°5 (%) = a%S. At a later instant t+dt the
—%‘w

referential element is occupying =z different position d2§ (t+dﬁ>
—>»%

(Fig. 4.3). Along its referential displacement w dt, the suriace

o e —
element d4°s_ has swept the volume element oV = (d2s w dt) (see Eq.
———3a

1.23d), and captured the storage ¥ a7V or T 47V of the scalar or
vector HQ, respectvively. The storage captured per uniti time is cal-
led the elementary capoure of scalar or vector EQ, and denoted by

dgjb or dgﬁe, raspectively:

(- 172) a7, = (a% W)¥ = (a5 W9
(4.170) dzi - (d2~§ )T = dg‘;‘%f%

(in case of the vector EQ the rule 1.20s has been used) .

If the vectors w and 495 (the latter assumed o be outwardly
bound with respect to the balance region) form an acuve angle, then
the capture (4.17a) effects the growth of the storage of scalar EQ,
as well as it increases the itransfer, being an additional inflow
into the region.

Consequently, the itransfer dzﬁl, dzfi.through the referential

— ~—py
surface element @Egm' is the transfer across the immobile surface
element (both elements covering each other at the instant given)

plus the capture:

(4.18a) a°T_ = 2% - a°T,
3w
(4.18b) a7 = a7 . a°T
\ —N [\ /A ° /
transfer through transfer through capture throtugh
referential immobile referential

surface element surface element surface element



Fig. 4.3. Volume element swept by the referential surface element

d*Sw
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ubstituting Bgs.(4.16) and (4.17) into Rgs.(4.18), we obtain
the elementary transfer through a raferential surface element {(de-

noted simply as d2§, since it is frozen at the instant given)

2. ____f2""”"’ 2;_,_ 2=tz
(4.192) &7F_ = ~ (d7s 2D, (4.19p) 47T = c'fs_m?J ,

expressed in terms of vhe referential transfer-~flux densiiy

(4.208) H_=T% -%%, (4.20b) T.=T -7
—

where w{ and W P are the capture-flux densities.

The transfer-flux density at an immobile point 15 a parcicular

case of the referential density, since

(4.21) T _=H, @T_=7% at W o= 0
=

e relation (4.18a) may be suggestively illustrated by the Zol-
lowing example. Imagine an incompressible and inviscid fluwid flow-
ing along a pipe with the uniform valocity n. The rate of fiow, or
the transfer of fluid's volume, 15 being measurad at the control
cross~section moving with velocity ¥ in the same direction as the
£1uid itself (Fig. 4.4). The rate of flow atiains its largest (po-
sitive) value when the control oross—-saciion is at rest. The incre-
ase in velociity W causes subtraction of bigger and bigger caprvure
effect from the rate of flow measured at rest. A w = u the meter
reading vanishes, and at (ﬁ}>¢ﬁi the result of measuremeni becomes

negacive.

4.7. The Transfer as a Surface Interaction

The transfer of BEQ through the shell of a referential balance
region is represented by tThe integral of expression (4.19) ovex
+he closed surface, which, in turn, can be transformed into a vol-

ume integral, in accordance with the GGO theorem (1.34):



in time

t+ At

exchange

w o= b« w< uy W=y J<udw
! i I 1
w AT w A w AL
% N [
v 4F u At g At u AL
R A, -
= = 0 -

Fig.4.4. The influence of the capture effect on fluid ocutput

measurement.

The fluid is flowing with the wvelocity u

through the control cross-section (thick line) moving with

velocity w along the pipeline.
to the fluid mass exchanged during the time At

The crossed area corresponds
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B (4.222) T = -%§(a?§ ') = lﬁ{ﬁlv T4V
= - ~*u
S __ V.
~BW -3
— 2_ = {f = 3
(4.220) T = - 48 T_ = JSdlv T_4d’v
—h 2 ~y é_ 9
~ 5% >3
ig. 4.5 Tn case of a scalar B (Pig. 4.5), on those parts of the shell

S where d s and H form an obtuse angle, or where (d s ﬂﬁ)'(O, the
Wl ~2
transfer 1is positive—vaiued, being an inflow into the region and
sjnoreasing the storage of EQ. At an acuve angle, or at (d H ):>O,

oL

the outflow to the surroundings takes place, and at the right angle,
or at (dggjgg) = 0, thers is no transfer at all. The given angle
ecriterion is, of course, bassd on The principle that the shell 1
outwardly bound with respect To enclosed regioll.

The interpretabtion of the alternative form of Eg. (4.22a) is bor-
vowed from the fluid mechanics. In the places where div_gi> 0 the
tyansfer~-flux of a scalar EQ arises, and where dlv'ﬁ <:0 it vanis-

~3q

hes. Within the region of satisfying the equavion le_HG = 0, the
trensfer—~flux is composed of sourceless +tubes. The transfer of a
scalar By through cross—-section of any segment of such a tube is
the same (e.z. the rate of flow of incompressible fluid).

The angle criterion canmot be applisd to the classificavion of

tyransfer of a vector BQ, since in this case the flux density 1s a

The transfer of 3FQ betiween the region and its surroundings 15 a
manifestation of physical interaction cccurring across the boundary
Fig. 4.6 Consider two adjacent regions numbered (1) and (2), amd divided
| by the interface s (Fig. 4,6). We replace the intverface with two ac
hering surfaces 54 and S, each of them being a part of shell clos-
jng the region (1) or (2), respectiively. Since +the shells are out-
wardly bound, the adhering surface elements are opposite vecuors:

{ e 2

4%, + a5, = 0. If the density fields ¥ and T are con¥inuous, the;




d’s
6 rightangle , d*39- = O (no transfer)
L 2%
region V. & acute angle, 4°7 <
g {outflow)
- P

obtuse  yza > g {inflow )
angle

Fig. 4.5. Angle criterion of extensive scalar quantity exchange

region (2,

$
8¢ 1i1S;
region (1) ][

!

‘\J:s %

Fig.4.6. Surface interaction between two regions
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mist be identically-valued on either adhering surface element. Thus

(1.232) (a%50) = - (®5H),  (4.230) a%5,T = - a“s

k]

2

3l

Assuming the following rule for the sign of acvion

The elementary surface aciion

(4.24) Jexerted by region (1) on region (2) = (azgiﬁ), dzgiﬁ
| exerted by region (2) on region (1) = (d2§2ﬁ), dZEéﬁ

we find that the relations (4.23) express the transport versicn of
the law of action sand reaction. Bg.(4.2%a), as applied %0 the mass
(which is a scalaer m), explains that the subsiance flow out of the
region (1) is equal to the flow into the region (2). If Eq.(4.23b)

concerns the momentum (which is a vector ), then T stands for the
2

y =

stress, and dgglﬁ, dzgéﬁ express two opposite surface forces of in-
teraction between the regions (1) and (2), in compliance with the
Third Law of Dynamics. '

The rule (4.24) is still valid when applied to any finive surface

being in motion. Thus, in case of the ,sshell_gb,\;3 of a referential bal-
ance regioun, we have

() 0= = -5 the surface action exerted D

a vl 7 v y

(4.252) +f%(d S Eﬁ)’ + ﬁ’d S,E; the balance region on surroundings

55 55

P = +the surface action exerted by
(4.25p) “?F(d S gﬁ)’ ) d S_Q; surroundings on the balance region

B 55

Comparing Eas.(4.22a,b) and (4.25b) we find that the transfer,

as a balance term, is the surface action exerted by surroundings

on the balance regioh.

4,.8. The Momentum Tramnsfer as the Surface Force

From the phenomenological viewpoint, the so~called non-convectil
irensfer of momentum (see Sec. 5.7) is identified with the surface

force occurring on the shell of balance region. The non-—convecvive



81

transfer-flux density of momentum is the stress temsor 1, It may

take specific shapes cof the elastic stress ﬂe, the viscous stress

ﬂv, or the pressure Stress ﬂp = Tp, where p denotes the Scalaxr

pressure{
Iong time ago the hydrostatics defined tThe pressure p so that

5 expresses tvhe pressure force
{(4,.26a) ﬁ;p d2§ zg%;dzg“ (or thrusi) exeried by the
< :

~3

D balance region (filled with
S fluid) on its surroundings

(the equivalence of both forms results from the rule 1.18d and

substitution of ﬂb = Ip).
Some time later the elasticity theory introduced the concept of
the elastic siress tensor ﬁé such that
expresses the elastic force exerted by the

lf 5=
(4.26b) gbdgs Ny surroundings {(e.g. a load) on the balance
é region (e.g. a stretched bar)

On the analogy of ﬁé, the fluid mechanics defined ithe viscous

stress ﬂ% so that

[ = expresses the viscous force exerted by
(4.26¢) &&d.s T8N the surroundings on the balance region
£ (filled with fluid)

From the definitions (4.26a,b,c) and the sign convention (4.25)

we find thav

the non-convectiive in the elastic body = -~ ﬁé
(4.26d4) trensfer-flux _ _
.density of momentum ) in the fluid = + Ip - ﬁ%

Being a result of fortuitous conventions, the nonuniformity of
signs which precede different stiresses makes the notation of many
equations deprived of consisiency end elegance. In the balance
equations of all EQs save the momentum, the divergence term 1is pre-
cede by the minus sign. In all the phenomenological relationé save
Hooke's elasticity law and Newtoﬁ's viscosity law, the gradient of
the thermodynamic force is preceded by the minus sign.

In order to get rid of this inconseguence, we shall follow some
Q
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few authors (e.g. Bird, Stewart & Lightfoot, see Bibliography 3)

who assume the uniform sign convention for the resultant Siress T,
the elastic stress ﬂe’ and the viscous stress ﬂv. Since this con-

vention is opposite to the traditiona one, we have

(4.26e) 11 = - 00, N, = - T, = -1

Identifying the resultant stress 11 with the non-convective vran-—

sfer-flux density of momentum, snd basing on the rule (4.25a), we

2= 5 expresses the surface force exertved by
(4.27a) a%s 1 tne substantial region on its surroundings
53
(4.27p) 1 = fe for the elastic body
(4.27¢) N = Tp + ﬁv for the fluid

4.9, The Basic Balances of a Continuous Extensive Quensity

Substituiing Eqs.(4.7),.{(4.8) and (4.22) into the basic balances
(4.4), we obtain universally-valid integral halances of the contin-

uous scalara and vector BQ, for a referential region:

¢ e :3
(4.28a) -4m.ml? a’v

H
=
&
o
N
<
I
T
oY
Ao
wl
u
i

v 5 v 5_
-2 —w 5
Sl 53 = 43 e
(4.08b) —sa || a’v = | E a’v -.é$ a%s'T_
at = J =3
5 X 2%
t ;oo I\ {

rate of change

i Tl transfer
of siorage production ran

Substituting W = 0 and using the rules (3,1e) and (4.21), we

obtain %the integral balances for am immobile regilon:

(4.292) Et ﬂ]ﬁ’dBv - ﬁfﬁjd3v B 4§(d2§ =
5 % ). ;
(4.29D) %E [ a% - ,ﬂfﬁ ov - § T

\ v [ A¥ /8 /
rate of change
of storage

production transfer
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Since they deal with finiite regions, the integral balances (4.28
and (4.29) are mixed differential-integral equations. They have,
however, their counterparts being purely differemvial equations.
In order to cobtain those equations we transform the balances
(4.28) and (4.29) as follows: to the left~hend side we apply the

Leibniz—Reynolds transformation (3.30), and

4.
L

he term of wransfer

e
5

we use the GGO theorem (1.3%4). Shifting all

ct

he terms to one side
we cobtain a purely volume integral which is equal to zero for arbi-
trarily small region, because the fields concerned are assumed con-
tinuous. This way the integrated function must be zero everywhersa.

.

5 has a shape of pursly differential egquation which links up the
densities of By as the field (intensive) quantities. Shifving vhe
terms concerning production and transfer to the righi-hand side,

we obtain the differential balance of ) which is referred no more

to any region but o a point in space. It must ve enphasized that
the lefi-hand side of a differential bhalance {corresponding to the
rate of change of storage) is not, in general, a time-derivacive
but a2 Reynoldsian.

tarting from BEgs.(4.28) and following the outlined procedure,

we derive the differential balances of the scalar and vectior I,

for a referential point:

(4.302) reyn ¥ = %ﬁéﬁ + VY divw = W - div B
=5 Y] —>w
-"-"'-“-"‘_d-li; oy . - = _—-—.—":

(4.30n) rggg P =W+ Pdivw = R v I

R Py N L /
rate of change of storage producvion transfer

Since W is arbitrary, the equations given are of universal chax-
acter. Substituting W = 0 into Egs.(4.30), or applying the above-
~described procedure to the integral baleances (4.29), we oblain Th

differential balances for the particular case of an immobile point
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(4.%1a) reyn ¥ = %% = L4 - giv H
(4.311) reyn P = %% = i1 - Ty &

\ ¥ | A z

rate of change of storage oroduction transfer

4.10. Theorem on the Zguivalence of Balances

If any of 4 types of the basic balances (for the referential/
immobile region/point) is valid with respect to a specific continu-
ous ), vthen the 3 remaining balances kdep their validity with res-

b
(%}

pect to the same EQ. This is somewhat simplifisd form of the theo-
rem on equivalence of balances. 1v is applicable to the balances

of either scalar oxr vector BQ, i.e. to the group of Hags.(4.28z2),
(4.29a), (4.30a), (4.31a), or Egs.(4.28b), (4.29b), (4.301b), (4.31b)
The theorem can be proved for 12 possible twin combinations in each
group, Tollowing indications given in Sec. 4.9. The exercises 4.1
and 4.2 contain two exemplifying proofs.

The discussed theorem is of immensSe use as a universal recipe.
If, basing on the physical premises, some eguation (e.g. the Sec-
ond Law of Motion) can be interpreted as a definite type of balan—
ce (e.g. of the momentum), then we are allowed %o use the remain-
ing equivalent types of balances, provided the specific forms of
the densities of storage, production, and iransfer-flux were pre-
served in each eguation. This way we avoid tedious mathematical
operacions which are so familiar in some of the tvextbooks of the
fluid mechanics and thermodynamics, coantsining separatve vransfor-
matvions of balances for vthe individual cases of the mass, momentum,
enexrgy, eLc.

Exercise 4.1. Prove the theorem on eguivalence of balances (4.28:

and (4.%1a), meking no intermediary use of Bg.(4.302).

BExercise 4.2. Prove the thesorem on equivalence of balances (4.208]

and (4.%1b), making no intermediary use of Eq.(4.30b).
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Exercise 4.3. Deduce the rules (4.20a,b), making no use of the

geometric image of the capture effect.

Instructions. We compare the balances (4.30a,b) and (4.31a,b) in

the respectiive pairs, at the instant when the referential and immo-
bile point cover each other (beeause of the assumed continuity of
the fields, the events of such kind fill the time-space inierval
continuously). Subtracting the differential balances with properly
develpped Reynoldsians, we obtain equations div E = 0 and §iv b = O,
where B and b are sums of certain vectors and tensors, respecvively,
appearing in Eqs.(4.30) and (4.31). Because of the rules (1.30d) and
(1.31d4), the solutions of those eguations are curls of arbitrary
vector or tensor fields, & or &, respechtively: B = Y0t A, D = F03T &.
We cannot, however, accept the infinite number of solutions, becau-
se, from the physical viewpoint, all the constituents of B and b

are univocally definite and experimentally measurable. The only phy-
sical solutions result from substitutions &, & = 0, and this leads

to the sought Egs.(4.20a,b).

4,11. The Conservative Quantity

such an EQ which can be neither created nor annihilated anywhere

and atv any time, we call the conservaiive guantity. The productiion
of such a gquanvity must vanish in arbitrarily small vime-space in-

terval, or
(4.32) W = (0, R =0 always and everywhere, for conservative EQ

Logically, this posvtulate should be called the law of conserva-

tion of an B}, and not, as it is notoriously writien in many text-—
hooks and papers, the balance equation of any EQ, even a non-con-—
servative Qne.

Since the postulate (4.32) concerns the production density, it
is of the field character. If expressed in an integral form (for a

finite region), the law of conservation would be deprived of its
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universal characver. Indeed, if there would be non-zero creation
and annihilation in different parts of the system, their sum {pro-
duction) remaining always zero, then not the quantiiy but the sys—
tem could be named conservative.

The basic balances for the conservsiive EQs result from substi-
tution of Bq.(4.32) into the halances (4.28), (4.29), (4.30) and
(4.31). For a conservative I} the only possible cause of change of
svorage 1s the transfer between the balance region and its surroun-—
dings.

It results from the definition of conversion (Sec. 4.1) that the
sum of mutually convertible EQs within a closed set must be conser-
vative guantity. In the nonrelatvivisvic conditions the following
EQs arxe conservative: the total mass of all componsnis of substan-
ce, the resultant electric charge (as the algebraic sum of the po-
sitive and hegative charges), and the total energy as the sum of
all specific energies.

Of the non-conservative character is any singled-cut convertiib-—
le guantity, such as the mass of a selecved compornent of mixture
(subjected to creation or annihilation during chemical reaciion),
the charge of definite sign (subjected to creation and annihilat-
ion resulting from the ionization and recombination, respectively),
or a specific energy (e.g. the internal energy, which can be cre-
aved at vthe expense of annihilaved kinetic energy in the process
of the viscous dissipation). According to the Second Law of Ther-
modynamics, the entropy is subjected to creation only, and there-
for is not a conservavive gquancity.

In the sirict sense of the postulate (4.3%2) neither the momen-
tum nor the angular momentum of mass belong to the conservative
quaniities. The well~-known "laws of conservation of linear and an—
gular momentum® are of limited validity, because they asswne the

existence of central forces only (and no Lorentz force, for example
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and deal with an isolated system as a whole, and not with an arbit-
rary part of iv. It seems, however, that the sum of the mass and
field momentums, as well as the sum of the mass and field angularx
momentums, are conservative guantities in the meaning of postulate
(4.%32). This assumption has been nroved, thus far, for the sum of
the mass momentum and the elsctromagnetic field momentum in parti-
cular cilircumstances.

Exercise 4.4. Formulate the differentizl balance of (resultant)

charge at immobils point, denoting the (storage) density of charsge
with @, end regarding ‘the current density 1 as the fransfer-flux
intensity of charge through an immobile surface. The charge is a
scalar conservative BEQ. Check %he result with Eqg.(4.34) given in

the next section.

4.12. The Classical Balance of Hleciromagnetic Energy

Before we derive the balance of electromagneiic ensrgy as an
example of scalar EJ, we have to recollect the necessary minimum
knowledge on the electromagnevic field theory. The eguavions will
be written in the Iorentz system of units, which employs the uni-
versal physical consvant ¢, or the velocity of light in vacuum.

The basic electromagnetic quantities are:
g

Qe charge density, i  current density,
T electriec field vector, T eleciric displacement,
B  magnetic fisld vector, B  magnetic induction.

The vectors & and 1 describe the electric field and the current
density, respectively, at an immobile point. If the point of refer-
ence moves with the referential velocity W, then the electric field
and the current density are referential vectors E-’JJ and g;, respecti-
vely. The relation beitween ._E:;ﬁ and E has been found in Ex. 3.20 (Zq.
3.42)s 1 differs from:g_ by the capture-flux density ﬁ?e (see rule

ol
4.20a). Substituting w = W, we find the dependence of E and 1 on
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EF and Eﬁ, respectively, the latter symbols referred to the sub-—
iy ~

stantial point moving with the baryceniric velocity T:

(4.%332) E=E_-~
.-«5

Y

o

uXB, (4.33b) I = i%_g+ gu

The balance of charge (ses Ex. 4.4) makes the densities ¢, and I

interrelated
D
(4.34) e 4 aiv I =0,

while the first pair of Maxwell's equations postulates the following

interdependence among the vectors E, D, H, B, and 1

(4—-353) ‘fé—‘EE=_.j:..:]I3., (4--35b) ‘I—'SZJE=1BD+.I
c [

ciat

t is easy 1o prove with the help of Egs.(4.35) and (1.30c) +thai

(4.36)  (E) + B = - (FD) - aiv(cEXD)

We have found an important relation being of. the dimension of
energy per unit time and volume, which is the dimension of a differ-
ential balance of energy as a scalar ). Though it contains a div-
ergence verm, which may be interpreted as a transfer term, the rel-
ation (4.36) is not yet a balance, because its left-hand side does
not take the shape 0f a pure time—derivative.

However, in an isotropic and linear medium, the vectors D and B

are parallel and proporitional to E and H, respectively, so that

(E %’%) + (B %2—) = %{(E D) ; (H B)j’. In this particular case, Eq.
(4.36) assumes the shape of the classical balance of electromagne-—

tic energy (at an immobile point):

(4.31) FHMED LW} o _(FT) - aiv(eExE)
Y 7 ! ol /
rate of change of storage production transfer

for isotropic and linear medium

The balance given is founded on the hypothesis that the storage
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density of eleciromagnetiic energy Wem solely depends on the vecvors
E, D, B, H:

(H B)

_ED) +
(4.38) Wy = 5

According to this assumption, the elecironagnetic energy is loc-
ated at any place where the elzactromagnetic field does exist, in a

region filled with sudbstance as well as in the vacuwn.

4.13, The Hystieretic Annihilation of Hlectromagnevic Eneray

Despite of its simplicity and elegance, the classical bhalance
of electromagnetic emergy (4.37) is of 1little use as applied to
transport phenomena. Its validity is restrictied to a particular
medium in which the hysteresis phenomenon does not occur. Moreover,
its form makes impossible to reveal the electromechanical conversio:
of energy and to distinguish the energy transfer by means of the
current conduction and the wave radiatvion.

In order o obiain a balance valid for any medium, rematk thas

W

(4.39) @)+ @E) =B+ oy,

e
4

<

where W, has been dafined bdy Bg.(4.38), and Gpm’ called the

polarization conversion density, 1is gqual To

1§ 3y _ 538y, g 20 _ (528
(4.40) G‘Pm—"g‘{(E '?.;) - (D %-:_;) + (H'E-:.; - (B -ﬁ)}

This is, in fact, the hysteretic annihilation of elecvromagnetic

energy for the benefit of the internal energy, and it is going to-
gether with the hysteresis of electric and magnetic polarization

(so—called "heat of hysteresis"). Considering the magnetlc phnenome-
non only, the time-integral of Gpm within the cycle of the hyster—
esis loop gives vhe expression.fﬁ(ﬁ dB) 2 0, which is well-kmown %o

+o the electricians. In a linear medium, of course, the hysteresis

does not occur, and consequently G = Q.
3 Pm
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Substituting Bq.(4.39) into Eq.(4.36) we obvain the universally-
~valid {(for any medium) balance of electromagnetic energy:

AW
(4.41) S8 = -6 - (EI) - div(cEXH)

We shall noi discuss this balance bvefore we +ransform two of its

terms for the sake of a clearer interpretation.

4,14, Blectromechanical Conversion and Conductive Production of

Electromagneiic Energy

At firsi, we shall make the conversion Term (E 1) more specific.

I+ is possible %o prove (Ex. 4.5) that

(4.42) ED = EI) + (Fgu)

=3 iy

Where'ﬁed denotes the density of electrodynsmic force exerted on

the elecirically charged or conducting substance

XE = ‘ 15,
i? B QeE , + _‘ 1B

(4.43) Fogq = QB+ =
the Coulomb force the Lorentz force

+ is worth to notiice that Fed is a referential invariant, i.e.
it remains identical at any arbitrary velocivy w of the reference
point (Ix. 4.6). This propertiy, however, does not concern separa-
tely treated constituents of ﬁed’ i.e. the Coulomb and Lorenvz
forces, because B_# E, 1_ # 1, generally.

v ] =
Since Ted describes one of the bulk forces exerted on a body,
the power density (Tedﬁ) will appear as a production term in The
balance of kinetic ensxrgy (5.43a), Hence we conncluda that (Fedu)

concerns the reversible electromechanical conversion between the

electromagnetic energy and kinevic energy (occurring, for example,

in an electric generator or motor):
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production density of ) _ S
(4.44) Slectromagnetic enersgy ) = (Fedu).% 0

S
at the expense > 0, obiuse angle . = -
for the benefit <G, acute angle between Fgq,0

of kinevic energy

The energeiic interpretation of the term (_@_G:i;_) of Bq.(4.42)

W
results from Ohm's law. Though the validity of this law is limited
to isotropic and linear medium of constant resistivity W, neverihe-
less the conclusions obtained can be gqualitatively exiended over
any medium.

Tn the phenomenological electromsgnevics, the symbol § is under-
stood Lo be the macroscopically averaged eleciric field. In the
dense substance, the ordered motion of eleciric charge is influen-
ced by E, as well as by the microscopic eleciric field, provided iv
is non-homogenous. The latier influence is phenomenolcgically des—

cribed by the motive wvector K representing the glectrochemical and

thermoelectric "forces”.

For = conductor moving with the baryceniric velocity u, Chm's

law assumes the following field shape:

(4.45) WI_ =
Sy

bl

_ + E_
W LA

Tt has to be emphasized that Chm's law written as M1 =E + K
remszins valid for the resting conductor only (at u = 0). This sia-
tement is essential to the magnetohydrodynsamics (see Bg.3.39D),
though it is notoriously omitied 1n most textbooks on electromag-
netvics.

T+ results from Ohm's law that in case of an isotropic and line-

ar medium the term of the conductive production 0f electromagnetic

energy consists of two parts:
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(4.46) - (ET)) = (®.T.) - (T2
3oy U3 U
| / 1 / 1 /
conductive reversible (%0) irreversible {<0)
production of glecirochemical anninhilavion
electromagnesic and thermoelectric (Joule's heat
energy conversion or dissipation)
at the expense >0, acute sngle -

}between X _,
=l

for the benefit <0, obiuse angle 23

of internal energy

In any arbitrary medium, the Terd (E~§;) describes the conversion
3% Ay %
between electromsgnetic energy and internal ensrgy, its both parts,
the reversible and the irreversible, being included.

Exercise 4.5. Derive Bg.(4.42).

Tnstruction. Develop (E 1) with the use of subsiituiions (4.33),

rules (1.19), and denotation (4.43).

Exercise 4.6. Prove that Ted is a referential invariamv.

Instructions. Substitute Eg.(3.42) and the relation between i

and E% (obtained with the help of rule 4.20a) into The latter

Wi

right-hend side of Eg.(4.43). It will become evident that ?ed rem-
ains unchanged for any arbilvrary w, including w = 0, hence

— s =
Fed - 311"7\W>.

4.15. The Improved Balance of Elsctromagnetic Energy

Tn the classical balance (4.37), the transfer of electromagnetic

energy is described by the divergence of Poynting's vector cEX He
This simple representatiion, though absolutely famltless Irom the
formal point of view, has now too much convincing physical inter-—

pretation. In the crossed static fields, for example, we have

ExE # 0, though any flow of energy Seems incredible. (n the ovher

nand, in such conditions it is always div EXH = ¢, Thus, if the
Poynting vector gives the correct resulbs in compuilng the Trans-—
fer through a shell as a whole, its general interpretation as tThe

transfer—flux density is rather dubious.
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From the viewpoint of transport phenomena, a more sultable ex—
pression for the transfer 1s based on the concepis of eleciromag-
netic potentials, the scalar one Y, and the vector one A. In the
final result we obtain swo kinds of transfer ¢f electromagneiic

energy, characverized by the following flux densities:

conductive transfer radiatvive transfer

The conducvive sransfer can occur in the conductors only, where

I # 0. Integrating the vecior -~ Y¥I over the shell conkaining a
segment of conductor, we obtain the voltage drop muliiplied by the
current, i.e. the applied electric power.

The radiative transfer can occur in sny medium (also in the va-

cuum), provided the electromagnetvic field keeps 1its time-variabili-
ty. As a matter of fact, this is tvhe radiavion of the radio waves.
This kind of transfer is absent in the stationary and static fields
(e.g. at the direct current, or static distribution of constvant

charges).

T . N — — _/ f— . .
Jer are formally correct as well. Though Jao ¥ Jer F cEXH, 1

possible to show thavt

(4.48) div(':?‘ec + 'J’er) = div(cEXH)

(the proof has heen omitted as too lengthy).

Making use of the itransformation (4.48) and previously obuained
Bg.(4.42) we are able to discover the full physical interpretation
0of +the intermediate Eq.(4.41). This way we obtain a universal (va-
1id for any medium) relation which has been named the improved

halance of elecvromaghnetic energy by the present auvhor:
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ngm _ _ _
(4.49) = - Gpm - (m“&q) - (Fedu) - div I, - div 7.,
| {1 / !
rate of production transfexr through
change of av expense /for benefit immobile surface
storage of
t A [t /3 __/
internal kinevic conductive zradiative
energy energy

5. The “Balances of Substantial Quantities

5.1. The Balance of HMass

The mess is a scalar 3. Its storage density @ has Dbeen defined
vy Bg.(2.5a). According to definitvion (2.6a), the phenomenological
motion of mass is charscterized by the barycentric velocity U.
Since any substantial surface §. moves with the same velocity (Sec.

"

%,3), the transfer-flux density of mass with respect To such a

gurfzce musti be zexo:

(5.1a) i =0

~>J
Using this postulate in Eq.(4.20a) at w = u, we find that the
mass-flux density through immobile surface 1S

(5.1b) T = ¢u

Applying this once again to the rule (4.208), we obtain the

mass—flux density through referential surface:

(5.1¢) _zﬁ e(w - W)
Substitution of ¥ = R, ¥ = 0 (the mass is a conservative guanti-
ty), and H_ = J_ into the basic balances (4.28a) and (4.3Ca) gives
D —>w

+he referential balances of mass:

5220 ] v - - el -
de - _é

.V.
~3 n

a - s = . - =
. > = 3 d = - — W
(5.2Db) rigg ¢ =g>n +Q divw iv(d @ W}Q)

Substituting ¥ = @ end W = 0 into Eq.(5.2a), we obtaln the
g
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integral balances of mass for the substantial and immobile region,
respectively:

(5.3a) ﬂﬁu:g{g a’v =0,  (5.%) Ei,ﬂYQ adv = - éﬁ(d?é o
v g

b

The balance (5.3%a) asserts that the storage of mass in the sub-
stantial region rem=ins constant in Time,
Substituting W = U eamd W = 0 into Bg.{(5.2b), we obtain the dif-

ferential balances of mass at the substantial and immobile pointw,

respectively:
(5.4a) reyn Q = O, or (5.4b) %%éJ + @ div o =0,
T
AV - -
or {(5.4c) T8 = v div u, v = 1/g
(5.4d) R 4 aiv(QE) =

Bg.(5.4a) asserts that the substeniial Reynoldsian of mass den-
sity 1s egual to zero always and everywhere. The alierhavive Eq.
(5.4¢) is widely used in the thermodynamics because of the specific
volume v contained. Eg.(5.4d) is known as the continuily ecguation,
the name being not too logical since apsrt from the mass many ovher
EQs are regarded to be coniilnuous.

it resulis from the balance (5.44) that
(5.5a) div(Qﬁ) = 0 for stationary flow
in which any local time-changes do not ocecur (A% = C),

In an incompressible liquid, the mass density field is stavionar
and homogenous, § = const<t,¥). Applying this o the balance (5.4b)
we find that the substaniial region is not submitted to dilatation

(compare Eg.3.12a):

(5.5b) div L = 0 for incompressible liguid (Q = const)
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Exercise 5.1. Formulate the balance of mass m of a rocket moving
with velocity W.

Instructions - (Mg, 5.1). #e regard the rocket as a stiff refexr-—

envial region_ga. Itvs shellf_’s_"_0 consists of the material ouver sur-
face of rocket's hull Sg and an imaginary flatv surface Sn covering

the hull's opening and penetrable o the exhaust gases leaving the

engine. The suxrface s, can be represented by the vector Eﬁ, outward-
1y bound with respect ©o 1&;- Over the eniire Sg there is no differ-
ence between the substantial and referential velocity (u = W), while
over s, the absolute velocity of gas Eg # W. For the sake of simpli-
fication, we assume that the densivy of gas §% and itvs relative ve-
locity Eg = Eé - ¥ are homogenously distributed over the whole sur-
Tace sn?ﬁﬂﬁll the assumpiions given we apply to the balance (5.2a)

and denote by m the integral on the lefi~hand side. The resulv is:

(5.6) PEsd = - (5,0,)%,
_'_"ls,

5.2. The Substantial Quantivy

The gubstantial quantity, or SQ, as abbreviated, is an extensive
quantity which can be stored in the substance and carried with the
substance. The S0 need not o be a conservative quantity, and the
carrying with substance is not, in general, the only way of 5Q's
transyport.

The monentum and angular momentum are the examplss of a vegtor
SQ. To the scalar S5Qs belong: the entropy, Some specific energies,
as well as the volume of a region filled with subscance. Ln the
other hand, the eleciromagnetic energy is not a 3Q, because 1iv may
he stored even in the vacuum.

Since the mass is a measure of the site of 5Q, <The storage of

SQ depends on the mass stored within the balance region. The con-

tinuous SQs are characterized by the mass—~densities, or, according

to tradition, "specific gquantities" (e.g. the specific volune):
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Category of the . Denotavion for
mass—density Definition scalar | vector
5Q 5Q
storage L - -
.o _Stored 5Q = -
— 1 -
(5.7) masgfd335ﬁu‘} nf E5ved mass g Q |
:
production ‘\ . o !
- produced SQ - >
(5.8) masgfd§881 j Linf 3" 5Toved mass P R

Comparing definitions (2.5a), (4.5}, (4.6), (5.7), and (5.8)
we obtain the ralations between the volunme-densivies and the
mass—-densities of 3Qs:

(5.92) 4 = gg, (5.90) P =¢Q, (5.102) ¥ =qp, (5.100) R =Q5

We shall use freguently the following transformations of The

substantial Reynoldsians {see £x. 5.2)

(5.112) zeyn(ee) = 3 + aiv(ieq) = ST+ qeaiv T = ¢ £h8

(5.110) Teym(ed) = 2% dJ_vLu°§Q] - dU)g L 0T aiv W = ¢ Ty

=3 i

and the substantial Reynolds' transformations (see Ex. 5.3)
y

(5.122a) (5.12b)
d 3 TS % d _ = .3 M. ag . .3
—z Jl o @77 = || ¢ §oF @77, | 3 ?de=j e &5 ady
dt 7 Vo d® ) v

W —»w ! =B, =>4

Axercise 5.2. Prove the transformations (5.11a,b).

Instruciion. Substitute Eqgs.(5.9a,b) into the expressions

(35.25a,h) for the Reynoldsians at w = u, develop the derivatives
of “the products, and use the balznce (5.4b).

Exercise 5.3. Prove the transformations (5.12a,b).

Instruction. Substitute the relations (5.1l1az,b) into the trans-

formations (3.3Ca,b) at W = u.
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5.3%. Convecuvive and Non~Convective Transfer of a_Substantial

Quantit
Jubstituting 2qs.(5.9) into EBgs.(4.20) at W = U and rearranging

the verms, we obtain the classifying decomposition of the transfer-

-flux density of a SQ with respect to tThe immobile surface:

(5.13a) H = E_ + U Ep
—~p \
(5.13b) T - T 500

L . i —u / [ I |
trangfer: non-conveciive convective

In the convective transfer, the 5Q is being carrisd with subst—
b

ance flowing with the baryceniric velocliwy u. This is the capiure

of 3Q's sitorage by the mobile substaniial surface 5o
A%

According to Bgs.(4.17), at w = u and with Bas.(5.9) substitu-
ted, there is no conveciive transfer ne surface to which

the barycenbric velocity fisld T is tangent:

)
|

i

—

(5.142) (d2§ ﬁ)a(g'= 0, (5.14%) (d2§ E)Q‘Q =0 at <5 11

The non-convecsive transfer is diresctly referred tc the substan~

o

tisl surface, so it has nothing in commoa witvh the motion of subs—
tance itself. The laws govarning the non-convecilve transfer are
directly independent of the harycaniric velocity. For example, in

a body with definite distridbution of vhe temperature field, the

.

heat conduction process (the non-convective transfer of intermal
energy) will be the same at any velocity of the body. Though tae
non-convective transfzr of momentum due O viscosity depends on the
gradient of velocity 1, nevertheless 1t does not depend on the vel-
oeity itself, and it would ramain unaliered by the addition of any
homogenous velocity field to .

The f1lux densities of the non-convective transfer of momentunm
and ensrgy are of a very freguent use in the fiuid mechanics and
tnermodynamics. Therafore the fully formalized denotations H. and

-7y

aﬂﬁ-E;_Will appear in the general theory of 3Qs only, and in the
A
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specific cases we shall replace thenm with traditional symbols dep-

rived of aYrows, €.8. dig (flux density of heat comduction) oxr T

the stress), bearing in mind that they describe the iransie

[0
H
b
[¢)]
P

erred o the substantial surface dut not the immobile one.
Suhstitusing Egs.(5.9) into Bgs.(4.20) and using E35.(5.13), we
obiain the transfer-flux densiities of 3Qs th rough a referential

surface:

1 =T v -a 5 _F _ (5-5) 0«
(5.152) Ho = H_ - (w)€Q , (5.150) T = T w-0.) QR

5.4, The Basic Balamces of a Substantial Quantivy

Substituting Bgs.(5.9), (5.10) and (5.45) into Bgs.(4.28) and

(4.30), we obtain the referential balances of 3Qs:

(5.168)  —s7 HEQE a’v

[
ey
AS—y

o3
=
o
Y
-3
H
Ny
r-\
[l
o
n
™
s}
|
N
4
1,
NG
[at]
-
|
—

dv V- V- S—
M —M ~3\
- d 1 — o= \
| G S . 2 _7=S
(5.16%b) -—tw mgQ 4V = ﬂgb 3-v - #d {_T% (w—u) Qq)
Vo . =
—>w —aW v
(5.17a) rnvn(Qc) ié;i) Wt 0o div W = 9p - divj%a + dlv{ﬁﬁéﬁ)tgk
(5.17b) Teyn{eQ) = g&&&l;; + oQ div w = Qﬁ - di E_ + d1viﬁﬁ—u)“§q
I A v \ ~>u

Spubstituting W = U and using the Reynolds transformations {(5.12)
we obiain the balances of S5Qs in a substantial region and at a sub-

stantial point:

(5.18a) (5.181)
a_ 5. 1 3 SIPUR - 3
_%m {e a7V = Jf 47V -c;%(a s E) —-f'aj} Hf\os v - Tﬁ)d 5 T
oy V. 5. v ¥ Vo
s ~>W >3 30
(5.19a) ¢ 357 = qp - div (5.190) ¢ Wow = 8 - Tiv T

Substituting W = O, we obtain the balances of 5Qs in an immobil

region and at an immobile point, with the distinction of the non-
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N

—convactive and convective vransfer:

F A A
(5.20=2) = Qe a7V = Jiiop 4V — (d Sigﬁ + ubqﬁ)
v v g
B i - — ===
(5.200)  — mqﬁ a7V = ”QE a’v -ﬂ&dgs {2‘: + E“Q‘Qk
2ty 5 2
(5.21a) (5.219)

BRE) - o - asv(@. + agg) | 28 < o5 - THIT_+ TQQ)

The above collection of 12 basic balances (from 5.16 to 5.21)
consists of the scalar and vector group, numbered with ﬁ;andAEJ
respectively. The theorem on eguivalence of balances (3ec. 4.10)

is applicable to either group of 6 eguatiouns.

Bxercise 5.4. Prove the equivalsnce of the balance sets (5.19a,b)

and (5.21a,b).

Instruction. Use the Sransformations (5.11).

Exercise 5.5. Derive the balances of mass (5.2a,b), (5.3a,b) and

(5.4a,b) from the basic bhalances of Q.

Instructions. Consider that the mass is a coanservative 5Q, spe-

cify the densities of storage and production (€ = ..., p = ...)
basing on the definitions (5.7) and (5.8), and take imto account
that the itransfer of mass is of conveciive charactsr only (£q.5.1b),

in order to define H.

5.5, The (Classification of Forces

Before wé discuss the balance of momentum we need to make a dig-
ression on the classification of forces. The grains of subsiance
are changing their momentums under the influence of the force field
which are phenomenologically divided into the long-range and Shori-
—range categories (Sec. 2.6).

The long-range force fizlds, such as the gravitvational field or

the macroscopic (phenomenologically averaged) electromagnetvic field
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affect in the same way any of the identical grains contained wishin
small volume element. Therefore the force exerted hy the long-range
field on the substance is proporiional to volume and called the

volume or body force. Its spatizl distribution is described by the

volume-density B (body force per unit volume).

The body force is a wider concept Tthan the mass force of gravity,
or the charge—current forces of Coulomb and Iorentz. In the phenome-
nological physics we deal with only two body forces: the already
discussed (Eg.4.4%) electrodynamic force of density Fe&’ and the
gravivational force of density ?g‘ This way the density of the res-

ultant body force is:

(5.22) B = Fed + Fg

The density of gravitavional force is proportional to the gra-
vitational field intensity (or the gravitational acceleration) g,
the vector g beingz expressed by the gradient of the gravitational

potential U
(5.2%a) Fg = ¢z, (5.23b) & = - grad I

Since the graviiy 1s of atiracvive character, the potential [
assumes negatlive values. In the verrestrial conditions, however, iv
is convenient o make use of the varlable excess potential with res-
pect To a constant negatvive value. At a proper choice of the cons-
tant, the symbol ["can be regarded as non-negative excessive gra-
vitational potential, depending on the scalar terrestrial accelera-—
tion g = 9,8 m/’s2 and the elewvaiion h above a conventional referen-—

ce level:
(5.24) "= gh in terrestrial conditions

Neglecting the influence of motion of heavenly bodies (and con-
sequently excluding the tvidal motion of oceamns from our considera—

tions!), we can take the next step in assuming that the spatial
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distribution of the field { remains time-invariable in a frame ba-

sed on earth, or that the field [ is stationary (see Sec. 3.9):
(5.25a) ["= constl{ty, O/t =0 in terresirial conditions

Consequently, according to Egs.{3.3a) and (5.23b), we have

alf -

(5.25b) gz = (wzgrad U') = - @ E) in terrestrial conditions

The short-range interaction is connected with the intra-atomic
bonds and intra-molecular collisions. Since the shorv-range force
fields, or microfields, vanish in the process of phenomenological
averaging (Bq.2.13b), the forces themselves cannot be macroscopic-—
ally represented as vectors proportional to the field intensitiss.
Nevertheless the forces mentioned manifest their existence in <he
phenomensg of elasticity, viscosity, and pressure.

From the viewpoint of microphysics, the short-range interactvion
may be described as the transfer of momentum between individual
grains in the course of oscillations ox collisions. Phenomenologi-
cally, this is a transport of particular EQ occurring within the
entire volume of region, with the resultant effect manifested over
the region's shell. Conseguentvly, the short-range interacvion has

the nature of a surface forece (Eq.4.27a). Its tensorial density is

— - 2__ .
called the stress ™. The force exerted on a surface elementv d7s 1S
equal t0 -~ d2§ 1 (the negative sign results from convention 4.25h),
snd depends on the intrinsic state of the body (1), as well as on th

2

direction of d°s, generally differing from the direction of force.

5.6, The Classification of Stresses

In the phenomenological physics we distinguish three kinds of
surface forces due to elasticity, viscosity, and pressure. The first
one occurs in the solids, the second and third are peculiar to the
flnids. The rheology considers both elasvicivy and viscosity of the

*flowing® solid bodies.
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The elastic siress I, amd the viscous stress fl, depend on the

sensors of deformation Erad or and deformation rate Zrad u of the

substantial region, respectively ({see Secs. 3.10, 3.11). In a line-

ar medium with a not too big sirain or strain rate, the swresses ﬂe

=

and ﬂv are governad by the generalized laws of Hooke and Newton:

= — m===ds(-. | Hooke's law for
- T I div o7 - PAg grad 5% {‘elastic stress
Pyps Pg = const

0. T div @ sss=ds- Newson's }aw for
-y iv u "'?s ETa u viscous Suvress
Vs Vg = const

(5.26b) T,

Both lews are formally similar. The first terms on the right-hand
sides are spherical tensors proportional teo dilstation 4iv 5?, or
the rate of dilstation div ¥ (compare Eg.3.3%4), so they depend on
the change of volume of the substantial region. Un accountv of Eq.
(5.5b) they vehish in an incompressible medium, for example in the
perfect liquid.

Since the second terms are symmetric parts of the deviators, they
depend on the pure sirain or its rate (see Sec. 3.11). This way, in
an ordinary elastic or viscous medium, the siresses are symmetvric:

ﬂ_=T%,ﬂv=rk(cw@mm1mesmmolljﬂw.

=3

Tt is worth o mention that in the so-called Cosserat elastic
medinm and in the polar fluid, we have o coﬁsider some additional
stresses due $0 the relative rotations of microelements of substan-~
ce. They cause ﬁe and ﬁv t0 become asymmeirlc Tensors (containing
also entisymmetric parts).

Tne proportionality factors in Egs.(5.26) are called the Lamé's
elasticity moduli Pp: Pgo and the (dynamic) viscosity coefficients
ﬂ%,'ﬂs. The suffix E_denotes the bulk, and‘E the shear, elasticity
or viscosity.

In order %o preserve the uniformity of all the constitutive equa

tions (such as the phenomenological relations for heat conduction,
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diffusion, eie.) tThe laws (5.26) have been denoved in a shape dif-
fering from %raditional. For example historically-grounded form of

the law of viscosity (5.26a) is as follows:

= = . -_— === S—
(5.26¢) o=+7%, ITdivu+ 27 graad u
where ﬁ% = - ﬁv and 7& = %'ﬂs are tradiiionally foxmulated viscous

stress and shear viscosiity coefficient, respectiively. The differing
signs result from the opposite definitional conventions for the
stress (Eq.4.26e), and the number 2 at Y. is dne to the fact that
the viscosity coefficient has been at first defined for a parsicular
case of flow between parallel plaves.

Making use of the so-called first and second viscosity ceeffici-
ents Wl,‘ﬂz, it is possible to preseni Newton's law (5.26b) in the
form of Eq.(5.28) (given in Ex. 5.56), which is more convenienv for
computing, though less clear in the physical interpretavion, becau-
se of the blurred role of pure sirain.

The viscosity force is a menifestation of the momenium transport
due to thermal motioms of flnid molecules. Generally, the directions
0f the resuliant transpori and the barycentric velocity are differ-

a3l ang
ent. For example in the &¥lsl flow (two-dimensional but vnidirection-
al) of incompressible fluid, the transport of momentum 1S perpendi-
eculsr to the momentum itself (Fig. 5.2).
In the fluid, the surface-density of the pressure force is the

pressure sSuwress

(5.272) . =Tp

This is a spherical tensor degenerating to the scalar pressure p.

Owing to <+this property, the pressure force - dggwﬁp = - P d2§ (see
the rule 1.18d) exerted on an element of shell d2§ is always normal
to the surface (compare Eq.4.26a), and the "volume-density" of pres

sure force may be expressed by the pressure gradient (rule 1.31a}:
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(5.27p) - div ﬁp = — grad p

Hence we obtain two aliterhative interpretations of the pressure
force as a2 term of balance. According to the first inverprezation,
the pressure force is regarded as the itransfer of momentum (volume
integral of divergence). In the second case, it is production of
momentum (intesgsral cf a gradient). Even though the fluid is at phe~
nomenological rest (W = 0) and contains zero sicrage of macroscopic
momentum, the transport of molecular momentum occurs incessantly
(p £ 0), being equalized by the reaction force p 4?5 on each wall-
—~surface elemen®: of the vessel. In a resting liquid, the resultany
transport of moleculsr momenwvum can be regarded as the production
- 2Tad p, being locally compensated with the producilon QE due %o
gravivational force.

Ixercise 5.6. Prove that the law (5.26b) may be presented in the

following form:
= _ . = . —_— ==== 5— - - 1
(5.28) ﬁv = —'ﬂz 1 divu - vi grad-u, V& = Vs ﬁz = ?b - = ?s

Instructions. Transform the symmetric deviator according to the

rules (1.13b), (1.9) and (1.29a). Prove that Egs.(5.28) and (5.26D)

become identical in case of the incompressible liguid.

5.7. The Balance of Momentum

Being the product of mass and veloclvy, the momentum is & vecvor
SQ. According to definitions (5.7) and (5.9b), the momentum of con-
+tinuouns subsiance has the storage mass-—densivy equal to vhe bary-
centric veloeity T, and the volume-density gu.

Tn the nonrelativistic conditions, the balance of momentum ori-~
ginates from Newiton's Second Law of Motion. It states that the time
rate of change of momentum of a body (i.e. momentum stored wivhin
the substantial region) is equal to all the forces exerted on tvhe

body, that is the resultant body force of density 7 plus the
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resultant surface force expressed by the shell invegral of stress

T (Bg.4.27a with opposite sign):

a -
(5.292) —>i ﬁ(Qﬁ &%y = w'@' a’v —C%gdz”é A
at

V_ 8 .

V.-
-y —5 v

A comparison bhetween the above eguatvion amd the basic balance
(5.18b) suggests that the body force may be interpreted as the mom-—
entum production of density F, and the surface force seems to be
the non—convective transfer of momentvum of the flux density equal
to stress ﬁ. Applying the theorem on eguivalence of basic balances
(5.18b) and (5.19b) to the Seccnd Law of Motion (5.2%a), we obtain

the equation of movion of continuous substance:
(5.29b) 08 = F - T 0
The momentum balances for an immobile region and point result

from the theorem on equivalence of basic balances (5.18b), (5.19b),

(5.20b), and (5.21b):

3 .= 43 _JH— 5 M o= = :_"“:"“3}
v v S
(5.300) béuﬁ =T - T+ 257'1_5)

The terms conbaining the dyadic of barycentric velocity W u
express the convective transfer of momentum. The only places where
this kind of tramsfer doss nov occur are the surfaces to which the
veloecity field U is tangent (Bq.5.14b).

From the equivalence of basic balances (5.20b), (5.21b), (5.16b)
and (5.170) we obtain the momentum balances for a referential reg-

ion and poinv:
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(5.31a) i:w m(q‘ii 3oV = m T a’v - 3@& a%s ‘{ﬁ - rg"(_'v—Tr:ﬁ_ﬁ:ﬁ}
¥ s S5

i

v

d(0T). — — e = — = [ S======)
(5.31b) —é%gl#w +oudivw=TF - div ] + alV{Q(qu) uf
It has to be strongly emphasized that Egs.(5.29a,b) keep their
validity with respect ©o the substantial region and point only. The
direct application of the Second Law of lMotion to any kind of reg-—
ion, for example to the rocketv of variable mass, is erronecus. In

such case, the proper way 1s to start from the referential type of

balance (Ex. 5.14).

5.8. Some Applications of the Balance of Momentum

Assuming specific condivions and properties of considered subs-
tance in Egs.(5.29), (5.30) and (5.31), we obtain a varieiy of par-
ticular forms of the momenvum balance. 3ome of them will be shown
in the exercises given below. _

Among the body forces (5.22), Ted has %o be considered only in
the conducking medium (the windings of eleciric machines, the mag-
netohydrodynamic flow), and ?% is usually neglected in vhe gaseous
medium (excepting for the cases of large difference in altitude and
of the free convection). The specification of stresses in an elastis
body and fluid has been given in Eqs.(4.27b,c). At a stationary flo
all 3/d% = 0, and in a static state, additionally U = C.

Exercise 5.7. Motivate the origin and assumptions of the basic

eguatvion of slasiostatics
(5.32a) Qg - div fi, = 0

Exercise 5.8, Movivate the origin and assumptions of the basic

equavion of hydrostatvics

(5.32b) Q8 - srad p = 0

Exercise 5.9. Motivate the origin and assumptions of the Navier-
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-Stokes equation for incompressible liguid (instruction: use the

rule 1.31c):
(5.33a)  @gksi = QE - E7ad p + & 1), T¥ EraL W

Exercise 5,10. Formulate the Navier-Stokes equation for statio-—

nary flow of incompressible liguid.

Exercise 5.11. Motivate the origin and assumptions of Fuler's

equation for inviscid gas

(5.335b) ¢ i = - FTad p

Exercise 5.12. Motivate the origin and assumptions of the equat-

ion of motion for the invisclid snd neusral (¢ = (O lagsma in the
e P

magnetohydrodynamic flow:

(5.34) Q%%—)E =%Exﬁ—gradp

Exercise 5.13. A rigid body (e.g. an aircrafi or submarine) is

immersed in the fluid and moves rectilinearly with a constant vel-
ceity w. We erect an imaginary referential region inside and out-
side of the body. Assuming the region to be rigid and stiffly con-
nected with the body, we find that the referentisal velocity field
W is stationary and homogenous: d%/dt = C, Erad w = 0, div ¥ = O.
The fluid flows round the body in accordance with the absolute vel-

ceilty field W and relative veloecity field W' = T — ®. Prove thei

within the fluld regicn the following equation is wvalid:

(5.35) g )os = F-T(f + 03" 8

Compare this equation with the momentum balance for immohile

point (5.30b), showing the correspondences: UW'dsu, %g%iée%? at

W0, Fxplain whether Eq.(5.35) keeps its validity in case of an

rzfl

acceleraved or rotaxry motion of the body.

Instructions, Substitute W = @' + W into the balance (5.31b),

use the rule (1.31b) and Eq.(5.2b), and take into consideration



109

the properties of field w.

Additional exerciges. The correspondence between Egs.(5.35) and
(5.31b) makes possible o0 calculate the time—process of the single
flow perturbation at substanvial or immobile point caused by a rig-
id body passing in an uniform (rectilinear) motion. If the relative
flow round the body with the veloecity U' is stationary with respect
to referential system Eﬁ’ then the left-hand side of Eg.{(5.35) va-

nishes. Prove that in such case we have

(5.362) Eggail + Tﬁ(@“‘"ﬁ) = TV (e Tt |
(5.36b) ?%%;_ _ Hﬁ(?ﬁ-r_"_ﬁ?)

(instruction: transform the substantial Reynoldsian).

If we know the fields ¢ and u' of the siationary relative flow
(the right-hand gide), then we are able o determine the non-sitatio.
nary field of absoluve acceleration of the fluid Q%;a, Prove that

d
in an incompressible fluid

(5.37) U _ _F'5EEF o

Exercise 5.14. Formulate the balance of momenvum and vhe equat—

icn of motion for a rocketv at the assumptiions given in Ex. 5.1
(Fig. 5.1). In ordexr to simplify the problem, assume that the zroc-
ket is moving along an approximately sitraight trajectory through a

nmedium rarefied to such an exvent that on the outer surfacs of the

hull Sq there is no sitress (11 =0), and on the outlet surface Sy

the gas pressure p is negligible as compared +o Qg(?g).

Instructions. The region V. consists of the solid part moving
b 17

with velocity U@ = w, and gas—filled part, where the velocity of

substance u # W. Assume that the mass-share of the gaseous part is
negligibly small, and use the Kinematic property of the solid parw
(see Ex. 5.1) in order to shift ithe homogenous vector w before the

integral sign in the expression for momentum stored within'g_o
v
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Make appropriate substitutions into balance (5.31a) and take into

consideration that W = W on the hull surface s, and O = Eg,
U - " = Eg on the surface s, Use the rule (1.202) and Eq.(5.6).
-7

The results:

(5.38a) QL%¥19Q =g + u -Q@;g balance of momentum

(5.38b) m %%éﬁ = mg + ”g %%93 equation of motion
-5
dm "

Is the thrust U_ =W a "Srue" force in the meaning of the
gdu

Second Law of Hotion?

5.9. The Work

As a scalar product of force and substantial displacement

dl = u dt, the work can be expressed as follows, with use of the

rule (1.21):

(5.392) elementary work}

of body force (F a%v aT) = (F 5)a’v dt

|

4%5)as

¥

elementary work - D= _
(5.390) of surface force| ~ (a% 1 aT) = - (

el

pot 7}

The work of all the forces exerted on a substantial balsnce

region per unit time is called the power:

_work _ ([ = =y 43 A ETT o
(5.40a) power = g —_HF(F m)a-v - W (1 u da%s)
S
'] A
Applying the GGO theorem (1.34a) we may obtain an entirely vol-
ume integral of the power densitiy (power per unit volume). Using

the rule (1.30b) we transform the power density in order to classi-

fy wvarious kinds of work:

(5.40p) PO7ST } = (FH) - div i ® = (FW) - (@ T¥ n),~ (N 5F8E )

ensitvy
corresponding "sotal "mechanical "thermodynamic
to: work" work? work"

The "total work" consists of "mechanical work" resulving from

the iranslation of a body (direct dependence on T) and "thermo-
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dynamic work" accompanying the deformation of a body (dependence
on grad ). It will appear in Eq.(5.41) that only the "mechanical
work" is equal to the change of storage of kXinetic energy, while
the "thermodynamic werk" is expressing conversion between kinetic
energy and internal energy.

In some textbooks of mechanics the work has been defined as an
equivaleny of energy expended on the displacement of 2 body by ac-—
tion of forces. This definition proved to be vague because neither
the kind of energy involved has been specified (a crucial guestion
in the light of the energy conservation principle), nor the "expen-
diture" explained (conversion or transfer?). In the language of
thermodynamics, the work is generally restricted to its "thermo-
dynamic" parit (conversion, in fact), usually with the effects of
viscosity excluded. It is familizxy to use the term "electric work"
for the conversion of electromagnetic energy with the exception of
the hysteresis effects.

Having a vague meaning and being not clearly associated with the
terms of siorage, production and transfer of energy, the concept of
work seems to be of a dubious interpretative value in the balance
theory. Since the use of conversions between specific energies and
of specified Transfers between the system and its surroundings
makes a very consistent and comprenensible image of the energetic
processes, we may dispense with the concept of work in our further
exposition, with no herm to all the reasoning.

Exercise 5.15. Express the mass~density of elementary "thermody-

namic work" for inviscid gas (] = ﬁp = Ip).

Instructions. Apply the rule (1.29a) and balance (5.4c) to the
proper term of Eq.(5.40b). Notice that Eq.(5.40b) describes the
volume—density of power, and not the mass~density of work. The
resuli: - p @ga (in the thermodynamics, the substantial increment

of v is simply denoted by dv).
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5.10. The Balance of Kinetic HEnergy

Being the product of mass and the one~half of squared velocity,
the kinetic energy is a scalar 3Q. According to definitions (5.7)
and (5.9a), the kinetic energy of continuous substance has the stor-
age mass—density (ﬁg/é), and the volume-density Q(E2/2). To be

strict, the above densities characterize only the iranslationsl ki-

netic energy in the phenomenclogical meaning, i.e. the energy of

the ordered vramslasory movion ¢f grains of substance, connected

with non-zero macroscopic momentum. All those provisions exclude
the energies due v0 the diffusive and the disordered thermal mot-—
ions, which zre included in the internal energy.

In the polar fluid and the Cosserat elastic medium, the phenome-—
nological kinetic energy contains in addition the energy of intrin-
sic rotation, i.e. of an ordered rotary motion of grains which are
spinning around their own axes. The mass-densiiy of this additional
energy 1is 1(52/2), where I denotes the geomeiric moment of inex-
tia of each of identical grains, and {3 is the macroscopically aver-—
aged angular velocity of grains. The further exposition, however,
will be confined to the ordinary substance, with no ordered inirin-
sic rovavion.

Multiplying the balance of momentum (5.29b) by U in a scalar

product

s

(5.41) @ L 1) =o0&sw@E) = Fu) - @ TF )

and using the rule (1.30b), we obtain an equation of the type of
Eq.(5.19a), so we conclude thai this is the balance of kinetic en-—
ergy at a2 subsvanvial peinv:

T2 = ____ ==
(5.42a) i) = Fo) + FESH® - auv 0w

]

Applying the theorem on equivalence of bhalances (5.1%z) and
(5.21a), we obtain the balance 0f kinetic energy at an immobile

point:
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3 (o 02 = = Y N o L
(5.42b) E?iQCE—J} = (Fu) + (1 grad u) - dlv{ﬂ T+ ng-)q}

To be strict, the balances (5.42) deal with the translational
kinetic energy only. In the polar fluid or the Cosserat elastic
medium, we have to add the balance of kinetic energy of initrinsic
rovation, derived from the scalar multiplication of the balance of
intrinsic angular momentum by the angular velociiy & of the ordered
rovavion,

Replacing F by substitution of Bq.(5.22) into the balances (5.42)
we are able to reveal the specific conversions beiween the kinetic
energy and other energies:

density of production

(5.433) of kinetic energy = (Fqa w + (F,0) + (i1 Fad )
at expense/for benefit ! ;o 8 / \ /
of energy: electro- gravi- internal

magnetic tavional

The ascripvion of particular terms 1o specific energies is based
on the following reasoning. Since the term (Fedﬁ) with the negative
sign appsars in the balance of electromagnetic energy (4.49), it
proves that in the balance of the sum of kinetiec and electromagne~
tic energies tvhelr mutual conversion vanishes. In the same way, the
term (Téﬁ) with the negative sign will appear in the balance of
gravitational energy (5.44a). In consideration of the arbitrariness
of the angle between vectors ﬁed or Tg and w, both conversions are
of reversible character: the kinetic energy may be eivher creaved
or annihilated at the expense oxr for the benefit of elecvromagnetic
and gravitational energies.

The ascription of the term.(ﬁ E?gﬁ u) to conversion between ki-
nevic energy and invernal energy resulis from the principle of con-
servation of the total energy, which will be discussed in a subseq-
uent section (see £q.5.56). This conversion is partly reversible
and irreversible, the latvter being the annihilation of kinetic en-

ergy due to viscous dissipation.
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It results from the balance (5.42b) and classification (5.13a)
that
transfer-flux density ) =
i (5.43b) of kinevic energy o= mu
through immobile surface} t
kind of transfer:

8. —
+ Q('2—-')'Il
4 b

non-convective

J

convective
The non~conveciive iransfer is connected with the field N, and

therefore 1s called the stiress (or mechanical) transfer of energy.
The kinetic energy flows in the direction of wvecior ﬁ”ﬁ, which may

be different from the direction of subsiance's velocity w. For ex-
ample the shear viscosiiy phenomenon causes that

kinetic energy is perpendicular to the transport

the transport of

of mass.
In the inviscid fluid, where the stress is of

character, N = = Ip, T U = pa, the directions

purely pressure

of flows of mass
and kinetic energy are identiczl. From this we must not draw an

erroneous conclusion that the transfer characterized by the density

pu is of convective character. While the mass cannot cross & SUbS—

tantial surface (Eq.5.la), the kinetic energy flows through the
same surface with the transfer-flux density pu.

The virtual site of the

5.11, The Balances of Gravitational Energy and Mechanical Energy
electromagnetic energy, is

gravitvational energy, as well as of the
subsvance or empty. In the

the field in space, either filled with

terrestrial conditions, however, we can
take a ficvious but practical assumpition that the gravivational

A-&-

energy is stvored within substance and can be carried by substance.
a 5Q,
1]

In such case the storage mass-density of gravitational energy, as
>0,

is simply equal vo the excessive gravitational potenvial
and the volume-density is QU

by ©

the assumptvion given, the balance of gravitational energy av
a substantial point results from multiplication of relation (5.25b)

with the substitution of Zq.(5.23a), and the balance at an
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immobile point is obvained from the equivalence of basic balances

(5.1%a) and (5.21a):

o

(5.442) gt = - (Fa) = - @ W)
(5.44b). 2D = - (FH) - awvel)

From the comparison of Egs.(5.44) and (5.43a) we conclude that
the production of gravitavional energy is notvthing more tvhan the
reversible conversion with kinetic energy. The absence of divergen-
ce term in the balance (5.44a) proves that, in the terrestrial con-
ditions, vhe non-convective transfer of graviiational energy does
not occur av all, though the convective transfer does exist (balan-—
ce 5.44b). Strictly speaking, the discussed snergy, being a field
energy, is subjected to a non-convactive itransfer called the gra-—
vitational radiation (similar ito elzcitromagnetic radiation). This
phenomenon, however, does not play any role in the terresirial
conditions.

Since the kinetic energy and the gravitational ensergy in terres-
trial conditions are bhoth of substantial character, somevimes it is
convenisnt o add them up, the sum obuained being called the mecha-

nical energy. I%s balance at a substantial poiant results from asso-

ciation of Eqgs.(5.44a), (5.43%a), and (5.42a):
-y = e T
(5.45) ¢ T3] () + D= (F®) + (AEFEE W) - aav A%

The production of mechanical ensrgy is due to conversions with
the elsctromagnetic and internal snergies. Comparing Egs.(5.45)
and (5.42a), we conclude that the non-convective transfers of mech-

ariical energy and kinetic ensrgy are identvical.

5.12. The Balance of Elastic Inergy at Small 3train

IFrom the microphysical viewpoint, the elastic energy is the en-

ergy of structural bonds of the body. From the phenomenological
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viewpoint, it forms a part of the internal energy, and so it is a
5Q of cervain mass—-density ﬁé' According to the classical theory
of elasvicity, the volume-density of the elastic energy, for a

perfectly elastic body at small strain, is as follows:

i 2 =ds2
(5.46) €, = 1y dlg T . R ra&2 3%) > 0

In case of the Cosserat elastic medium, we have to add some
quadratic forms connected with antisymmetric stress and couple-
~stress (resulting from torsional strain of body's microstrucivu—
re). Those effects do not occur in the ordinary elasiic medium
discussed below.

The elastic energy is a non-negaiive excessive energy above the
level corrassponding to the undistorted siate (EFFad SLF = It is
worth to emphasize that at large values of coefficients By, and m
a small strain may cause considerable stress (5.26a), and enormous
density of elastic energy (5.46).

As a constituent of invernal energy, the elastic energy is being
subjected to conversion with kinetic energy in the course of defor-
mation, at which the velocity of substance u must differ, at least
locally, from zero. Consequently, the term (| 2784 B) of Eq.(5. 43a)

]

which in case of a perfectily elastic body (T o) is equal
(ﬁé grad u), expresses the conversion beiween kinetic energy and

elastic energy.

t is possible to show that at small sitrain we have
- . 2= === ds2§
- 4 . di rad r
(5.473)  (F, BFEL @) = - Sesalp, LOE , (B i

where Ue is defined by Hooke's law (5.26a) (the proof has been om-—
itted as very tedious and reguiring intricate transformations of the
vensor calculus). Combining Bgs.(5.46) and (5.47a), we obtain:

N o d(Qt
(5.47b) (H Zrad uw) = ——E:—eu
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Since at small strain the mass density remalns nearly unchanged
along a substantial displacement (there exists a proof that the
error involved is negligible), we can shift Q before the differen-—
tial sign to obtain an eguation of the itype of Bq.(5.19a). This
will be the balance of elastic energy at a substantial point:

dg
(5.48) 0 i = ~ ({1, B¥E3 ©)

The absence of divergence iterm proves that the elastic energy
cannotv be transferred in the non-convectiive way. The change of el-
astic energy stored wivthin a substantial region may be solely due
to conversion with the kinetic energy. From the svructure of Eg.
(5.47a) we conclude that the conversion is of the reversible char-
acter: (Ee Zrad u)2 0. It is worth to noitice that in spite of anal-
ogous struciure of laws of Hooke (5.26a) and Newton (5.26b), the
viscous dissipation of kinetic energy for the benefiv of internal

energy is an irreversible conversion: (ﬁ grad u)<0 (see Sesc.5.14).,

5.1%3. The Fnergy Balance of a Perfectly Blastic Body at Small Sirain

Consider a perfectly elastic body, being deformable to a small
extent only, and not subjected to any eleciromagnetlc exertvion.
Substituting n o= ﬁe and Téd =0 into Eq.(5.45) and using BEg.(5.48),
we obtain the balance of the sum of mechanical energy and elastic
energy at a substantial point of the described body:

-2 =

(5.49) H B+ [+ g} = - asv RE

The absence of produciion term proves that the swm of the ener-
gies mentioned is a conservative S5Q, SO it can be neither creaved
nor annihilated. For example when the body is falling, there 1s a
conversion between the gravitational energy and kinetvic e€nergy, and
when the body hits an obstacle keeping its perfecy elasticity, the

conversion occurs between the kinetic energy and elastic energy.
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In *the assumed conditions, the only non-convectlve transfer of

energy is due to the elastic stiress. The elastic transfer-—flux den~—

m———

sity ﬁ;ﬁ is called Umov's vector. It has to be emphasized that this
kind of transfer concerns the kinetic energy, and not the elastlc

energy. Umov's vector makes it possible to itransmit vhe kinevic en-
ergy by means of an elastic wave, and Vo delivear Tthe power by means

of translatory and rotary motion of mechanisms.

The elastically-transferred power is the non-conveciive transfer

of kinetic energy through an imaglnary substantial surface within

an elastic body (e.gz. through a cross-seculon of mechanical element)

elastically- o == HTE —
(5.50a) ~transferred ﬁ'(d s ﬂeu) = J}(d.s Mg u)
powexr g s
=Ny =17
(the equivalence of both integrals results from the rule 1.21).
Tn case of a push-pull rod (Fig. 5.3), its motion is of purely
transletory character. Consequently, the velocity 1 remains const-

ant over the whole cross~seo%ion_iq, and so it may be shified be-

fore the integral sign:

power tramsferred Y\ _ (= ([325°5
(5.500) along push-pull rod | (m j(d S ﬂe)
\o ,
force on

ecross—section

In this case, the transferred power 1is the product of velocivy
ond force occurring on the cross—-section and due to compressive
or tensile stress.

Tn case of a drive-shaft (Fig. 5.4), its motion is of purely ro-

tary character. Consequently, the velocivy u depends on Tthe angular

velocity ®,and the arm of rotation T ™= 58&?. Since T, remains
constant over the cross-—section of the shaft}iﬁ, it may be shifted
before the integral sign in Eg.(5.50a); the transformation (1.19a)

being previously applied:
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Fig. 5.3. Non-convective flow of kinetie energy through the cross
section of a push-pull rod

S o
._ > . d _
energy > ez E A - {0

Fig. 5.4. Non-convective flow of kinetic energy through the
cross-section of a drive shaft
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power btransferred | _ i ‘2;?::‘
(5.50¢) along drive-—shaft | — (®o~ﬂ X d%s )

/

torque on
cross-=section

This time the transferred power is the product of angular velo-
city and the torgue occurring on the cross-section and due to tor-—
sional stress.

Since the cross—section_gﬁ.is an open surface, its oxientatvion
may be arbitrary. If it appears that the expressions (5.50b,c) are
positive scalars, the kinetic energy flows along the rod or shaft
towards the orientation Of_ﬁa' and if negative, it flows oppositely.

t is difficult to explain the described processes with use of
the concept of work. Since in a svatlonary wosion both integrals
in Eq.(5.4Ca) are incessantly equal ic zero, the elastic element
performs no werk at all. We might try to use the idea of "transfer
of work" buv we do not need such am explanation, having already a
very suggesilve transSport interpretation: the discussed process is
vhe non-convective flow of kinetic energy, ceasing to exist when

vhe velocivy of mechanism vanishes.

5.14. The Balance of Kinetic Energy of the Fluid

The general balance of kinetic energy (5.42) can be re-written

in a more specified form for the fluid. According to Eq.(4.27c),

we split-up the resultant stress {1 into the pressure and viscous

stresses, ﬂp and ﬂv’ respectively. Then we substitute the decompo-

sed stress into the terms of conversion (with internal energy) and

non~cenvective transfer, ([1 5¢ag W) and div N u, respectively.
It is easy to prove {Ex. 5.15) with the help of Bgs.(5.27a),
(1.292), and (5.4c) that

(5.51a) (T, B8 @) = qp FpT X ©
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The above expression describes that part of conversion which is
reversible and can cccur in a compressible fluid only: at the ex-—
pansion process (%%éaf} 0), the kinetic energy is being creaied at
the expense of internal energy (the gas within an adiabatic systenm
is cooling down), amd at the compression process (%%?E<: 0}, the
kinetic energy is being annihilated for the benefit of internal
energy (the gas is warming up).

1t is also possible to prove (Ex. 5.16) that for the fluid obey-

ing Newton's law of viscosity (5.26b), we have

(5.51b) (ﬁv Erad w) = - {yb diven + @SCE?EEdSQE)}<g 0

This part of conversion, as a negative quadratic form, is the
irreversible annihilation of kinetic energy for the benefit of in-
ternal energy. Since it is due to the viscosity phenomenon, it is
called the wviscous dissipation. The created internal energy assumes
the form of "frictional heat".

t resulis from the Second Law of Thermodynamics that the left-
hand side expression (5.51b) is non-pesitive-valued for any kind of
substance, including those which are not obeying the law (5.26bh).

Consequently, we are allowed to formulate the general classifying

decomposition of conversion between the kinetic and internal ener-

gies of the fluid:

=_——r e gv - = mEmesei e
rad = i : d :
grad u) = Qp ax” ¢ + (7, grad u)
%0 <0

gt

(5.52z) (

Using Eqs.(4.27¢) and (1.18d) we obitain another clessifying de-—

composition, this time concerning the tramsfer:

(5.52p) X Au , = o} + E;E

i / A 1

non-convecivive
transfer—flux density by means of by means of

. 5
of fluid's kinetic energy pressure viscosivy
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As 1t was stated before (Sec. 5.10), the transfer by means of
bressure has the same direction as the velociiy W, while the trans-—
fer by means of viscosiity is, in general, directed differently. Only
this part of transfer which is due to the bulk viscosiiy (spherieal
tensor in Eq.5.26b) keeps parallelism with ©W, &t the sense unchan-
ged (compression) or opposite (expansion}. In the flat flow of in-
compressible fluid, the shear viscosity phenomenon induces the ki-
nevic energy vo flow perpendicularly to the streamlines, from the
layer of greater velocity to the layer of smaller velocity (Fiz.5.5¢

It is due to vector pu that the kinetic énergy can be non-convec-
tively transmitied by means of the pressure field of acoustic waves.
The same kind of transfer is ihe principle of functioning of hydra-—
ulic and pneumatic pilsion machines (pumps, compressors, engines)
transferring the kinetic energy between the working fluid and the
piston.

Consider a piston moving along the cylindexr with velccity U (Fig.
5.5b). The substantial 3‘.1'1‘|:e3:'i‘ac<=:E}‘lI separating the piston ftom the
fluid-filled interior of the cylinder consists of surface elements
d2§. During time 4t each of them sweeps a volume element of the 3rd
infinitesimality order d°V = (T at d°S). During the same lapse of
time, the finite surface_gﬁ sweeps a spatvial slice ¢of volume of the
1st infinitesimality order (being in fact a positive or negative

increment of volume) equal to

(5.53a) Jf (T at a%) = ﬁ a7 = avz o
s S5
1f the pressure p is idenvical at each point of the surface_ia,
which is oriented vowards the interior of the pision, then the en-
ergy transferred through_iﬂ druring dt is:
kinetic energy

' transferred _ = 2=\ as _
(5.53D) non-convectively = JT (pu 4%8)ds = p dv% O
S

from fluid %o piston -
at



o
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2 dV

Fig. 5.5. Non-convective exchange of kinetic energy:
(a}in flow of a viscous non-compressible fluid
(b) during movement of a piston in cylinder
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T4+ is worth to emphasize once again the non-—convectiive character
of transfer: ithe substance cannot penetrate into the piston, while
the kinetic energy flows from the fluid to the piston {(when 4V >0),
or vice versa (when 4AV<0).

Having discussed some aspecis of conversion and transfer, we go
back to the balance itself. We shall present only two most useful
forms of the balance of fluid's kinetic energy, obtvained from sub-

stituiion of Egqs.(5.52e,b) into Egs.(5.42):

-2 _ .
(5.502) e&pT(E) = (BT + qp s + (RFFET D) - asv{pueiu}
(5.54b)

72 — == 52—
‘%E{Q(%—f} = (Fu) +Qp %%45 + (M grad u) - div{ﬁﬁ + flu + Q(%—)u}

Exercise 5.16. Derive Eq.(5.51b).

Instruction. Apply the rules (1.29a) amnd (1.17f).

Exercise 5.17. Derive the hydraulic equation of Bernoulli:

(5.55) p/o + u2/? + gh = const along the sireamline

Validity of this equation is limited to the statlonary flow of
incompressible and inviscid liquid, in the absence of any electro-
magnetvic exertion.

Instructions. It is convenient to start with the mechanical en-

ergy balance at immobile point, obtained from Eq.(5.45) with the
help of the theorem on equivalence of balances (5.19a) and (5.21a).
+ results from the limitations of the Bernoulli eguation (Eg.5.5D,
ﬁv’ Ted = 0) that in this specific case the mechanical energy is a
conservative quantity, and at a stationary flow (3 /6t = 0) its bal-
ance resolves itself into eguation div... = 0. The 4iv sign is
followed by the product of vecior W and a cervain sum of scalars,
o which we apply Bqg.(5.24) and denotation (32) = u?. Transforming
the divergence iterm with use of the rule (1.30a) and applying the

incompressibility condition (5.5b) once again, we obtain the equat-
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ion: (u zrad...) = 0. Since U # O (generzlly), so at any place the
projection of the vector grad... on the direciion tangent to the
streamline must be equal to zero. Dividing the gradienved funciion

by ¢ = const, we obtain the final result.

5.15. The Balance of Internal Energy

In the phenomenological approach, the internal energy is regarded
as a set of all those specific energies that are connected neithetr
with the macroscopic motion of substance nor with the long-range
force fields (Sec. 2.7). Virtually, this is the enexrgy of those mot-
ions of grains that hsve mutually compensated momentum {(the thermal
energy, Eqs.2.7c and 2.8b), as well as of the short-range fields
of the grain interacvion which vanish when averaged macrosccopically
(the bond energy, compare Egs.2.13b, 2.14b). The elastic energy
the energy of intra-atomic bonds, Sec. 5.12), for example, is alsc
a constvituent of the internal energy.

Since the grains are the carriers of the thermal motion energy
and the practical range of close interaction does not much exceed
the grain dimensions, the invernal energy may be regarded as a sca-
lar 5Q of the storage mass—density €; and the volume-density QEI
(see Eqs.5.7 and 5.9a).

From the phenomenological viewpoint, the sum of exvternal energy
and iniernal energy gives the total energy (see Table 2.15), which
is a conservative guantity characterized by the lack of production
(Eg.4.32). Conseguently, the production of internal energy must be
equal to the minus production of external energy, the latiter con-
sisting of electromagnetic, kinetic, and gravitational energies
(Table 2.15). Selecting the production terms from Egs.(4.49),

(5.432) and (5.44b), we conclude that
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(5.56) the production (volume-) density of internal energy =

= Gpm + Q@iﬁa) + (Fedu) - (Fedu) - (Fgu) - (NEgFada v) + (F u)
o Gom + (gaﬁG)J W (M grad u) |
conversion with conversion wWith

elecvromagnetic kinetic energy
enexrgy

According to classification (5.13a), the internal energy, as a
5Q, is subjected to the convective transfer of flux density QEfE
and the non-convective one, vhe flux density of which will be de-
noted by ;nc

Now, in the basic balances (5.19a) and (5.21a), we replace ¢
with €, ¢p with the expression (5.56), and Eﬁ with ﬁhc, in order
to obtain the balances of internal energy at substantial and immo-

bile points:

i
+

S

Ll

der _
(5.57a) @ gg=>1 = G,y + (E 1

2eep)

(5.57b) =6+ (EI) - (NErad u) - aiv(T,, + {eu)

The substitution (5.52a) makes the above balances specified for
the case of fluid:

dﬁ
(5.58a) Q5T i = G+ (EL ) - Qp-aEau - (ﬂvgraa u) - div J

pm ~S 5w
: )
(5. 58b)-—:iF—— G ot (E 1 ) ~ 0P wfeu - (nvgraa ) - dlv(J +Q€'u)

Recapitulating considerations given in Secs. 4.14, 4.13, 5.12
and 5.14 (Egqs.4.46, 4.40, 5.48, 5.52a), we are allowed to assume
the following interprevations of expressions for the intvernal en-—

ergy conversion concerning sypecific phenomena and media:



(5.59p) W(T2) >0
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feversible conversion of bgnd energy
T T\ electrochemical phenomena) or thermal
(5.592) (Egim)<i° energy (thermoelectric phenomena)

with electromagnetic energy

at the expense of eleciromagnetic energy
(electric dissipation, oxr Joule's heat,

q{I‘irreversible creatsion of thermal energy
due to conduction of current)

irreversible creation of thermal energy
(5.5%¢) G 50 at the expense of eleciromagnetic energy
pm (hysteresis heat, due %o eleciric and
magnetic polarization)
= oo 'in the perfecily elastic body:
(5.594) - (ﬂegraa u)}zo reversible conversion of bond energy
| (or elastic energy) with kinetic energy
av . - in the fluid: reversible conversion
(5.5%) - Q1 E€+u.%:o of thermal energy with kinetic energy
.(due to compression and expansion)
= e . {in the fluid: irreversible creation
{(5.59F) - (nvgfaa u)> e Kof thermal energy at the expense of
kinetic energy %viscous dissipation)

There are three microphysical mechanisms of transport of inter-
nal energy: carrying with the grains of substence, transferring by
means of the intra-molecular collisions, and transmitiing in the
form of the radiant energy, the emission and absorpiion of this
energy being connecied with the grain excitation.

In the phenomenologicac approach, the firs+t kind of transport is
regarded as the convection and diffusion of internal energy. The
diffusive transfer, occurring only in the multicomponent fluid mix-
ture, will be discussed later (Sec. 6.11).

The second kind of transport is called the thermal conduction

transfer, and the third one is the thermal radiation transfer (cha-

racterized by the wavelangths much smaller than of the shortvest ra-
dio waves). Contrary to the first and second process, which occur
in the substance~filled space only, the third one is of non-subs-
tantvial charactver and may take place evern in the vacuum.

Consequently, the non-conveciive transfer of internal energy con-

sists of the diffusive, conductive, and radiative parts, their flux
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densities being denoted by jd’ jtc and jtr’ respectively:

(5.60) Jnc = dg + Jg, Ty,

In a homogenous and isotropic medium, and at the temperature
field T of rather small variability in time and space, the vector

?tc obeys the following equation:

(5.61) j%c =-"hgrad T Fourier's law for She heat conduction

where A is called the thermal conducvivivy.

Exercise 5.18., Derive the following differential egquation

(5.62) .%% = a div grad T, a = 2%_ ,
-

describing the process of heat conduction in the isotropic and homo-
genous substvance (Q = const, A = const, the isochoric specific heat
c, = const), being at rest (W = 0), and not subjecied %o electromag-
netic phenomena (Gpm’ i =0Q), radiation (jtr = Q), and diffusion

Instrucvions. In the described medium, the variable pari of in-—
3

vernal energy is the function of temperature only (SI = ¢,I). We
use vhis property, as well as all the simplifying assumptions and
Fourier's law (5.61) with the aim of transforming the balance (5.5Tt
The obtained result (5.62) is the diffusion-type differential equa-
tion, and the coefficient a 1is called the thermal diffusivity

(compare Eq.6.21 in the nexi chapter).

5.16. The First Law of Thermodynamics

The First Law of Thermodynamics states that the increment of in-
ternal energy within a closed system (i.e. substantial region)
equals ©o the sum of the heat delivered to the system and the work
performed on tvhe system.

In the vhermodynamics, there are several different definitions

of the quantity called simply "work" with no adjective. None of tho-
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se definitions coincides with the mechanical concept of "total
work" expressed in Eq.(5.40b). To avoid confusion, let characteri-
ze three of the most frequently used thermodynamic definitions of
work (the recognition adjectives being given by the present suthor).

The "statically-potential work" is a sum of those energetic pro-
cesses that are due to the action of mechanical forces and can cau-
se lasting and reversible changes of the potential energy of the
balance system or another system interacting with the first one,
av unchanged kinevic energy of both systems. The last condivion
excludes the "mechanical work" equal to the incrementv of kinetic
energy (Bgs.5.40b, 5.41). The work of frictional forces (viscosity)
is not taken into account because of the irreversible characiver of
digsipation. Consequently, the occurrence of the "svatlcally-poten-
tial work"™ is restrictved to the phenomena of sirain, compression,

or expansion (compare Bx. 5.15):

(5.63a) per unit mass of the system body
performed during vime dt - p §§_ for fluid
"

"statically-potential work™ " —v(ﬁe§§§§ T ay) for elasvic
-

In the thermodynamics, the attention is sometimes paid ©to the
dualistic character of frictional dissipation which has some common
features with both work and heat. Truesdell (see Bibliography 7) has
included the viscous dissipation in the so-called "net working"
which is equal to the volume integral of the second iterm on the
right-hand side of Eq.(5.40b). This way the "net work" (being the
time iniegral of ™et working") fits to the definition of "thermo-
dynamic work", given in 3ec. 5.9:

"met work" per unit mass

(5.63b) of the sygtemi_perfgrmed}-z - v(1 EF¥3d 1 4%) ggrsiﬁgtiigg
during vime 4%

The third thermodynamic definition of work exvends this notion
over the non-mechanical phenomena. The "generalized work" is suppo-

sed o be a sum of integrals of wvarious "generalized forces" along
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"generalized displacements®. This concept contains not only the
work of various mechanical forces but also the "work of electric
current®, the "work of charging a condenser™, the "work of magnetic
hysteresis", etc. Whether a particular process helongs t0 work or
heat (notice the dualism of the "works" of electric current and hys-
teresis!), it is usually decided by the author of textbook in an
arbitrary manner.

In the thermodynamics, the heat is supposed 0 be all the energ-
etic processesS causing the change of initernal energy and not being
the work, Since there are different definitions of work, they must
correspond vo different definitions of heat.

While each of the three kinds of "work" used in thermodynamics
is in faet a production term of the internal energy balance, the

heat is a sum of terms of production (the "internal heat" developed

within the system) and transfer {the "external heat" delivered
through the boundaries of the system). Thus the concepts of work
and heat do not coincide with the balance terminology. In order to
reveal this discrepancy, we shall interpret the halance of Internal
energy (5.57a) (multiplied by v dt, and shown in two variants of +he
elastic body and the fluid) in terms of the PFirst Law of Thermodyna-

mics, at three different definitions of work and heat:

= e —a
~ v(N 2zrad w at) ) L )
= - oo + ve 4t + v(E T)dt - v div T dt
-pay, -v(REFEIT at)y P E.is

- 1 ;
,,,,, ; “Statically-- N

\—potential work" i heat

\ “net work" heat ,

heat

LS

"oonaralized work®

- In the classical thermodynamics, the First Law is supposed to be
an energetic balance ranking among universal laws of Nature. Iis

role, however, Seems $0 be performed bhetvier by the balance of inter

nal energy (5.57a). Owing %o the composite approach to various
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physical phenomena, Eq.(5.57a) needs not o be postulated. It has

been derived from the principle of conservation of %oial energy and

precisely specified balances of the kinetic, gravitational and elec

tromagnetic energies. In such a presentation, the vague concepts of
work and heat have been replaced with rigorous forms of conversion

and transfer of energy.

D.17. The Balance of Enthalpy of the Fluid

The fluid substance 1s characterized by a thermodynamic function
of state called the enthalpy {(or static enthalpy, strictly). This i
a scalar 35Q of the same dimension as the energy. Its storage mass-

—density H and volume-density ¢H are defined as follows:
(5.65a) H = £; + pv, (5.650) pH = Q% + p
Noticing that

(5.66) QLB = op 555+ BB,

adding Eqs.(5.58a) and (5.66), and taking into consideration the de
finition (5.65a), we obtain the balance of enthalpy at a sudbstantia

point:

(BT + v - ((FFEIT) - awv T

(5.67) ¢ $¥ =6, + (BT
Prom comparison of balances (5.67) and (5.58a) we conclude that
the non-convective btransfer of enthalpy is identical with thav of
the internal energy, the production being different in both cases.
Though the enthalpy has the dimension of energy, it is not any spe-
cific kind of energy. If we replaced the internal energy with the
enthalpy and added the kinetic, gravitational and eleciromagnetic
energies, the obtained sum would not satisfy the conservation prin-

ciple.,

Exerxcise 5.19. Prove that in an isentropic and isobaric process

the specific enthalpy H remains unchanged along a substantial dis-

placement.
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Instrucvions. In an isentropic process, the phenomena of hyster-

esis, conduction of current, viscosity, diffusion, heat conduction
iati t I,0, 7 = sidering all
and radiation do not occur (Gpm’-ii’ s Jg0 0). Con g

this an the balance (5.67), we obtain the relation

dH - _ dP, - _ . N .
(5.68) Q FE = ggo>u , or EEE =V EEG for isentropic process

In an isobaric process, dp_ = 0 along the substantial displace-
—— 0
ment, so dH_ = Q.

6. The Balances of Componential Quantities

6.1. Composivion of Nixture. Production of the Component Mass

The multicomponent mixture is a setv of the substance componentvs
which coexist within the same geometric region. In case of the mul-

ticomponent fluid, the components can move differently and are mu-~

tually convertible.

The mixture may be regarded as a continuum also in case when it
contains a sufficiently granulated phase, provided it satisiies the
condition of phenomenological averaging (2.2b). The aercsol (dust-
~filled gas) and the wet steam (gas filled with liguid droplets)
are exanmples of such phase-mixture. According to other criteria, we
distinguish the mixtures of chemical components (e.g. a liguid sol-
ution) and of eleciric-—charge components (plasma, electrolyte).

Several properties of fthe mixture as a whole (denoted without
component's suffix) may be expressed as a sum of the respectiive pro-
perties of a2ll n components. Since we shall deal with the sums with-
in closed sets of componenss only, the sum symbol-Ej, will be depri.
ved of the usual complementary denotation: "from i = 1 to n'o

The composition of mixture is defined by the dimensionless frac-—
tions, or concentrations, of particular components with respect ©o
the votal amount of mixture's substance, which may be computed on

three different bases: the stored mass, the occupied volume, or the
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number of moles. In this present abridged exposivion, we shall use

neither the volume-~ nor the mole-fractions, basing our considerat-

ions solely on the fundamental concept of the mass—fraciion, or

mass—concencravion:

stored mixocure mass Ci

g

mass—-fraction } _ of stored i-th mass
(6.1) of i-th component) ~ 13

Owing to phase-reaction (e.g. vaporization of liquid droplets
in gas), chemical reaction, or electric reactlon (ionization, re-—
combination), the mass of i-th componenti can be created or annihi-

lated, its production being characterized by:

mass~density of _
(6.2) a% =

1imf produced i-vh mass _ %
i~th mass productio g7 1

vime » sStored mixture mass

Comparing definitions (6.1), (6.2), (5.7), (5.8), we conclude
that the i-th mass may be regarded as a scalar SQ which obeys the
relations (5.9a), (5.10a), with £ = ¢4, p = gi, ¥ =2 q’=:€§E
substituted. Conseguently, vhe mass-fraction is the guotient of the
storage densities of masses of the i-th component (2.5h) and of the

mixture as a whole (2.5a):

(6.3) c, = Ql/? 3

L

and the volume-density of production of i~th mass is Qgi.
Since within any region the sum of masses of all the componentvs
forming closed set must be equal to mass of the mixture, then, com-

plying with Eq.(6.%), we have

(6.4a) ) Q. = Q , (6.40) ) . c;

It resulis from the principle of comservation of the toval mass

1

It

that the sum of production densities of all <he component masses

must be zerxo:

(6.5a) ) , Q% =0, S 5 =0
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Complying with this postulate, the creation (§i2>0) of some com-
pronents must be accompanied with the annihilation (§i<IO) of other
components.

In a simple reaction process we distinguish three groups of come
ponents: the products being created (§P>>O), the reactants being
annihilated (§S<§O), and the neutral components not participating
in reaction C@N = 0). According to postulate (6.5b), the rate of

reactvion is defined as
v
(6.6) Sp = - 540

It has to be emphasized that the above increment of concentra-—
tion of products per unit time is due solely to creation, and nov
t0 the transfer. In many texthbooks on chemical kinetics we find
the rate of reaction expressed in form of tThe derivative ch/ t;
this is true only for tvhe concentration cp averaged over the whole

vessel, provided its walls being impermeable for any component of

subsvance.

6.2. Motion of the Substence Component. Diffusion of Mass

According to definition (2.6b), the i-th mass is moving with the
same componential velocity"ai as that of the componential surface
_ga_(Sec. 3.4). Conseguently, the transfer-flux density of i-th mass

. .

with respect 0 tvhe i-th surface must be zero:

(6.7a)

ji =0
—5T;
Using this in Eq.(4.20a) at w = ﬁi' we find that the i-th mass

~flux density through immobile surface is

(6.7b) i o= Q.U

1 i

Applying this once again to the rule (4.20a), we obtain the i-th

mass-flux density through referential surface:

(6.7¢) 3

i = @y - W)
-
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Since the sum of masses of all the componentvs flown through im-
mobile surface must be equal to the transferred mass of mixture as

a whole, then, with the help of Egs.(6.Tb) and (5.1b), we have

(6.82) ) '3, =7, (6.8b) » | 9,7, = ¢

Substituiion of Eg.(6.3) into Eq.(6.8b) gives the barycentric

velocity as the mass-weighved average of all the componential vel-—

cclicies:

(6.8¢c) u = z:IciEi

There is also the concept of volume~centric velocity of mixture,
being the weighted average with respect to volume-fractions of com-
ponencs.

As far as the balance is concerned, parvicular attention must be
paid to the motion of substance's component with respect 10 subsvan-

tial point, surface, and region, called the diffusive motion. The

i-th mass~flux density through substantial surface 31 is called the
5%
diffusion—flux density. Since this quantiiy is of a very freguent

use, we shall replace its inconvenient arrow-symbol with Tradiviona.
denotation idi’ bearing in mind that 1t describes the transfer ref-
erred Lo the substantial surface. Substituting W = u into Eq.(6.7c¢)

and using Bgs.(6.7b), (6.3), (5.1b), we obtain the expression for 3(

(6.9)  Tgg =3y _ =@y -w =7; ~ Q¥ =7; -3
-0

t results from Egs.(6.8a) and (6.4b) that
(6.10) 7 1 TFas =0

Rearranging Eq.(6.9), we express Ei as the sum of two terms:
- _ -
contribution to transfer " mutual mixing of

of toval mass components' masses
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Mg, 6.1 For each component, the first term is a vector directed identi-
cally as the barycentric velocity, and so contributing to transfer
0of the votal mass. The second term describes solely the pure mixing
of components, because the sum of all Jy, gives zero. Summing up

) Eq.(6.11) over all the componenis, we obbain: J =¢u + 0. This res-

ult is explained by the example of bimary diffusion (in the 2-com-

ponent-mixture, i = 1, 2) illustrated in Fig. 6.1, where 3&1 and

3&2 = - Edi are opposite vecuors.

If the mixbture as a whole is at rest, Eg.(6.9) takes particular

form:

(6.,12) Ei = Qiﬁi = J41 for resting mixture (u = 0)

Various factors may cause the phenomenon of mass-diffusion. A%
small variability of the fields c,, the vector 'j'd.l obeys the fol-
lowing law:

" (Fick's law of the free diffusion
(6.13) Jgq = — @2 grad oy %\in the binary (i = 1, 2) incom-
jord

essible (@ = const3 mixture

where D = const is called the diffusivity.

Exercise 6.1. Disivinguish the conveciive and non-convective

transfer of i-th mass in Eq.{(6.11).

Instructions. Apply substitution (6.3) and compars with the

classifying decomposition {(5.13a). Since the i-th mass 1s a scalar

SQ, both expressions will prove eguivalent at substitutions: H = ﬁi

2 i T Jdan €7 0y

Exercise 6.2. Check whether the right-hand side of Fick's law

(6.13) satisfies Eq.(6.10).

Instruction. Use Bq.(6.4b) with i = 1, 2 substituted.

6.3. The Balance of the Component Mass

If we regard the i-th mass as a scalar H), its referential bal-

» ances result from general Egs.(4.28a) and (4.30a), in which we




Fig. 6.1. Graph of mass transfer vectors in binary diffusion
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replace Y with 0., VY with o¥., and E_with expression (6.7c):
1 \ <1 -t ]

(6.14a) gﬁW‘m Qid3V =lﬂ(qﬁid3v - r~(Qi{ai - wya%)
VL V- S

v g =9

in‘_ o _ _-
(6.14b) %ii? O = FE v o+ Q;div w = Q§i - div(Qi{ui - w})

At w = 0, we obtain the balances for immobile region and poinv:
> 4 % %
6.15a - y a-’v = ! ._qj
(6.15a) 0 | Ql J QE a-v (Q U, d S)

. . e, ‘
(6.15b) 3%£ = in - “lV(Q u. ), or (6.15¢) *l + div(Qiﬁi) = gﬁi

Substituting W = 1 in Bgs.(6.14) and taking into consideration
Egs.(6.3), (6.9), (5.11a), we obtain the sudbstantiial balances, Agq.

(6.16b) bveing sometimes called the continuity equation of diffusion:

d
(6.16a) ﬂvqc a2v —,M Q>id'v-d£(3d1d S)
d‘ V- s_
= —‘?w —=u
dey _ ¢ =
(6.16h) rfgngci) = @ ogE= o= Q) - iV a4

Finally, if we substitute w = Ei into Egs.(5.14), we obtain the
componential balances, characierized by the absence of any vransfer
{the change of i-th mass stored within i-th componential region man

result from production, i.e. reaction, only):

( [ ¢ %
(6.17a) ~+u~ﬂ; a’v = quid3v, (6.170) g% + Q;div 4y = p;
vV _ V_—
= —> WUy
Comparing Eqs.(6.15¢c) with (5.44) and (6.1Tb) with (5.4b), we
find general similarity of structure, with The excepvion of zero-—
~valued right-hand sides for the total mass, which is a conservaci-
ve guanvitvy. '
Exercise 65.3. Derive the balances {6.16a,b) from general Egs.

(5.18a) and (5.1%a).
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Instructions. Regard the i~th mass as a scalar 5Q, motvivating

the substitutions E = Cis B = ;i, H_= jdi (see Ex. 6.1).

-

>3
Exercise 6.4. Prove that in case of each of Egs.(6.14a,b),

(6.15a,c), (6.16a), the sum of balances over all i-th componenis
becomes the balance of total mass, expressed by Egqs.(5.2a,b), (5.3b)
(5.4d4), (5.3%a), respeciively.

Instruction. Use Egs.(6.4a,b), (6.5a), (6.8b) and (6.10).

Bxercise 6.5. Prove that the sum cf Eg.(6.16b) over all ithe com—

ponents is a zero identiiy.

Instruction as for Ex. 6.4.

6.4. Some Exemplary Interpretations and Applications of the

Component Mass Balance

Using the balance (6.17b) and Bg.(6.3), we derive a dimension-
less equation expressing the relative increment of density Qi along

the componentvial displacement Eidt of the i-th mass element during

vime d%:
ags goat _
(6.18) —=; = = - div 4t
\ Ql ! \ + / A /
relative increment relative increment relative increment

of density along of concentration of volume of

componential displacement due 1o production componential region
(reaction)

The first cause of change of Qi is creatvion or annihilavion of
the component due to reaction (e.g. conversion of the "white" grains
into the "black" ones in Fig. 6.2). The second cause lies in the dil
avation of the componential region, which is egual to expression
(3.34) at w = Ei, muliiplied by d% (the minus sign explains that the

contraction of region, div Hi < 0, contributes to the increase of

¢;» as 1% is shown in Fig. 6.2). In terms of Eq.(6.18), the change
of Qi is independent of diffusion which does not occur through the

shell of componential region.



. ,, ~
reaction o-=e, %;> 0 >

— ~
componenﬁal
displacement

Uéadf
Teemo I,

dilatation: componential regM.

Fig. 6.2. Influence of reaction and dilatation on the density of
the "i-th" mass ( "black" grains)
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Multiplying Eq.(6.16b) by v dt = dt/¢ , we obtain the increment

of concentration c; along the substantial displacement o dt:

= 1 H = a4

(6-19) dci_ = ji(iu - v div Jdidu
L N/ \ / \ _ ,
increment of increment due 1o increment due o

concentration  production (reaction) transfer {(diffusion)
along substantial
displacement

The causes of increment of c; are: production of i-th mass (re-
action) and diffusion, as the only possible kind of i-ih mass itran-
sfer through substantial shell .. In terms of Eq.(6.19), the dila-
tation of Xﬁi does not influence the concentration cy as the quot-
ient of masses stored within vhe same volume.

The significance of both terms of Eg.(6.19) will be explained by
way of example of the combustion reaction (Fig. 6.3). In the perf-

ectly kinetic combustion, The combustible mixwvure (the reactants)

is properly composed before the onset of reaction, and the diffusion
is of no influence. This way, in the course of combustion‘progress,
the only process occurring within vhe subsiantial region is the con-
version of reactants into products (until the complete exhaustion

of the reactants):

(6.202) de; = §idt, div 4, = 0 for perfectly kinetic combustion

In the diffusive combustion, the proper forming of the combustib-

le mixture is achieved by means of diffusion, which occurs simulva-
neously with the reaction (the oxidant is entering, while the burnt
gas is leaving the substantial region). In case of the perfectily

diffusive combustion, it is assumed that the concentrations cy re-

main constant along the substantial displacement, because the pPro-

duction is entirely compensated by the diffusive transfer:

> e C e n for pexrfecily
(6‘20b)‘§id“ =V 0LV Jqdts doy =0 diffusive combusiion
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Exercise 6.6. Derive the diffusion-type differential eguation

i for free diffusion in the binary
(6.21) 5%~ = D div grad ¢, 4 non-reacting incompressible resiing
. mixture

Instructions. Set ¥, = O into the balance (6.15b), apply substi-

tutions (6.3), (6.12), (6.13) and assumption (5.5b). Discuss the
analogy between phenomena of diffusion and heat conduciion (compa-

re Egs.6.21 and 5.62) and between coefficients D and a.

6.5. The Componential Quantity

If the mixture is the site of a certain 5Q, then, at the fulfil-
ment of some physical postulates, we can decompose this quantity in-
to "sub-substantial" parts allotted %o partvicular components.

The componential guantity, or CQ, as abbreviaved, is an axtensi-
ve quanvity which can be stored in a component of substance and
carried with this component. The CQ needs noi to be a conservative
quantity, and the carrying with the component is not, in general,
the only way of CQ's transport.

Since the i-th mass is a measure of the site of i-th CQ, the sto-
rage of CQ depends on the component mass stored within the balance
region. The continuous Qs are characterized hy the following par-

tial densities:

) Denovation for
Cavegory of the s =
partial density Definition scg%ar !veasor
S :
(6.22) sitorage 1 - _— |
g T L s Stored i-th CQ . Po=
par“l?1+den81“yj = Linf s3oved 1-%h mass T
of i-th CQ

(6.23) production

74 oty S produced i-th CQ
B T [T M TiEe | storea i-th mass| i

221

S

Comparing definitions (2.5b), (4.5), (4.6), (6.22) and (6.23),

and considering Eg.(6.3), we obtain the relations beiween the vol-

A

and production ‘\Pi, R,

; of i-th CQ,

ume~densities of storage YE, Pi
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and the respective partial densities:

(6.242) ¥ = ;€ = Qoy%;, (6.24v) By = ;T3 = ¢eyT;
(6.25a) Wi = Q4P = QSR (6.25b) Ei = %5, = ?Cigi

t 1is possible to derive (see Ex. 6.7 to 6.9) the following
transformations of the Reynoldsians and relations between the com—

ponential and substantial derivatives:

32 %) _
” e Lond ~ o
(6.261a) ;ii%(Qigi) = 5% + di?(uiCiQi%
’ I form
_ L ol T e Y - . N ]
=¥ Ty Aw(aity) s o R0V = 9 g 255
II form 11X form IV form
g(? a ) { ====
- =\ _ i%i ——] _
(6.26p) reyn(QQy) = —F— + dlv{uiQi‘—\"j/"
I form
d(e.Q;) =====  d(Q.Q,) al . s
- e R ivil . — . = i
= TEe e A gy = o 0 div uy = Q) gty 5T,
II form Il form IV form
: aleys)
(6.27a) r?§€(Qici) = {2§§(Qciti) = ¢ —gz—>0
— —— _dlesQy)
(6.270) rix\%(qui) = ?ix&n(\gciQi) = Q —g==1
..~ dal .~
(6.28a) Qii%%au; - E?*q} = (jdigraa )
- d_-A- _) - s==mm e
{(6.28b) Qi{%%édb - E?ﬁ%[ = jdigraﬁ A

Exercise 6.7. Prove the transformations (6.26z,b).
- . 2

Instructions. Set w = u; into expressions (3.252,b), then substi-

tute o = ¥; (6.242) and ¥ = P, (6.24b), in order to obtain I and III
form. Apply substitutions (6.9) and (6.3) and transformations
(5.11a,b) at ¢ = o;€4, Q= ciﬁi into I form in order %o obtain II
form. Develop the derivative of product and use the balance (6.17b)

in 1IT form, in order to obtain IV form.
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Exercise 6.8. Prove the itransformations (6.27a,b).

Instruction. Substitute & = c;t,, Q = ciﬁi into transformations
(5.11a,b) and use Eq.(6.3).
Exercise 6.9. Prove the relations (6.28a,b).

Ingiruction, Use Egs.(3.4a,b) and (6.9).

6.6. Diffusive and Non-Diffusive Transfer of a Componential Quantity

Substituting ¥ = ?i (6.24a), T = P, (6.24b) into Egs.(4.20),

firstly et W = U and secondly at W = 4., and considering Eq.(6.9),

i’
we have
(6.292) B, =u g, +H. =T%.€.¢, +E ,[(6.30a) B -E =T.¢,
TR P U & T e
(6.29b) Ti =1 Qi?l + Ti,.= uiQi?i -+ Ti-—“ (6-50b) Ti~" Tl __: Jdin
-3 —uy 5 ~uy

and finally we obivain the classifying decomposition of the transfer-

-flux density of CQ with respect to immobile surface:

(6.31a) Hi = W &Ry o+ Jg48 ¥ ﬁi__
-_.3 ‘L
{(6.31b) T, = WQyR; o+ Jdiai + Ti:_
A AN
' ; tVdiffusive non-diffusivey
transfer: convecthtive non-convecitive

In the convective and diffusive transfer, the (Q is carried with
the mixture as a whole (moving with barycentric velocity) and with
the component (in its diffusive motion), respectively. The diffusi-
ve transfer is the capture of CQ's storage resulting from the rela-
tive motcion of componential surface|§§5Twith respect t0 the substan-

Y
tial surfaceiiﬁ.

The non-diffusive transfer is direcily referred to the compon-—
ential surface, so it is connecied with the motion of neither mix—

ture nor ivs componentis. In terms of classification (5.13), the

sum of vhe diffusive and non-diffusive transfers forms ithe non-

~convective transfer.
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Substituting V= W, (6.242), P = P, (6.24b), E = E; (6.31a),

T = (6 31b) into Fgs.{4.20), we obiain the itransfer-flux densi-

ties of CQ through referential surface:

(6.32a)  H; =H, - W gy =H + 346 - (- g9
3 —>u:

(6.320) Ty =T, -WQq5e; =T+ Tg58 - @ - W
—F T

6.7. The Basic Balances of a2 Componential Quantity

Substituting Y = §, (6.242), P =P, (6.24v), ¥ = W& (6.25a),
R =F; (6.25b), E_=TH, _(6.32a), T = T (6.32b) into Egs.(4.28)
>4 — ~>w ——pw

and (4.30), we obtain the referential balznces of (Qs:

(6.3%2) %ﬁﬂj’qiEiQBV ﬂj 73Ry d 477 —ﬂgt(d S H ¥ Jdlfgi - (?Ef-{i)é‘lfir%ik)

'V'_ FS

V- s
(6.33b).ifﬁ H]o q,a%v -_L[g 5,47 - {E + Sjgln - E%:%?ngq;k
at g o
d(Ql l

(6.3%342) reyﬁn(BiEi) = —3rW + ;¢ div w =
——y

= QiPy - diviﬁi_ + 3438 - (wew) EiQik

-?'LAL
—_— a(g5Q4) _ L
(6.34b) riy%(qiql) —gr—=0 + C\quid:.v w =

Substituting w = Ei, u, O in succession and considering Egs.
(6.9), (6.26), and (6.27), we obtain the balances for componentisal,

substantial and immobile region/point, respectively:
2



d " r L
(6.35a) }?TJH Qiﬁid3v = J]J ji‘lj_dBV - uﬁ; (d23 H, )

e
E;\T‘u >y -%GL ‘
a .y
. e 3 _ ’!5 3 1[ ==
v T i ~>i
—us ~u; AW

= ri@‘iﬁ'i), rate of change of storage
- 1"

= reyn(q.Q".), rate of change of storage
ICASa ¢ it

1

(6.36’0)\—-—&—%’-—4%-}- Q:Q;4iv Uy = Py gVt Qgi(;)__j:{: @Sy - dlv.Ti_
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d(QiSi) . :
T o fap TH o = . :
(6.36a) —gp—o¥ + @ 4vuy =% ggohit ‘€§i_f-i,- Qupy — v Iy

—>u,

d i - _
(6.372) —E'G ﬁg Qiiidav =ﬂj Qj}lidsv -—GJ%: (d2'§ ELHi + jdiEi})
dt 5 _ V. S s
> Y -y
d - {‘ - 3 ) 3 2—‘-‘:. -f'::i:}
(6.370) E—J,:d jﬂ Q@477 = m ;5,4°V - b d7s { j_“.+ JaiQ4(
‘V.;.‘-.. V,_ S - pedtt ,f
T > = .
d(e;s;)
. _ L7 ~
(6.382) reyn(g;&;) = ¢ —gg—4 = Jufy ~ 4v(E; + Jgfy)
-ar'\);
(6.38b) riy_'czs_(QiQi) = Q ..._._,%._3.:.—,3 = qigi _ .iv(t'ci_+ jdiQi)
~Sv-
D 3
B 30 - I 3 - - .
(6.3%9a) :ﬂ—qlild v = 1) Qs 47V - & (a S{,ﬁl_+ Jga€y * @ %404 )
©v v S >
DN 3 % o= Z=zm== ZTTF
(6.39b) Tﬂ‘;( quld V = gi(qlgid v (ﬁ; ds Ti__+ Jd.iQi + Qi‘%i
7 -v- v (] \.'*-z_,"\;‘h
| M:E:) - _ -
—3ur
- 2(04Q5) =  S=p==  =5==
(6.40b) Feya(9,q;) = —sg—— = {35; - T(Ty + Jg3Q *+ © Q4)
-S43

It is worth to motice that the simplest form of the left-hand
side appears in the balances for substantial and immobile points,

Lgs.(6.38) and (6.4C), respectively. In the componential balances
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(6.35) and (6.36), the right-hand side is concise, because they
reveal only one kind of transfer, namely the non-diffusive transfer.
The sbove colleciion of 16 basic balances (from 6.25 to 6.40)
consisis of the scalar end vector groups. The theorem on equival—

ence of balances (Sec. 4.10) is applicable to either group of 8
eguations.

Exercise 6.10. Derive the balances of i-tbh mass (6.14a,b),

(6.15a,b), (6.162,b), (6.17a,b) from the basic balances of CQ of
the types (6.3%3a), (6.%4a), (6.3%a), (6.40a), (6.37a), (6.38a),
(6.35a), (6.3%6a).

Instructions. Show with use of definitions (6.22), (6.23), (6.2},

h ot s 4+ 2 £ ~ — |6
(6.1) and (6.3) that for the i-th mass we have Ei =1, py = %;i/Qi,
and that the i-th mass is not subjected to non-diffusive vransfer

(Bg.6.72), or ﬁi = 0. Use BEq.{6.9) in case of need.
N,

Exercise 6.11. Derive the balances of i-th mass (6.14b), (6.15b)

(6.16b) and (6.17b) from the transformation (6.26a).

Tnsiructions as for Ex. 6.10.

6.8. The Componential Momentum. The Diffusive Stress

While the momentum of mixture composed of grains belonging %0
various species is the sum of momentums of all the grains, the mom-
entum of i-th conmponent is the sum of momentums of solely i-th
grains. In this approach, the i-th momentum is a vector CQ of the
storage partial density equal to the componential velocity Ei’ and
the volume density ?iﬁi (see definitions 6.22 and 6.24b).

I+ has to be emphasized that the storage volume-density of i-th
momentum is equal to the i-th mass-flux density through immobile

B that : t ostulate that
surface (BEq.6.Tb). For that reason we need nov even pPoSs te b
+ tr Y s ] al to the momenvur
the sum of momenitums of all the components 1S €qu G the
of mixture; this is obitained from Eq.(6.8b) explicitly. From the

classification (6.11) we conclude that not all the momentum of i-tl
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component but only its part of density Qiﬁ contributes o the
resultant momentum. The remaining $diffusive momentums" of densi-
ties 3di become mutually cancelled when added (Eq.6.10), in the
same way as the thermal momentums wivhin a discrete set of grains

(compare Eq.2.7c).

Substituting

-

AP SR

(6.27b)}, we obtain the Reynoldsians of the i~th momentum density:

Q; =u; into Egs.(6.26b) and

L

] _ d(cial) Smm== du. ‘.
e r—— ) ) = ,} — e -~ = ™ _ et ‘_ 1
(6.41a) reyn(Qsv;) =8 —gg >0+ 4V Jqg3¥y =@ g% * (u¥y
II form 1V form

S dlegny )
(6.41b) ?iﬂ?(qiui) = Q —F—>u

Substituting W = u;, 4 = §u; into Eq.(3.30b) and using the IV

form of Reynoldsian (6.41a), we have

d T s e du _ “
.- “ — 3 - l 1 - i S v 3
(6.428.) E}:\ADU‘! iuid v = J -{ ?i —a-‘:‘:'-—é'llb 4 leui } a-v
— V.-
\ 5 [Ty [ i

rave of change of

L A - influence of influence of
ihe l-sh momenvin change in the change in %he
i-th velocity i-th mass

componentvial region

Consrary to the substantial region and the totval mass, the i-th
componential region does notv convain a time-constvant storage of i-tk
mass. Thus, the change of componeni's momentum is influenced not on-
ly by the change in velocity but also by the change in mass, manif-
estved by ivs creation or amnihilavion.

The expression Q@iﬁi has been called (Prigogine and Mazur, see
Bibliography 10) the vector of conversion of momenium beiween the
reacting components. This interpretvation seems to be inappropriate
from the viewpoint of balance axiom (4.1), because Eg.(6.42a) is
not yet a balance, being a developmentc of ius left-hand side only.
Even if we assumed the vector Qgiai t0 represent the conversion,

the first term of the right-hand side of Eq.(6.42a) would certainly
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not be the i-th momentum transfer through componential shell.

In order Lo compare the rates of change of the i-th momentum
storsge in the componential and substantial regions, we replace &
with ?iai in Eq.(3%.3%0b), make successive substiiutions w = Ei and
% = u, then successively use the II form of Reynoldsian (6.412)

(which does not directly reveal the influence of i-th mass prod-—

uction) and the Reynoldsian (6.41b):

(e (O (e alesd;)  __ z=s==) 5 (within i-th
.42b) "j“h\ Q;u d7V = LQ‘——E€““7U + ALV Jgi%y d-V {componential
dt V- 7 region

S L
a r r d(e.u;) ‘within
(€.42¢) -éijﬁ QluldEV = %T Q._Tf%;k;a adv %substantial
dt é é) \region
-~z v

Comparing the righi-hand sides, we find that at the instant when
the regions_Xa‘an& VJ cover each other, the same storage of i-~vh
L 3

momentum changes differently. After applying the GGO theorem (1.34a)

the difference between Egqs.(6.42b) and (6.42c¢) sssumes the shape of

the surface integral of tensor 3&351’ which has been called the i-~th

diffusive siress ﬁdi by Nachbar, Williams and Penner (see Bibliog-
raphy 11). The expression for tThis quantity can be developed with

the help of Eq.(6.9):

(6.432) Mag = JaiBy = Q0% - GO Y

Tt resulis from Eg.(6.8b) that the diffusive stress for the mix-

ture as a whole ﬂd is a symmetric tensor composed of vhe dyadics of
vectors Ei and u:

T 1= | b E
= \ = ] = { T} -
(6.43b) g = 2. Ngg = 2 JaiBy =), 9uy0; — Qv ®
Though the guantities ﬁdi and ﬁd are of dimension of siress, vhe
are of conventional character, in the same Way as the Reynolds stre

in %he theory of turbulence., According 7To clagssification (6.31b) at
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Gi = Ei, the temsor Ty, (6.4%a) describes the diffusive transfer
of i-th momentum, or the capiture due to the relative movion of com—

ponential surface with respect to the substantial surface.

Exercise 6.12. Prove the following transformation concerning the

sum of storages of momentums of all the components within substan-

tial region:

d a—
~ N7 25y dn. - 3
(6.44) Ef“_ﬂTimJgiuid v -Jﬁ Q-&%@u a-v
"] -V-—
—~u -~

Instruction. Apply Eq.(6.8b) and rule (5.12b) at § = u.

6.9, The Balance of Componential Momentum

T+ is no%t obvious by any means whether Newton's Second Law of
Mobtion, which is applicables to a single grain, can be extended ovexr
the set of all the i-%h grains within i-th componential regiongga,

v
We are exposed to some doubts arising from the fact of creavion and
ammihilation of the componenv mass, as Wéll as from the difficulties
in phenomenological determination of the intra-componential force
interaction. We have o ask questions: are we allowed, from the
phenomenological viewpoint, to regard the componants of subsiance
as a sebt of separate bdut mutually penetrating bodies?; how the for-
ce exerted on mixiure =5 a whole should he decomposed among parti-—
cular components?; how to describe the forces interacting solely
among the components and vanishing when summed up over a closed set

We shall not go into the intricate considerations on tThe pheno-
menological theory of multicomponent mixwure, which is not too much
advanced and consistent these days. Instead of it, we shall present
a fairly sketchy form of the balance of componeniial momentum, de-
duced with the help of reasoning similar to that of Bearman and
Kirkwood (see Bibliography 12).

At first we assume thav the i—?h component within i-th componen-
o

tial region is subjected to a fpudH force of the (volume-) density
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7,

is and vo a surface force expressed by the siress ﬁi’

The componential bulk force results from exertions of the gra-—
vity and the long-range electromagnetic field, as well as from the
resistance accompanying the diffusive motion. When summed up over
the set of all the components,the diffusion-resistance forces he—
come muvually cancelled, while the exertions mentioned give the
bulk force of density F, acting on the mixture as = whole {compare

Eq.5.22):

(6.45) > F = F, o+ Ty =T

The componentizl stress ni consists of the pressure parsv, ex—

pressed by the scalar componential pressure P;» and of the wviscous

part md.Inimestﬁmcmimcﬂ.ﬂmmm%maﬁcemﬂlﬂwhm,n

.l.i 1s

the product of the resultant pressure of the mixture p and the vol-
ume-fraction of i-th component (Dalton's law). In such circumsiance:
the volume-density of the componenvial pressurxe force - grad Py

4

consists of two verms, the first of them expressing the diffuso-

-motive force {(of the free diffusion). When summed up over th

4]
n
)

of all the components, the first terms wvanish, while the second
terms give the volume-density of the pressure force - grad p (Eg.
5.27b), with respect to the mixture as a whole,

Now we postulate (being not absolutely positive!) ithat the bal-
ance 0of i-th momentum within i-th componential region obeys Newton':

Second Taw of Yotion:

.7 J” = o3v = % 43y _ H3%e
(6.46) -gzu;l‘ 08,7 = ) a0 - DaFR
o L, 2y
Basing on the eguivalence of Egs.(6.35b) and (6.36b) av §i = Ei,
Qigi = Fi, =i = ﬁi’ we obtain the balance of componential momentum
av a2 componenvial point, or the equation of motvion of i-th componen
P — — dﬁi — t_ w— R
(6.47a) reyn(Qiui) =0y gEow + 5w, = F, - div Hi
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From the eguivalence of Bgs.(6.36b) and (6.38b) with substitu-
tion (6.43%a) we obtain the balance of componential momentum at a
substanvial poinv:
d(ciui)

(6.4Tp) reyn(gsu;) = Q —gz—>u = F; - W(ﬁi * :ﬁdi)

—3 3

Summing up the balances (6.47b) over the closed set (the subs-
tantial point heing the same for all the components), and consider-

ing Egs.(6.8¢c) and (6.45), we conclude that
(6.48) o BT =T - T ) (R + figy)

Comparing the result obtained with the balance (5.29b) and con-
sidering Eq.{6.43b)}, we find the relation between the resuliant

stress T in the mixture and the componentvial stiresses:
= _ = = - "—(——. =

We see that the mixture's siress is not egual to the sum of all
the componential stresses exerted on particular components within
their own regions, The difference is the diffusive stress ﬁd'

Applying several simplifying assumptions (stationary siate, the
binary incompressible mixture at rest, local thermodynamic equilib-

B

rium, purely free diffusion), we are able to transform the compo-
nent's momenstum balance (6.47b) into such a form, in which the
diffusion-resistance force is equilibrated with the diffuso-motive

force, and which is, in fact, a transformed Fick's law (6.13).

6.10., Kinetic Energy of = Component and the Diffusion Inergy

Tne sum of kinetic energies of the ordered motions of i-th graiw
is the kinetic energy of i-th compeonent of substance, which can be
regarded as a scalar Q.

According to definitions (6.22) and (6.24), with &; replaced
with (ﬁi/?), the partial density and the volume-density of storage

of %he i-th componential kinetic energy are, respectively, equal <0
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(6.50a) €, = (B5/2), (6.50b) s = @ (Eo/2)

We introduce the concept of the i-th componential diffusion

energy, characterized by the following partial densivy and volupge-

~density of siorage:
(6.518) €4, = 5(35;)/05, (6.51b) ¢.€.; = 5(32,) /%5

The sum of the componential diffusion energies over all the com-

ponents is called the mixture's diffusion energy. According to de-—

finitions (5.7), (5.92), and Eg.(6.3), the sitorage of the discussed
scalar SQ is characterized by the following mass-density and volu-

me—-density:

A - N7
(6.52a) Ed = ._1°i€di’ (6.52b) ?Ed A Qiedi
Applying substitution (6.9) into Eq.(6.50b) and using the deno-

tation (6.51b), we have
| T2 -
(6.53) Qifs = Q) + (Widgs) + Q5%

We sum up the volume-densities of the componential kinetic ener-—
gies over all the components. Taking into consideration Egs.{(6.4a),

(6.10) and (6.52b), we obtain:

T "u"'
6- .8 M = m— -+
(6.54) \Q—J-Ql ki, % Q(Q ) ), | di /
mixture's mixiure's
kinevic energy diffusion esnergy

the sum of
components'
kinetic enexgies

We have found that the sum of kinetic energies of all the compo-—
nents is not equal to the kinetic energy of mixture, but greater vy
the diffusion energy. The reason of this inequality is that the sum
of componential kinetic energies concerns all the ordered motions,

while the mixture's kinetic energy is due %o only those ordered mo%

ions that give non-zero macroscopic momentum. The diffusion energy

resulss from the ordered motions with mutually cancelling momenviums
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3ince they are motions of thermal nasure, the diffusion energy,
from the phenomenclogical viewpoint, is regarded as a partv of thexr-
mal energy, in the same way as the energy of the disordered grain
motions is itreated (compare Zg.2.8b).

In the resting mixture, having zero-valued kinetic energy as a
whole, the sum of componential kinetic energies is equal ©o the
diffusion energy. On the other hand, atv a fairly intense flow of
mixiture and relatively slow process of diffusion, the diffusion

energy becomes negligible, so we can simplify Eq.(6.54) as follows:
c o ~ o . N
(6.55) Qs€qy = QLE—) at slow diffusion

it is possible to derive (Ex.6.13) the balance of i-th kinetic

energy within i-th componential region in the following form:

(6.56)
Sl Sy = [l{-ofe, . +(F.5,)+(F, 5758 5, ta%7 - qhia®s Fim,)
Efuiw Qizkid = ﬂ\?Q I RAS PR M,grad u; | D) Mivy
[ T A g
0 T 4 Wieall? i

Y
rate of change
of storage

non-diffusive

s
production transfer

The balsnce given displays some analogies with the kinevic ener-
gy balance for one-component fluid. The latzer balance, however,
has none production term corresponding to - Q%&EKi, expressing
the creation of i-th kinetic ensrgy when the i-th mass is annihi-
lated, and vice versa. Since the balance (6.56) comprises the com-
ponent's contributions to both kinstic energy of mixture and inver-
nal energy (manifested as the diffusion energy) in a composite wWay,
its phenomenological interpretavion is difficulv.

Applying the theorem on equivalence of balances (6.%5a) and
(6.38a), we can transform Eq.(6.56) into the balance at substantial
point, then sum up the balances of componential kinetic energles

over all the components of mixture. According to Eq.(6.54), the
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obvained sum minus the kinetic energy balance for mixiure as a

cal interpretation.

whole will result in the balance of the diffusion energy of mix-—
vure. This can be achieved at the cost of very T
quiring many substitutions and transformations. The obiained balan-—

edious labour, re-
ce contvains 9 terms of difficult and partly ambiguous phenomenogi-~

It is sure, however, that the diffusion energy is subjecied to

conversion with the electromagnetic ener and various sub-catego-
gy g

ries of the internal energy, while its transfer is of both diffu—

sive and non-diffusive character. It is possible %o prove that the

flow of electric current is accompanied with considerable creation
and annihilation of the diffusion energy, though its storage usual-

ly is negligibly small., For example in the electrolyie of =zn ordi—

Joule's heat.

nary car batvery being charged in usual conditions, the equivalent
order of 10-14 second; atv the same time this energy is annihilated

of svorage of the diffusion energy is created within time of the

for the benefit of energy of disordered motions, manifesied as
Exercise 6.13. Derive the balance

(6.56).

Instructions. Multiply the balance

(6.47a) by Ei in a scalar

gy av the componential point:

—T;

product, apply transformation (1.30b) and denotation (6.50a). Re-
(6.57) reyn(p,€y )

arrange vhe left-hand sids so that it assumes the IV form of Rey-

noldsian (6.26a). Hence we obiain the balance of i—th kinetic ener-—

the balance (6.56).

= - Gy + (Fiug) + (ﬁi

L3 .
ﬂiui

Considering the equivalence of Egs.(6.3%36a) and (6.35a), we obtain

6.11. The Internal Energy and Enthalpy of a Component

Because of the complexity of intra-molecular bonds, it is very

difficult to define the concept of componential internal EREYEY »
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While the thermal motion energy can be allotited among the molecu-
les of different species, it is not clear how to disitribute the
field energy of short-range interaction among the thoroughly mi-—
xed grains of various components. This is the reason why we risk
arbitrariness and indeterminacy when asserting that the i—-ik com—
ponent contains some i-th internal energy {(this uncertainty con-
cerns mainly the liguid).

Nevertheless, in the phenomenological approach, the i-th inter-—
nal energy is regarded as a scalsr ¢Q of the stcrage parvial densi-
ty gr; and volume~density Qigli (see definitions 6.22, 6.24a). The
enthalpy of i-th component is also a scaler CQ, characterized by

the partial densisty of storage Hi:

(6.58) Ei = Gii + DV,

where Vo is the partial specific volume, or, rigorously, the par-

tial density of volume (the volume occupied by i~th component . per
unit of i-th mass).

The distribution of mixture's internal energy among the compo —
nents must be consistent with the ways of disiribuition of other
energies of substantial character, which are the gravitational and
Xinetic energies.

since each species of grain is subjected to identical gravitatio-
nal potential [7, the sum of graviiational energies of all the com-
ponents is equal to the mixture's gravitational energy (see Sec.

5.11 and Eq.6.4a):

A

Bach of the components is the site of three kinds of substantial
energies of total density Qi(f1+ €y * €p3) If we sum up the given
expression over all the components, we have to obtain the density
of sum of the gravitational, kinetic and internal energy, with res-

pect 0 the mixiure as a whole:
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(6.60) Z Ql([‘ o+ Ski + in) = E‘){F + (32/2) + EI}(

Taking Eqs.(6.59) and (6.54) into consideration, we have
(6.61) 0Er = ) iy + Q€4

We have found that the internal energy of mixture is not equal
vo the sum of invernal energies of all the components, but greater
by the diffusion energy. This is fed obvious consequence of relation
(6.54) commented in Sec. €.10.

Though the storage of the diffusion energy usually is negligibly
small as compared to the storages of other energies, nevertheless
its conversion and transfer can exeft a strong influence on tvhe bal-
anice of internal energy. Leaving out tedious mathematical deduction,
we shall outline the reasoning in short.

It results from Eg.(6.61) that by the addition of the diffusion

e

energy balsnce vo the sum of balances of componentvial internal en-—

ergies, we obvain the balance of mixture's internal energy. Certain

ol

assumptions with respect to conversion and transfer of she componen-
+ial invernal energies, and full development of the diffusion ener-—
gy balance make it possible to reveal that the diffusive transfer
of internal energy (see Eq.2.60) is influenced by the so-called

intra-componential pressure. Owing to this phenomenon and according

to Eq.(6.58), the vector jd can be expressed as follows:

- — —_ T . e . —_
(6.62) Ja = 2y HiJgy = 2abridas + ) eidai

t seems astonishing indeed that the diffusive transfer of inter-

nal energy depends ultimately on the carried componential enthalpies

The classification (6.31a) suggests rather that jd is a function of

componential internal energies, being equal To . Such a

Z €ridas
result would be obtained if we ignored the share of the diffusion

LIS L4 4. - e & S b o R
energy within the internal energy, assuming that Q?I =241?ifli‘
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This way of reasoning had been commonly practised until Trues-—
dell (see Bibliography 7) formulated Eq.(6.61) in 1957. Save for
the particular case of mixiure of incompressible components, the
neglect of the diffusion energy implies grave errors, because, in
certain conditions, the difference E::(Hi - €13 3&1 can be of the
same order as that of jtc and J,., which characterize the conduc-
tive and radiative trahsfer, respectiively.

In the nonequilibrium thermodynamic, the non-cenvective vransfer-
—flux density of internal energy (see Eq.5.60) is usually presented
in two alternative forms

(6.63) Ine = 9g ¥ 2afridas =9 ¢ £atidas o

Jé end 7& being called the first-law and second-law heat flux, res-
pectively.

In view of our previous considerations, the flux 3& is a purely

1

e . - . . . i - - \‘ ~ -
conventional guantity, deprived of interpretvavion, because ; (tr;Jg4
describes, generally speaking, only a part of the diffusive transfer
of internal energy.

On the other hand, comparing Egs.(6.63), (5.60) and (6.62), we

<
b5
®

conclude that the flux J" = th + jtr virtually is the entire con-

Q
ductive—radistive transfer of dnternal energy, and for vhat reason
it has a definite physical meaning.
e use of substitutions (6.62) and (5.60) makes possible to re-—

~write the balances of internal energy (5.58a) and enthalpy (5.67)

in moxe specified forms:

dE_ — -_— 3 = e o
(6.64) ¢ ggo>u = G+ (BI) - o ot - (7,EFEA T) +
~ — ol -
- div(Je, + Jy, EJHini)

dH_.. —_—— d.p-— = === ——
(6.65) ¢ gg»d = G # (Eq%q) + g - (M BTad B) +
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It is worth %o notice that the diffusive transfer of both in-
ternal energy and enthalpy of the mixture (the sum terms in Egs.
6.64 and 6.65) lies in the carrying of the componeniial enthal-

pies in their diffusive motion.

7. The Balances of Total Energy end Intropy

7.1. The Balance of Teial Energy

From the phenomenoclogical viewpoint, the total energy forms
closed set of 4 specific energies (kinetie, gravitational, inter-
nal, and electromagnetic, Sec. 2.7). In order to obtain the balan-
ce of total energy, we have only to add the balances of specific
energies within the same region or ai the sanme pointv. Gn account
of the non-substantial character of electromagnevic energy, the
most simple reference object of balancing is an immobile point.
The previously obitained valances (5.42b) (with substitution 5.22),
(5.44b), (5.57b) (with substiitution 5.6¢), and (4.49) have been
tebulated in form of the set Eas.(7.1).

3ince the kinetic, gravitational, and invernal energies are all

scalar SQs, the sum of them we shall call the substantial energy

of mass densivy
_ =2
(T.2a) €y = (a/2) + "+ 9-‘1

The total energy, as the sum of substantial and non-substianvial

(electromagnetic) energies, is a scalar BQ of volume-density

(7.2b) W="W, + 0&

Considering the divergence terms in Egs.(7.1), we mst remember
that in case of electromagnetic energy as a non-substanvial guanti-
ty, the decomposition of transfer into the convective and non-con-
vective parts would be meaningless. This energy is not carried with
substance, though it can be captured through a moving surface, in

the same way as any ovher IQ.
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Before we add the balances (7.1), it is convenient o assemble
the non-convective transfer of substantial energy with the transfer
of non-substantial electromagnetic energy through immobile surface.

The obtained sum will be called the paraconvective transfer of to-

tal energy, its flux density being egqual to

(7.3a) T, =nE+Tg+7

pe + Jtc + d + Jtr

ec exr

Since the paraconvective transier {appearing "beside the convec-
tion") does concern nelther convecvion nor capture, none of its
terms depends on the storage density of any specific energy.

The transfer of ifotal energy through immobile surface i1s the sum

of the paraconvective transfer of total enersgy and the ConNvective

transfer of substantial energy, its flux density being equal to

(7.3D) J = jpc + QESU

Summing up 4 balances of spescific energies shown in Bas.(T.1),
we find that all the production terms cancel each other in palrs.
SHbstituting Egs.{(7.2a,b) 2nd (7.3a,b), we obtain a concise form

of the balance of total snergy at immobile point:

(7.4) %‘*—E = - div T

It is possible to show (Bx. 7.1) that the balance of total ener-

gy at substantlal point is as follows:

(7.5) yig% W= - 3div(d__ = Weﬁﬁ)

pe

where Wemﬁ is the capbure-flux densitvy of electromagnevic energy-

The balances (T7.4) and (7.5) show that the only possible cause
of change of storage of %otal energy, as a conservative guantiiy,
is the transfer.

Exercise T.1. Derive the balance (7T.5).

Instructions. Use the property of equivalence of basic balances

—
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(4.318) and (4.30a). Consider the rule (4.202) with substitutions

eu,?=w,WV=0, =7, then use Egs.(7.3b) and (7.2b).

7.2. Classification of Conversions and Transfers of bnerzy

The block diagram shown in Fig. 7.1 presents a synthesis of the
energetic processes ocecurring in the substantial region. The con-
tained total energy consists of 4 specific energies, which can be
conversed exclusively within this sei at 4 possible combinations.
#hile the production of total energy is none, ihe transfer between
the substantial region and its surroundings can be realized by means
of 7 distinct phenomena, in which, however, only 3 speclfic energles
can parvicipate.

The gravitaitional energy is subjecved to conversion with the xi-

.
netic energy only. This iéiéeversible conversion, cusiomarily known
as the work of gravitational force. The remaining 3 energies form &
teonversion triangle®: sach of Them 1s subjected to conversion with
two others.

The conversion between the kinetlc and electromagnetvic energles
is of reversible character, being customarily called the work of
electrodynamic force. The conversion between the kinetvic and inter-
nal energies (corresponding To nthermodynamic work") is partly rev—
ersible and irreversible. The same propervy characterizes the con-—
version between the electiromagnetic and internal energies. ALl The
irreversible conversions are manifested by creation of internal
energy .

The technology takes advantage of the discussed processes. The
principles of functioning of a few typical devices utillizing energy
conversion are given below (the arrows indicate the direction from

apnihilation of one specific energy +o creation of the other):



DEH @
i SURROUNDINGS g te ) 2

kingtic energy

internal energy

T /37 S
~{lgradu) =2

p(a%/e) E g2 &y
<(f @) ] 1= (7 8) [ Gpu'(Es L5 %’.Ji
gravitational |  electromagnetic
ene{i ay SUBSTANTIAL REGION energy
4 Werm
SURROUNDINGS () (. (.,

(114

Fig. 7.1. Scheme of convertions (thin rectangles) and exchanges
(thin ovals) of particular types of energies (thick
rectangles). In convertions production densities of
component energies (wide arrows) are given. Reversibility
and irreversibility are marked by thin arrow with one or two
arrow heads, respectively.
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energy [ {energy
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! D
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+ is worth to notice that in the internal combusiion engine,
the conversion between two sub-categories of internal energy occurs
as well, the chemical bond energy being annihilaved for the benefit
of thermal energy. The latter form of internal energy undergoes con-
version into the kinetvic energy.

The paraconvective transfer jpc (Bg.7.3a) consists of:

(1) ?F% non-conveciive transfer of kinetic energy due to motion of
substance subjscted to the fields of elastic, pressure, and
viscous stresses (the stress iransfer),

(2) jd non-convective vransfer of internal energy due to diffusion
of the component masses of mixtuxe (The diffusive transfer)

(3)

jec conductive transfer of electromagnetic energy due To cOne

duction of electric currenit, going together with the dif-
fusion of carriexrs of charge (hence similariiy beiween jd
and Jec)’
(4) jt conductive transfer of internal ensrgy due to thermal con-—
duction (some similarity between jec and jtc results from

the microphysical charactier of both processsas),

(5)

or radiative transfer of electromagnsiic energy, g0ing toget-
her with radiation of radio waves (of macroscopic waveleng
(6) jtr radiative transfer of internal energy, going together with

thermal radiation (of microscopic wavelength).
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The swransfers jer and jtr have a common properity: both are no-—
thing else ‘than eleciromagnetic radiation, differing in the ranges
of frequency Spectrum only. In contrary o the kinds of transfer
1isted as items (1) to (4), the radistive transfer (5) and (6) dees
not require the existence of substance to be realized.

For the substantial region (compare Eq.7.5), the paraconvective

transfer is complemented with:

(1) Weﬁﬁ the capiure of electromagnetic energy due to motion of

substantial surface.

This kind of itransfer theoretically accompanies, for example,
the plasma flow in non-homogenous electromagnetic field, though it
usually is of negligible importance.

The discussed ways of transfer are principles of Functioning of
various devices btransmitiing the energy from one systenm tc another,
such as the drive-mechanisms and hydraulic /pneumatic servo-mechanisn

(with T U flux density utilized), the heat exchangers (jtc and jtr)’

electric networks (jec)’ the radio-~communication systems (J_.),etc.

7.3%. Thermodynamic Balance of Fnergy

We deal very often with energetic processes unsffected by elec-
tromagnetic phenomena. In such circumsvances, since the terms Gpm’
nggg)s (?edﬁ), jer and jec disappear Eﬁi%gaEqso(7.l), the tota
energy can be identified with the substantlal energy, and BEg.(7.2b)
agsumes simplified form W = QQSo

In the absence of electromagnetic phenomena, the tctal energy

balance is called the thermodynamic balance of energy and can be

formulated in 4 following versions (Bx. T7.2):



i 3 - Lo dfg _ I
(7.6a) ~—->u b QESd V= - (Jivcd g), (7.6b) ¢ T = - div J£30
=3
(7.72) (7.70)
.} 3 -’"’Z T <l ass 3(QES) - 15 (1 by
= ijqe &’V = %}({Jpc+vgsufd 5), —sp— = - aiv(JL, + QEU)
ati g5 = (B/2) + [+ B, (7.8) Ty = R + Ty + Tyo + Tyy

thermodynamic balance of energy
(electromagnetic phenomena not invelved)

The bhalsnce (T7.6a) concerns the substential region, called the
closed systen in the thermodynamic terminology. Its particular case
is the adisbatic system, the boundary of which cannotv be peneiraised
by the subsience componentis in their diffusive motions (jd = (C) and
allows the energy transfer by means of neither heat conducilon nor
thermal radiation.(?tc, jtr = 0). Taking all those properties into
account when considering Egs.(7.8) and (T7.6a), we ccnclude thatv the
change of the total energy (excluding the eleCuromagqeulc energy )

stored within an adiabatic system is equal ©ve vthe work of surface

forces (5.%39b):

r P
3 kB O thermodynamic balance of
Q =
(. >'—v“ l{?ﬁ a-v n W (M d®s) energy in adiabatic systen

Exercise T.2. Derive the balances (7.6a,b) and (7.72,b).
Insiructions. Having disregarded electromagnetic phenomena, we

substitute W = Qg, and J =37 (Bg.7.8) into Has.(7.3b) and {(7.4)

t

e pc
in order o obiain the balance (7.7b). The remaining versions of
palance result from eguivalence of the basic balances (5.212),

(5.20a), (5.182) and (5.19a).

7.4. The Balance of Dynamic Enthalpy

In the thermodynamic of flow we deal with a very convenlenw cCOI-

cept 0f the dynamic enthalpy (customarily called the Stagnation
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enthalpy). This is a scalar SQ of the same dimension as energy,
and consisting of the (static) enthalpy (Bq.5.65a), kinetic energy
and gravitational energy. The dynamic enthalpy is characterized by

the storage mass-density H' and volume-density QH':

(7.10a) H' = H + (52/2) + 0= (32/2) + [+ EI + PV = £
(7.10%) QH' = 9H + Q(Eg/z) + ol = Q(E2/2} v+ o'+ Q€ + p = Q€ + p

+ LV

(alternative forms have been obtained with the help of Bg.T.2a).
The dynamic enthalpy is, of course, neither the total enexrgy of the
fluis, nor its subsvanvial ensrgy.

It is possible to show (Ex. 7.3) that the balances of dynamic

enthalpy at substvantial and imrcobile points are as follows:

(7.112) ¢ %%;a -

(7.111) Eﬁ%%ll =

(electromagnetic phenomens not involved)

- div(ﬁ;E + jd + jtc + Jeo)

oS Uy

- Giv(AT + T4 + Ju, + Ju. + QH)
d uC [ Q

In the stationary flow (2% = 0) simultaneously being of isen-
tropic character, we leave out of considerstion the phenomena of
viscosity, diffusion, thermal conduction and radiation (I, Jgs Ji.;

Jtr = 0}, as well as all the electromagnetic exertions. In such cir-

cumstances, Eq.(T7.11lb) becomes simplified:
(T.122) div@gH‘ﬁ) = 0 for stationary isentropic flow

t is possible to show (Bx. 7.4) that the above formula leads to

the following eguatvion:

(7.12b) H* = H + (E2/2) + [0 = const along the streamline
for stationary isentiropic Ilow

In case of the perfect gas, the (static) enthalpy H = cpT dep-

ends on the isobvaric specific heav °p and temperature T, and the

changes of gravitational energy can usually be disregarded, and

this way BEg.(7.12b) assumes the following form:



163

(7.13) H' = cPT + (52/2) = consit along the streamline

for stationary isentropic flow of perfect gas

Zxercise T.3. Derive the balances (7.11a,b).

Insvrucvions, We consider Eg.(5.4c) and rules (3.3%a) and (1.30a)

in order to transform Eg.(5.66) into the form:
- - dp. - N . —
(T.14) ¢ Qig%l%u = a%%u + p div ua = %% + div(pu)

Having added this equation to the thermodynamic balance (7.6b)
(electromagnetic phenomena excluded), we develop the vector 3ﬂc
(Eq.7.8) and apply substitutions (5.52b) and (7.102). Having ob-
tained BEq.(7.11a), we find Eq.(7.11b) from the equivalence of
basic balances (5.19a) and (5.21a).

Exercise T7.4. Derive Zg.(7.12b).

Instructions, According to rule (1.3Ca), the left-hand side of

BEq.(7.12a) is equal to (¢u zrad H') + H'div(QnW), the latiter term
being zero because of the assumed stationary flow (BEg.5.5a), hence
(W gred H') = 0. Next we use the same way of reasoning as in case
of the Bernoulli equation (5.55), substituting Eg.(7.1Ca).

Exercise T.5. Show thatv the hydranlic equation of Bernoulli

(5.55) is a particular case of Zg.(7.12b).

Instructions. From the balance (5.58b) for stationary (%/3t=0)
incompressible (v = const) and inviscid (ﬁv = 0) flow, being sub-

J. = 0), we obtain the re-

~ L L - -+ 3 =
jected to isentropic process (Gpm’\%;’ He

lation div(QEiﬁ) = ¢, resolving itself into (O grad EI) =0 (see
rule 1.30a and Eq.5.5a), so we find that €r = const along the
streamline. Considering this in 20.(7.12b), subsiituting Egs.(5.65a

and (5.24), and setting v = 1/p, we finally obtain Hg.(5.55).

T.5. The Energetic Balance of an Blectiro-Roto-Flow dystem

In case of the stationary flow (®/2%t = ¢), the balance of total

energy atv immobile point (7.4) becomes simple equation div J = Q.
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: tegrating this expression within an immobile region, applying the
GG0 theorem (1.3%34a) and substitutions (7.3%b) and (7.3a), and con-
sidering that in the stationary state jer = 0 (Eq.4.4Tb), we have

1 == - - - - =] O
(7.15) %}({rlu *dg v Jan F v dg, ¥ gesuidzs) =0

8 for stvationary process in immobile region

= In the described circumsvances, the net vransfer of total ener-

gy remains zero, because as much ensrgy flows into ©vhe region as
flows out. Of course, as a result of conversions occurring within
the region, the fracvional proporvions among various energies en-—
tering and leaving need nov be preserved. In the discussed problem,
however, we shall consider only the transfer of partvicular ener-
gies flown through the region's shell, irrespective of all what &
takes place in its inverior.

The relation (7.15) is of basic importance for the theory of

stationary-working electro-roto-flow systems, especially for the

formulation of energetic balances and defining the efficiencies.
'Eig. T2, The universal model of an electiro-roto-flow systiem is shown in

. Fig. 7.2. I has & rigid casing, interior of which can contain one
or sevaral rotors revolving with constant angular velocity, as well
as one or sevsral open or closed regions Filled with fluid (ligquid
or gas). The open ragion communicating with the surroundings forms

onnected with the el-

[¢]
o)

a flow channsl, Morsover, the system can be

sotric network enabling the flow of currzsnt either through solid

©

{

3

wiring (of the rotor and stator), or across th

[§)
=

luid moving along
the channel.

K11 thvee lisied features {rotor, chammel, electric circuit)
need not be contained together in a particular device. The pure

flow systems (e.g. the nozzles, heat exchangers) are deprived of

cb

he rotor and eleciric circuiit. The electro-flow sysiems (e.g.

-

» he electric flow-heaters, MHD generators and punmps) do not contain

ct
()]




N
N
h)
x
3
N
N
N
N
b
N
3
g
Ly
N
N
x
N
X
N
N
N
S
A
A
\
3
X
N
N
)
N
3

convective transfer
of dynamic enthalpy

Rasansananusasay

' § <=2 mechanical

! power
. _ . i A
conductive-radiative &= g ;
heat transfer el e 47
\ _ /
electrical power

Fig. 7.2. Universal model of the electro-roto~flow system.
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rowors. The conventional electric machines {(generators and moters )
are elecvro-xrcto systems without flow channels, whereas the conven—
tional flow machines (turbines, rotary compressors and pumps) are
non-eleciric roto-flow systems.

As long as the rigid casing of the system remains at rest, or
is in a svate of non-accelerated motion in the terrestrial condi-
tions, its physical inside surface (complemented with imaginary
surfaces which cover the inlets and outlets of flow channels, and
the cross-sections of the outer ends of rotor-shafis) can be regard-
ed as the shell s of immobile balance region (Fig. 7.2). As it will
prove, some of the terms being integrated over s in Bq.(7.15) assume
non-zero values only on particular parts of the shell,

Notice that the product (T d2§) # 0 solely on the surfaces cover-
ing the inlets and outlets of flow chanmels (surfaces denoted as
tzzsf). On tke remaining parts of the shell s (the inside walls of
the casing, the cross-sections of roicr-shafts) either U = O, or
T las.

. —
On the cross-sections of rotcr-shaftis (denoied as />‘sr), the

stress is of purely elastic charascter, Tl = ﬁe'

Notice that the product (T, d%8) = (VT ¢%5) # 0 (compere Eq.

4.47a) solely on the conducting parts of the nside—su=feece—ef| shell
(denoted as }ﬂ S,)+ The mentioned surfaces can be the electrodes of

flow chammel in a MHD device, or cross-seciions of leads eniering
the interior of convenivional eleciric machine. Hverywhere on the
remaining parts of the shell s,we have 1 = 0.

The energy transfer by means of viscosity and diffusion can occur
through the inlevs and outlevs of flow channels only. 3ince in the
discussed sysvems those effects are negligible as compared with

other kinds of tramsfer, we shall leave out the terms (jddgg) and

(ﬂvu d2§) completely. On the other hand, the conductive-radiative

transfer has to be fully considered, because all over the shell s,
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the flux-densities jtc and 3tr do not usually vanish.
Taking all this into consideration and using substitutions (7.2a)
(5.52b) and (4.47a), we list the pariicular kinds of transfer and

the places of thelr occurrence:

. (@ /2)+l+€ V(T a 23) on Y s
(7.162) (QQSE d S) =; { e'[} )_L £
. O on remaining s
L ((Eg_dgg); (ﬁ;ﬁ a%s) = 0 on E::Sf
(7.16v) (A% a°5) =< (.4 a%s) on s,
\0 on remaining s
— - (Y1 dgg) on > .s
(7.16¢) (Jecags) =-§ &
L0 on remaining s
(7.164) (?ddeg) = 0 all over s
(7.16e) ({3}r+ﬁgc}d2§) # 0 2ll over s

Considering the above equations and substituting . Bg.(T7.10b), we
make the integral (7.15) more specific. We change its sign in order

to present each of the terms as the netv inflow of energy into the

system (if the scalar obtained is negative, then it signifies the

factual net outflow):

[ (o 2=y = = 7 2=
(7.17) éf(ﬂ 7 49%5) ﬁsf JSJ(‘?:L d“8) ?(tJtc+Jtr‘kd g) =0
(25 =7t e I J
i II 11T iv

the stress convectiive conductive conductive-
net inflow net inflow net inflow —radisvive

of kinetic of dynamic of electro- net inflow
energy enthalry -pagnetic of internal
(delivered  (delivered)  energy energy
mechanical (delivered (delivered
power ) electric heat)

DOWer )

for stationary process in electro-roto-flow system

According to Eq.(5.50c), the mechanical power (term I) equals
the difference in torgque on cross—sections of the outer ends of roi-
or times its angular velocivy..

At approximately uniform velocity distribution over the surfaces
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of inlet and outlet of the channel, the convective net inflow of
dynamic enthalpy (term II) can be expressed as the product of the
mass-flow rate and the drop AH' in the mass-density of dynamic
envhalpy.

It is possible to show that, in case of the direct current, the
electric power (term III) is equal to the product of the voliage
drop AY (difference in potentizal beiween the terminals) and inten-
sity of the currentv flowing in the circuit.

In conirary to the first three terms of Eq.(7.17), which are
assigned to particular surfaces, the conmpuiing of heat transfer
(term IV) is rather complicated.

In a pure flow system (without rotor and electric circuit), on-
ly the terms II and IV are non-zero valued, while in the electro-

~flow system (without rotor) the term III comes in addition. In the
MHED generator, the dynamic enthalpy is delivered vo the systiem
(term ITI>0), whereas the electric power is taken away (term IIIKO
and vice versa in the MHD pump.

In the electro-roto system (without channel), the terms I,IIT,
and I¥ are non-zero valued. The generator (dynamo)} is characterized
by the positive term I and negative term 1III, while in <the eleciric
motor the signs are reversed. In the roto-flow systiem (withouv el-
ectric circuit), only the terms I, II and IV appear. For the turbi-
ne, the term II is positive and the term I negative, while for vhe
rotary compressor the signs are reversed.

In all the rotor systems and electro-flow systems, the heat is

usually tzken away (term IV<0).

7.6. The Balance of Entropy. The Second Law of Thermodynamics,

In the mosi general meaning, the entropy is a measure of vhe
disorder of individual states. In the statistical thermodynamics,

the eniropy acquires a specific physical meaning as function of
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probability of thermodynamic state.

In the phenomenclogical thermodynamics, the entropy is an axi-~
cmatic funcvion of stalte, determining the way of occurrence of all
the processes involving short-range interaction. Since such pProc-—
esses appear always in the substance, the entropy is regarded as a
scalar 5Q of some storage mass—-density S, in thermodynamics called

gpecific entropy. In a muliicomponent mixture, the i-th entropy is

regarded as s scaiar CQ of the partial density Si‘

In conirary %o such thermodynamic parameters as the volume, pres-
sure, or iempEraiure, which are close to our sensorial concepiions
and "materially concretve', the entropy is of rather abstractive na-
ture.and seems to be a "spiriit governing the mattexr". Regardless of
our philosophical view, such a"spirit" does exist indeed in the Na-
ture, because the short-range interactions are steered by definite
tendencies.

Consider a fluid mixture being in the sitate of thermodynmamic
equilibrium. Basing on the Gibbs phase rule, which determines the
nunber of independent parameters of state, we postulate a fundamen-
tal relavion making the mass—density of internal energy Ei depen-
dent on the specific entropy S, specific volume v, and mass-~fracti-
ons c¢; of all n components of mixture: SI<S,v,c1.._i..“ﬁ>.

The total differential of this fundamental relation is known as

the Gibbs equatvion:
(7.18) dBI =T 43 - p dv + Ez:Pidci
where T, p, and Ry have been thermodynamically defined as the fol-

lowing partial derivatives (the suffixes at square brackets symbo—

lize the quantities kept constant while differentiation):
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% 2%
(7.192) |5=x= =T (7.19b) - (== =p
2 Jv,c. ’ _@v S,C.
i i
(absolute) temperature (absolute) pressure
% chemical potential
js v,0 Pi i T Pi of free enthalpy
iFi of i-th component

The posvulatve I of nonequilibrium thermodynamics states thatv the
definitions of all thermeodynamic parameters, as well as the Gibbs
gquation, are valid in the stave 0f local equilibrium, in other
words, in the processes of sufficiently small time-Space variabilie
ty . Remembering this limitetion, we can regard the incrementis in
Eq.(7.18) as the substantial differentials. Dividing the Gibbs equ-~

ation in its substantizal form by dt/g , We obtain following relation

de; s T de,
(7.20) Q FET = QT EU - op FHE 4 Q) L py T

the left-hand side of which is the same as in the balance of inter-
nal energy (5.58a). Confronting both eguations (Ex. T.6) resulis in

the balance of entropy at substantvial point:

T,-

_dS. - ¥ e

T.21 w¥éu = ) - div I

( )\ V3 VR T /3
g?t:tg£a§2%§§8 productiion (creation) > O transfer?<0

where 1 is the non-convective transfer-flux density of entropy

_ +
(7.22a) R S

and WY/T is ©vhe production density of entropy,‘queing called the

dissipation function. The latier consists of 6 Terms:

I II TII v v VI
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From Eg.(7.22a) we find that the flow of internal energy must
be accompanied with the flow of entropy. It results from comparison
of Egs.(5.60), (6.62), and (6.63) that the first term of Eg.(7.22a)
is equal %o Ta/T, which is the second-law heat flux divided by tem—
perature. The second term izlsijdi represents the diffusive trans-
fer of entropy (the componential entropies are carried with mixiu-
re's components in their diffusive motion).

terpreting particular terms of the dissipation funciion (7.22b)

we find that the production of entropy is connected with the follow-
ing phenomena: electromagnetic hysteresis (1), flow of electric cur-
rent (II), diffusion of mass (III, and partly IV, see Eg.T.22a),
thermal conduction and radiation (IV), viscosity (V), and chemical,
electrie, or phase reaction (VI).

The use of the balance terminology allows to formulate the 3ec—
ond Law of Thermodynamics in the most concise and uwniversal form,

being the inequalivy
(7.23) Y/ >0

According to this law, the entropy can only be created. Itv does
not mean, however, that the storage of entropy must increase always
and everywhere (compare the inequality signs below the balance Eq.
7.21). If only the outflow of entropy (div T > 0) is larger than
the creation, then the storage of entropy decreases (¢ %%9% <:O).

+t is easy %o show (Ex. T.7) that the storage of eniropy must
increase in the only case of thermodynamically isolated system (clo-
sed and adiabatic), because I = 0 all over the shell_ga of such a

system?

d - 3 P .3
(7.24) ﬁ“ﬂ?s a’v = MT a’v> o for isolated system
V..

—my =30

Exercise T.6. Derive the balance of entropy (7.21) and Zgs..

(7.22a,b).
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Instructions. We compare Egs.(7.20) and (5.58a), divide ¥the res-—

11t by T and apply Eq.(6.16b), in order %o obtain the intermediave

equation

0 8sn = oy, + @I - WERD - o)) Sl +

iv T AN aiv I
v Jpo + TLPSY dag

= [

We transform the last two terms according to rules (1.3%0a) and
B (1,28¢). We apply subsiitutions (5.60), (6.62), and (7.19¢), in
order o0 obtain the expression (7.22a), and then Egs.(7.22b) and

(7.21).

Exercise 7.7. Prove the inequality (7.24).

Instructions. Basing on the equivalence of Egs.(5.19a) and

(5.18a), we transform the entropy balance av substantial point (T7.21
into the balance in substantial region, then we substitute I =0

and apply the law (7.23}.

7.7. Phenomenological Relations

+ is worth to noitice that the dissipation function (7.22b) is a
sum of scalar products of itwo vectors (terms I, II, III, IV), two
tensors (term V), and two scalars (texrm VI). The nonequilibrium
thermodynamics makes an assumption that each term of the dissipaiiorn

function is a product of particular thermodynamic flux by particular

thermodynamlic force. For example_éf, 3&1’ T, 0 ?E; can be regarded
¥l

as fluxes, andlgﬁ, - grad Ris - grad T, - grad u, - n; as forces.
The force and Flux that appear in the same term of the dissipatvion

ti 2. 1_and B ) are conjugated.
function (e.g g d_ﬁm) jugat

The postulate II of noneguilibrium thermodynamics states thas
at not Ltoo intense time-space variability of fields, there exists
a linear phenomenological relavion belween particular flux and all
the forces (both conjugatsd and non-conjugated), provided the ven-

sorial ranks of flux and force are identical or differ by 2 (the
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Onsager relation and Curie's theorem).

If we disregard the cross phenomena occurring between non-conju-

gaved fluxes and forces, then the postulate II leads to formulation

of elementary phenomenological relavions such as the simplified

Ohm's law E_ =MNi_ (Eq.4.45 at E_ = 0), Fick's law of diffusion
“= sl )

(6.13), and Newbton's law of viscosity (5.26b).

When the cross phenomena cannot be neglecied, some additional
varms appear in tvhe phenomenclogical relations. For sxampls the
current density_zﬁ depends also on the gradients of chemical pot-
envial and temperavure, this effect being represented by vector'gﬂ
in the full form of Ohm's law (4.45). The diffusion-flux density
Edi depends also on the electric field‘gﬁi(elﬂctro—diffusion) and
the temperature gradient (thermal diffusion, Soret's effect). The
veesor jtc of heat conduction can be influenced by electric field
Eia (Thomson's effeect) and the chemical potential gradient (Dufour's
effect).

The substitution of linear phenomenclogical relavions makes the
dissipation function (7.22b) a non-negaiive gquadratic form, which
satisfies the requirement of Second Law of Thermodynamics (7.23).
Thué the processeé governed by the phenomenological relations occur
in such a way that the producvion of entropy is positive. We must,
however, always bear in mind that the validity of phenomenological
relavions 1s restrxicted to relatively slow processes accompanizsd
with small gradients of fields. The noneguilibrium vhermodynamics

deals with all those problems in detail.
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List of Letter Symbols

a (as upper affix)

ol

adiv (as prefix)
agrad (as prefix)
arot (as prefix)

Jy

W o

O

o

cQ
d (as upper affix)

div, div (as prefix)

.8 = ool o

bl el el

A o,
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antlsymmetric part of a tensor

thermal diffusivity

a tensor

anvidivergence of a tensor

antigradient of a wvector

anvicurl of a tensor

(1) a vector, (2) electromagnetic vectoxr
potential

a tensor

(1) a vector, (2) magnetic induection
velocity of light in vacuum (as a constant)
wave-velocity

i-th mass-fraction (concentration)
isobaric and isochoric specific heat, res-—
pectively

a vecstor

componential quantity

deviatorial part of a tensor

divergence of a vector and tensor, respect-
ively

diffusivity

electric displacement

electric field vector

extensive quanvtiiy

volume~density of body force
volume-density of electrodynamic force
volume-density of gravitational force
volume-density of i-th body force

scalar terrestrial acceleration
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srad, grad (as prefix)

Gpm

GGO
h

helm (as prefix)

H

m =

e

i (as suffix)

=

-1

dﬁl o ﬁd é?l e
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gravitational acceleration (gravitational
field intensity)
gradient of a scalar and vector, respeciively
volume-density of polarization conversion
(hysteretic annihilation) of electiromaegnetic
energy
Gauss—Green-Ostrogradsky (theorem of)
elevation
Helmholtzian of a vector
mass—density of (static) enthalpy (specific
enthalpy)

(1) transfer-flux density of a scalar EQ or
3Q, (2) magnetic field vector

mass—density of dynamic ertvhalpy

partial density of i;th (static) enthalpy
transfer—flux density of a scalar i-th CQ
direcvtional-transmission density of a sca-
lar BQ

referring to i-vh component of mixture, i-th
componential quantity oxr property
(electric) current density

geometric moment of inertia of grain in the
polaxr fluid

non-convective transfer-flux density of
encrYopy

mass—-flux density

i~th (mass) diffusion-flux densivy

i=-th mass-flux densivy

transfer-flux density of total enexrgy
diffusive transfer-flux density of internal

enexrgy
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ec

exr

oy

ne

1
limf (as prefix)

L

9 s
v

O] L

177
conductive Itransfer-flux density of electromag-
nevic energy
radiative transfer-flux density of electromag-
nevic energy
non-convectvive transfer~flux density of internal
energy
paraconvective transfer-flux density of total
enexgy
as above, but with electromagnetic terms excluded
first-law and second-law heat flux, respectively
conductive transfer-flux density of internal
energy (thermal conduction)
radiative transfer-flux density of internal
energy (thermal radiation)

(electro—) motive vecior

line, contour

apparent limit (limes fictus)

(macroscopic) characterisiic linear dimension
mass

i-th mass

individual mass of Y-th grain

total number of (1) grains in a set, (2) compon-
ents in a mixture

pressure

i~th pressure

storage velume-~density of a vector HQ or SQ
storage volume-density of a vector i-th CQ
production of a scalar and vector EJ, respectlv-—
ely

storage mass-density of a vector SQ

storage partvial density of a vector i-th
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|

reyn, reyn (as prefix)

rot, rot (as prefix)

R

s (as upper affix)

s
S
S
S
]

5Q
8,3

b
W

thom (as prafix)

HIl Rl 3

e

e

Tr (as prefix)

T

=] B <]

el
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position (-vector)
individual position of Y-th grain
Reynoldsian of a scalar and vector, respect—
ively
curl of a vector and tensor, respecuively
production volume-density of a vector &j

or 5Q

production volume-density of a vector i-th (CQ

symnetsric part of a tensor

surface, shell

mnass-density of entropy (specific entrony)
production mass—density of a vector SQ
partial density of i-th entropy

productvion partisl density of a vecior i-th
CcQ

substanvial gquantity

storage of a scalar and vector B, respeci—-
ively

time

Thomsonian of a vector

vemperature

sransfer-flux density of a vecitor I or SQ
transfer-flux density of a vector i~th €
directional-transmission density of a veciox
o)

vrace of a tensor

transfer of a scalar and vecsor HQ, respecti-
ively

barycentric velocity (of substance)

i-th componential velocity

individual velocity of y-th grain
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Vec (as prefix)

gl S|

=

em

X, y’ z
X, ¥, 2 (as

suffixes)
4
f
X
r

S (as prefix)

a1, gBm, §3mi,
55, 87

§T

5t

A (as prefix)
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individual thermal velocity of VY-th grain
specific volume (mass-density of volume)
partial specific volume (partial density of
i-th volume)
spatial region, volumd
(pseudo-) vector of a tensor
referential wvelocity
velocity of convective region
volume—density of total energy
volume-densivy of slectromagnetic energy
Cartesian coordinates
componentv Yeferring to coordinave X%, ¥y, Z,
respectively
a scalar
(1) a scalar, (2) general diffusion coefficient
a scalar
gravitational potential (mass-density of gravit-
ational enexrgy in terrestrial conditions)
small interval or increment
intervals of phenomenological averaging {see
symbols 1, m, mi, T, V)
small line segment (vector)
small deformative displacement (vector)
interval or incremens
storage mass-density of a scalar BQ
mass-density of diffusion energy of mixiure
partial density of i-th diffusion enexrgy
mass—density of elasvic energy
storage pariial density of a scalar i-th CQ
mass—densitvy of internal energy

partial density of i-~th internal snergy
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p'b’ Ps

i

=

(as suffix)

= =i e [}

=il
on
I_h

= o e i 11
S A D
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partvial density of i-~th kinetic energy
mass-—density of substantial znergy
productvion mass-density of i-th mass
bulk and shear (dynamic) viscosity coefficients,
respeciively
shear wviscosity coefficient, according To tradition-
gl convention
first and second viscosivy coefficients
(macroscopic) characveristic vime of increase of
a process
(electric) resistivity
(1) characteristic linear microdimension, (2) thermal
conduccvivity
(1) production mass-density of a scalar 3Q, (2) (mag-
netic) permeability
bulk and shear Lamé's elasticity modulus, respectively
(1) production partial density of a scalar i-th (Q,
(2) i-th chemical potential (partial density of i-th
free enthalpy)
referring to V-3th individual grain
stress (as non-convective transfer-flux density of
momentum)
stress, in vradivional convention
diffusive sitress of mixture
i-th diffusive stress
elastic stiress
elastic sivress, in tradistional convention
i-th stress
pressure sStress

viscous sStress

viscous stress, in itraditional convention
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Bl v € € 5

iy8
L (as suffix)

4 (a8 suffix)

Ai(as upper affix)
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i-th viscous stress
(volume~) density of mass
(volume-) density of (electric) charsge
(volume-) densitj of i-th mass
characveristic microvime
(1) storage volume-density of a scalar ) or 8Q,
(2) electromagnetic scalar potential
storage volume-density of a scalar i-th CQ
production volume-densivy of a scalar BQ or 3Q
production volums-density of a scalar i-th CQ
dissipation function
(1) voriticity of flow, (2) macroscopically ave-
raged angular velocity of grains in the polar
£luid
angular velocity of rigid region or body
solid angle
referring to direction of itransport
unit vecior of a vector A
unitv tensor
referring to actually instantaneous or local
field
referring to micro-field or micro-variable

comporent



