Rozdział XVI Implementacja MES modeli konstytutywnych hipersprężystych materiałów zbrojonych włóknami

Marcin GAJEWSKI, Stanisław JEMIOŁO

1. Wstęp

Zagadnienia związane z modelowaniem konstytutywnym hipersprężystych materiałów anizotropowych są ostatnio coraz częściej rozpatrywane, np. w mechanice kompozytów o elastomerowych matrycach, biomechanice miękkich tkanek oraz teorii sprężysto-plastyczności dowolnych deformacji, por. [4,6,7].

Sformułowanie modeli materiałów anizotropowych, z zastosowaniem teorii reprezentacji funkcji tensorowych [3], prowadzi do relacji konstytutywnych, w których oprócz tensorów parametrycznych występuje znaczna liczba stałych materiałowych. Stwarza to znaczne trudności przy ich interpretacji i wyznaczaniu na podstawie, z reguły niekompletnych, wyników badań doświadczalnych, patrz np. [6]. Wobec tego celem pracy jest zaproponowanie i implementacja numeryczna w programie ABAQUS [1,2], najprostszych modeli hipersprężystych materiałów transwersalnie izotropowych. Analizowane modele mogą być interpretowane jako dwuskładnikowy kompozyt, w którym izotropowa matryca jest zbrojona jedną rodziną włókien. Punktem wyjścia proponowanych modeli jest założenie o addytywnej dekompozycji funkcji jednostkowej energii sprężystości (ES) na dwie części, z których jedna opisuje energię nagromadzoną w matrycy, a druga energię rodziny włókien. Wyznaczenie danych materiałowych w takim przypadku sprowadza się m.in. do określenia stałych sprężystości części składowych kompozytu i ich udziałów objętościowych.

2. Propozycja modeli konstytutywnych hipersprężystych materiałów zbrojonych włóknami

2.1. Zależności podstawowe

Z zasady zachowania energii mechanicznej oraz zasady zachowania pędu, momentu pędu i masy, otrzymuje się następujące zależności na pochodną materialną funkcji ES:

$$\dot{W} = J\sigma . \mathbf{D} = \tau . \mathbf{D} = \mathbf{S} . \dot{\mathbf{F}} = \mathbf{T} . \dot{\mathbf{E}} , \qquad (2.1)$$

gdzie σ , τ , **S** i **T**, są odpowiednio tensorami naprężenia Cauchy'ego, Kirchhoffa oraz I i II tensorem naprężenia Pioli-Kirchhoffa. Ponadto w (2.1) *J* oznacza wyznacznik tensora gradientu deformacji **F**, **D** jest tensorem prędkości deformacji, a tensor **E** jest tensorem odkształcenia Lagrange'a (kropka w (2.1) oznacza iloczyn skalarny tensorów). Z lokalnego sformułowania zasady zachowania energii mechanicznej (2.1), dla dostatecznie regularnego potencjału jednostkowej energii sprężystej $W(\mathbf{F}, \mathbf{X})$, wynika, że

$$\mathbf{S}(\mathbf{F}, \mathbf{X}) = \frac{\partial W(\mathbf{F}, \mathbf{X})}{\partial \mathbf{F}}, \qquad (2.2)$$

gdzie **X** jest wektorem określającym położenie cząstki w ciele (w konfiguracji odniesienia, która w tej pracy jest konfiguracją naturalną). Warto przypomnieć, że między I i II tensorem naprężenia Pioli Kirchhoffa oraz tensorem naprężenia Cauchy'ego zachodzą następujące tożsamości: $\mathbf{S} = \mathbf{FT}$, $J\boldsymbol{\sigma} = \mathbf{SF}^T$. Tensory **S** i $\boldsymbol{\sigma}$ występują odpowiednio w równaniach równowagi w konfiguracji odniesienia i w konfiguracji aktualnej.

Z zasady obiektywności i danej w konfiguracji początkowej symetrii materiału, określonej przez zbiór tensorów parametrycznych $\{\mathbf{P}_i\}$, wynika że funkcja JES nie może być bezpośrednio zależna od tensora \mathbf{F} , jak i od wektora \mathbf{X} , por. [6]. Spełnienie zasady obiektywności i wymagania symetrii, wymusza rozpatrywanie ES jako funkcji zależnej od nieredukowalnych niezmienników: dowolnego, obiektywnego pola tensora odkształcenia (np. \mathbf{E}) lub pola tensora deformacji (np. $\mathbf{C} = \mathbf{F}^T \mathbf{F}$, $\mathbf{B} = \mathbf{F}\mathbf{F}^T$) i pól tensorów parametrycznych. Wobec powyższych uwag można rozpatrywać funkcje JES, np. w postaci:

$$W = \widetilde{W}(\mathbf{B}, \mathbf{P}_i) = \Psi(I_i); \ i = 1, ..., I,$$
(2.3)

gdzie $\{I_i\}$ jest zbiorem niezmienników bazy funkcji ES. Z (2.1)-(2.3) wynika relacja konstytutywna między tensorem Kirchhoffa $\tau = J\sigma = \mathbf{SF}^T$ i tensorem deformacji Cauchy'ego-Greena **B**. Tego typu relacje konstytutywne są wygodne do implementacji w programie MES ABAQUS.

Szczegółową analizę wymagań stawianych funkcji ES można znaleźć np. w pracach [5,6]. Poruszane są tam zagadnienia dotyczące wymagań: wypukłości, poliwypukłości, quasiwypukłości i wypukłości pierwszego rzędu. Wymagania te zapewniają m.in. istnienie rozwiązań odpowiednich zagadnień brzegowych hipersprężystości, por. [5] i literaturę tam cytowaną.

2.2. Propozycje funkcji JES kompozytu o izotropowej matrycy ze zbrojeniem jedną rodziną włókien

Modelowany kompozyt składa się z izotropowej matrycy i włókien, o udziale objętościowym $p \in [0,1)$, ułożonych zgodnie z polem $\mathbf{m}(\mathbf{X})$. Zakłada się pełną przyczepność między włóknami a matrycą. Dodatkowo przyjmuje się, że włókna "pracują" jednowymiarowo, tzn. tylko wzdłuż wektora \mathbf{m} . Znajomość pola wektorowego \mathbf{m} pozwala zdefiniować pole tensorowe $\mathbf{M} = \mathbf{m} \otimes \mathbf{m}$, w którym tensor \mathbf{M} jest interpretowany jako tensor parametryczny w (2.3). Zakładamy, że ES kompozytu składa się z dwóch części, których udział jest proporcjonalny do udziału objętościowego i ma postać:

$$\Psi = (1 - p)\Psi_M + p\Psi_Z, \qquad (2.4)$$

gdzie Ψ_M jest funkcją ES matrycy i zależy tylko od niezmienników izotropowych tensora **B**, natomiast Ψ_Z jest funkcją ES włókien:

$$\Psi_{Z} = \frac{E_{Z}}{4} \left(I_{4} - 1 \right)^{2}, \qquad (2.5)$$

gdzie $I_4 = \text{tr}\hat{\mathbf{M}}$, oraz

$$\mathbf{\tilde{M}} = \mathbf{F}\mathbf{M}\mathbf{F}^{T} . \tag{2.6}$$

Parametr E_z ma interpretację początkowego modułu Younga rodziny włókien.

Funkcja ES materiału matrycy opisana zostanie przy pomocy dwóch znanych w literaturze modeli hipersprężystych materiałów ściśliwych: neo-Hooke'a (NH) i Ciarleta (C), por. [5]. W przypadku modelu NH funkcja ES ma postać:

$$\Psi_{M}^{CNH} = \frac{\mu_{0}}{2} (I_{1} - 3) + \frac{\lambda_{0}}{4} (J^{2} - 1) - \left(\mu_{0} + \frac{\lambda_{0}}{2}\right) \ln J , \qquad (2.7)$$

gdzie $I_1 = tr \mathbf{B}$, zaś μ_0 i λ_0 oznaczają stałe sprężystości (identyczne jak w związku Hooke'a teorii liniowej sprężystości).

Na rys.2.1 przedstawiono wykresy warstwicowe funkcji ES określonej wzorem (2.4) z uwzględnieniem (2.5) i (2.7) (w zależności od wydłużeń głównych λ_1 i λ_2 (przy założeniu płaskiego stanu odkształcenia $\lambda_3 = 1$ (PSO)), w przypadku materiału izotropowego (linie przerywane) oraz materiału kompozytowego (tj. p=0.1) i różnych stosunkach modułu Younga włókien zbrojenia i matrycy (linie ciągłe). Na rys.2.1 włókna zbrojenia mają kierunek zgodny z λ_1 . W przypadku deformacji jednorodnych PSO mamy $S_{\alpha} = \partial W / \partial \lambda_{\alpha}$ ($\alpha = 1,2$), czyli gradient funkcji ES definiuje stan naprężenia. Na rys.2.1b wyraźnie zauważalna jest "silna" anizotropia materiału. Kierunek wyróżniony materiału zmienia się zgodnie z (2.6), co jest charakterystyczne dla teorii nieliniowej.

Rysunek 2.1. Wykresy warstwicowe ES w przypadku PSO w funkcji wydłużeń głównych λ_1 i λ_2 . Materiał izotropowy NH (linie przerywane), kompozyt KNH o matrycy izotropowej $(\mu_0 = E_M, \lambda_0 = 2.6 E_M)$ zbrojonej rodziną włókien ułożonych w kierunku 1, o udziale objętościowym p = 0.1 (linie ciągłe): a) $E_Z/E_M = 1$, b) $E_Z/E_M = 10$

Ponieważ potencjał Ψ_{M}^{CNH} w przypadku materiału NH nie jest funkcją poliwypukłą, por. [5], to także potencjał materiału kompozytowego (KNH) wg (2.4)-(2.7) nie jest funkcją poliwypukłą. Wobec tego rozpatrujemy także funkcję ES materiału matrycy w postaci:

$$\Psi_{M}^{C} = \frac{\mu_{o}}{2} \Big[f (I_{1} - 3) + (1 - f) (\tilde{I}_{2} - 3) \Big] + \frac{1}{4} \Big[\lambda_{o} - 2\mu_{o} (1 - f) \Big] J^{2} + \Big[\frac{1}{2} \lambda_{o} + \mu_{o} \Big] \ln J - \frac{1}{4} \Big[\lambda_{o} - 2\mu_{o} (1 - f) \Big],$$
(2.8)

która wynika z zastosowania modelu C. We wzorze (2.8) występuje niezmiennik: $\tilde{I}_2 = \text{tr}(\text{cof}\mathbf{B})$, zaś pozostałe oznaczenia są identyczne jak w (2.7). Funkcja (2.8) jest poliwypukła i spełnia odpowiednie warunki wzrostu potencjału sprężystości gdy: $\mu_o > 0$, $f \in (0,1)$ i $\lambda_o > 2\mu_o(1-f)$, patrz [5]. Model materiału kompozytowego (KC) otrzymamy podstawiając (2.5) i (2.8) do (2.4).

3. Implementacja numeryczna w programie MES ABAQUS

Modele materiałów transwersalnie izotropowych przedstawione w pkt.2 zaimplementowano w programie metody elementów skończonych ABAQUS. W tym celu zaprogramowano w języku FORTRAN tzw. procedurę materiałową UMAT, por. [2]. Oprócz związków konstytutywnych modeli KNH i KC, niezbędna jest również znajomość postaci stycznego operatora czwartego rzędu w związku przyrostowym:

$$\boldsymbol{\tau} = \mathfrak{C}.\mathbf{D}, \qquad (3.1)$$

gdzie symbol "." oznacza pełne nasunięcie tensorów. Symbolem "." oznaczono pochodną Jaumana, por. np. [1].

Sposób wyznaczenia operatora w związku (3.1) pokażemy na przykładzie modelu KNH. Funkcja ES w postaci (2.4), przy uwzględnieniu (2.5) i (2.7), jest funkcją trzech niezmienników, czyli:

$$\dot{\Psi} = \frac{\partial \Psi}{\partial I_1} \dot{I}_1 + \frac{\partial \Psi}{\partial J} \dot{J} + \frac{\partial \Psi}{\partial I_4} \dot{I}_4, \qquad (3.2)$$

gdzie

$$\frac{\partial\Psi}{\partial I_1} = (1-p)\frac{\mu_0}{2}, \quad \frac{\partial\Psi}{\partial J} = (1-p)\left(\frac{\lambda_0}{2}J - \frac{1}{J}\left(\frac{\lambda_0}{2} + \mu_0\right)\right), \quad \frac{\partial\Psi}{\partial I_4} = \frac{1}{2}pE_Z(I_4 - 1). \quad (3.3)$$

Z kolei pochodne materialne niezmienników I_1 , J i I_4 wynoszą odpowiednio:

$$\dot{I}_1 = 2\mathbf{B}.\mathbf{D}, \ \dot{J} = J \operatorname{tr}\mathbf{D}, \ \dot{I}_4 = 2\hat{\mathbf{M}}.\mathbf{D}$$
 (3.4)

Po podstawieniu (3.3) i (3.4) do (3.2) i uwzględnieniu zależności (2.1), wyznaczamy relację konstytutywną modelu KNH:

$$\boldsymbol{\tau} = (1-p) \left(\mu_0 \mathbf{B} + \left(\frac{\lambda_0}{2} J^2 - \frac{\lambda_0}{2} - \mu_0 \right) \mathbf{I} \right) + p E_Z \left(I_4 - 1 \right) \hat{\mathbf{M}}.$$
(3.5)

Następnie obliczamy pochodną Jaumana tensora naprężenia Kirchhoffa, prawostronne wyłączamy z otrzymanego wyrażenia tensor \mathbf{D} i w wyniku otrzymujemy operator czwartego rzędu:

$$\mathfrak{C} = (1-p) \Big[\mu_0 \left(\mathbf{I} \Diamond \mathbf{B} + \mathbf{B} \Diamond \mathbf{I} \right) + \lambda_0 J^2 \mathbf{I} \otimes \mathbf{I} \Big] + 2p E_Z \hat{\mathbf{M}} \otimes \hat{\mathbf{M}} + p E_Z \left(I_4 - 1 \right) \left(\hat{\mathbf{M}} \Diamond \mathbf{I} + \mathbf{I} \Diamond \hat{\mathbf{M}} \right).$$
(3.6)

W przypadku modelu KC postępujemy podobnie. Relacja konstytutywna modelu KC ma następującą postać:

$$\boldsymbol{\tau} = (1-p) f \mu_0 \mathbf{B} + (1-p) \mu_0 (1-f) (I_1 \mathbf{B} - \mathbf{B}^2) + (1-p) \left(\left(\frac{\lambda_0}{2} - \mu_0 (1-f) \right) J^2 - \left(\frac{\lambda_0}{2} - \mu_0 \right) \right) \mathbf{I} + p E_Z (I_4 - 1) \hat{\mathbf{M}}.$$
(3.7)

Natomiast w (3.1) mamy:

$$\mathfrak{C} = (1-p)\mu_0 \left(f + I_1(1-f)\right) (\mathbf{I} \diamond \mathbf{B} + \mathbf{B} \diamond \mathbf{I}) + 2(1-p)\mu_0 (1-f) \mathbf{B} \otimes \mathbf{B} - (1-p)\mu_0 (1-f) (\mathbf{I} \diamond \mathbf{B}^2 + \mathbf{B}^2 \diamond \mathbf{I}) - 2(1-p)\mu_0 (1-f) \mathbf{B} \diamond \mathbf{B} + (1-p) \left(\frac{\lambda_0}{2} - \mu_0 (1-f)\right) J^2 \mathbf{I} \otimes \mathbf{I} + 2p E_Z \hat{\mathbf{M}} \otimes \hat{\mathbf{M}} + p E_Z (I_4 - 1) (\hat{\mathbf{M}} \diamond \mathbf{I} + \mathbf{I} \diamond \hat{\mathbf{M}}).$$
(3.8)

Poprawność implementacji modeli: KNH i KC w programie ABAQUS sprawdzono testami numerycznymi dla jednorodnych pól stanu naprężenia i odkształcenia. W tych przypadkach rozwiązania analityczne zadań wynikają z relacji konstytutywnych (3.5) i (3.7). Stosując zaprogramowaną procedurę UMAT otrzymywano wyniki numeryczne z dokładnością co najmniej do czterech cyfr znaczących w porównaniu do wyników rozwiązań analitycznych.

4. Przykład numeryczny

Zadanie dotyczy dwukierunkowego rozciągania hipersprężystej, kwadratowej tarczy (PSO) z otworem kołowym, w której zadane jest następujące pole tensora parametrycznego:

$$\mathbf{m}(\mathbf{X}) = \frac{1}{\sqrt{X_1^2 + X_2^2}} \begin{pmatrix} X_1 \mathbf{b}_1 + X_2 \mathbf{b}_2 \end{pmatrix} \implies \mathbf{M}(\mathbf{X}) \to \frac{1}{X_1^2 + X_2^2} \begin{bmatrix} X_1^2 & X_1 X_2 \\ X_1 X_2 & X_2^2 \end{bmatrix}.$$
(4.1)

W konsekwencji (4.1) tensory sztywności modeli materiałów transwersalnie izotropowych KNH i KC (odpowiednio (3.6) i (3.8)) są zależne od zmiennej Lagrange'a **X**. Oznacza to, że tarcza zbrojona jest włóknami ułożonymi jak na rys.4.1a. Wobec tego materiał tarczy jest niejednorodny.

Poszukujemy rozwiązania zadania o symetriach pokazanych na rys.4.1a, czyli rozwiązujemy tylko jedną czwartą tarczy, z siatką MES jak na rys.4.1b. Przyjęto następujące wymiary tarczy: |OA| = |AB| = |OC| = |CD| = 1[jd] (jd oznacza jednostkę długości), czyli $R_a = 1$ [jd].

Na brzegu AB i CD przyjęto warunki symetrii odpowiednio w postaci: $u_2=0$ i $u_1=0$. Na brzegu AC założono zerowe naprężeniowe warunki brzegowe. Obciążenie tarczy jest realizowane na brzegu BF i DF przez przemieszczeniowe warunki brzegowe, które odpowiednio mają postać: $u_1=1[jd]$ i $u_2=1[jd]$.

Rysunek 4.1. a) Geometria, warunki brzegowe oraz sposób ułożenia włókien zbrojenia, b) siatka MES

Podstawowym celem tego przykładu jest porównanie rozwiązań zadania w przypadku hipersprężystego materiału izotropowego i zaimplementowanych modeli hipersprężystych materiałów zbrojonych włóknami.

Rysunek 4.2. Wykresy warstwicowe maksymalnego i minimalnego naprężenia głównego w płaszczyźnie PSO w przypadku: a) materiału izotropowego C, b) materiału zbrojonego włóknami obwodowo KC

W analizowanym przykładzie przyjęto następujące dane materiałowe: p = 0.05, $\mu_0 = 1.0 E_M$, $\lambda_0 = 1.5 E_M$, $E_Z = 26 E_M$ (model KNH), gdzie E_M jest początkowym modułem

Younga materiału matrycy. Dodatkowo w przypadku modelu materiału KC przyjęto f = 0.2, por. (2.8). Przykładowe wyniki, dotyczące modelu KC, w porównaniu do modelu jednorodnego materiału izotropowego pokazano na rys.4.2. Na wykresach naprężeń głównych widoczne są istotne, jakościowe i ilościowe różnice wyników w konfiguracji aktualnej, między rozwiązaniami dla materiału izotropowego i anizotropowego. Ponieważ rozpatrywane w teście deformacje nie były bardzo duże z punktu widzenia teorii hipersprężystości, to różnice wyników między modelami KC i KNH były pomijalnie małe.

4. Podsumowanie

W pracy zaproponowano stosunkowo prostą klasę modeli konstytutywnych hipersprężystości dla niejednorodnych materiałów transwersalnie izotropowych, o interpretacji materiałów kompozytowych z izotropową matrycą zbrojoną ciągłymi włóknami. Przyjęto założenie o addytywnej dekompozycji funkcji jednostkowej energii sprężystości, w postaci (2.4). Zaproponowana klasa modeli sprowadza się, w aproksymacji do teorii liniowej, do klasycznego modelu kompozytu włóknistego, w którym przyjmuje się pełną przyczepność włókien do matrycy oraz wprowadza założenie o jednowymiarowej odkształcalności włókien. Podano dwa przykłady tego typu modeli hipersprężystości i zaimplementowano je w programie MES ABAQUS. Zaprogramowano tzw. procedurę użytkownika UMAT. Zaproponowano testy numeryczne sprawdzające poprawność implementacji.

Bibliografia/ References

- [1] ABAQUS Theory manual, Version 6.1., 2000, Hibbitt, Karlsson and Sorensen, Inc., Pawtucket.
- [2] ABAQUS/Standard *User's manual*, Version 6.1., 2000, Hibbitt, Karlsson and Sorensen, Inc., Pawtucket.
- [3] Boehler J.P. (ed): *Applications of tensor functions in solid mechanics*. CISM Courses and Lectures, no. 292, 1987, Wien-New York, Springer-Verlag.
- [4] Bonet J., Burton A.J.: A simple orthotropic, transversely isotropic hyperelastic constitutive equation for large strain computations, Comput. Methods Appl. Mech. Engrg., 162, 1998, pp. 151-164.
- [5] Jemioło S.: Studium hipersprężystych własności materiałów izotropowych. Modelowanie i implementacja numeryczna, Prace Naukowe, Budownictwo z. 140, 2002, str. 1-308, OWPW.
- [6] Jemioło S., Telega J.J.: Modelling elastic behaviour of soft tissues, Part II. Transverse isotropy, Eng. Trans., vol. 49, no. 2-3, 2001, pp. 241-281.
- [7] Spencer A.J.M.: *Deformations of fibre-reinforced materials*, 1972, Oxford, Clarendon Press.

Rozdział w monografii:

Sprężystość i hipersprężystość. Modelowanie i zastosowania,

S. Jemioło [red.], Oficyna Wydawnicza PW, Warszawa 2012

ISBN: 978-83-7814-066-5

www.wydawnictwopw.pl

Oficyna Wydawnicza Politechniki Warszawskiej prowadzi sprzedaż:

 stacjonarną – w księgarniach OWPW
 Gmach Główny Politechniki Warszawskiej przy Placu Politechniki 1
 ul. Noakowskiego 18/20

 ♦ internetową – http://www.wydawnictwopw.pl
 ♦ wysyłkową – tel. 22 234-75-03 fax 22 234-70-60 e-mail: oficyna@wpw.pw.edu.pl SPRĘŻYSTOŚĆ I HIPERSPRĘŻYSTOŚĆ. Modelowanie i zastosowania

SPRĘŻYSTOŚĆ I HIPERSPRĘŻYSTOŚĆ

Modelowanie i zastosowania

Monografia pod redakcją naukową Stanisława Jemioło

Tom 1

Seria Monografie Zakładu Wytrzymałości Materiałów, Teorii Sprężystości i Plastyczności

Seria Monografie Zakładu Wytrzymałości Materiałów, Teorii Sprężystości i Plastyczności SPRĘŻYSTOŚĆ I HIPERSPRĘŻYSTOŚĆ. MODELOWANIE I ZASTOSOWANIA (pod red. nauk. Stanisława Jemioło) TOM 2 ZAGADNIENIA STATYKI SPRĘŻYSTYCH PÓŁPRZESTRZENI WARSTWOWYCH (Stanisław Jemioło, Aleksander Szwed) TOM 3 DEFORMACJE I WYTRZYMAŁOŚĆ MATERIAŁÓW I ELEMENTÓW KONSTRUKCJI (Stanisław Jemioło, Aleksander Szwed) TOM 4 HIPERSPRĘŻYSTOPLASTYCZNOŚĆ (Stanisław Jemioło, Marcin Gajewski) TOM 5 TERMOSPRĘŻYSTOŚĆ I PRZEPŁYW CIEPŁA W MATERIAŁACH ANIZOTROPOWYCH ((pod red. nauk. Stanisława Jemioło)

TOM 1

Seria wydawnicza Monografie Zakładu Wytrzymałości Materiałów, Teorii Sprężystości i Plastyczności

Tom 1

Wydział Inżynierii Lądowej Politechniki Warszawskiej

SPRĘŻYSTOŚĆ I HIPERSPRĘŻYSTOŚĆ Modelowanie i zastosowania

Monografia pod redakcją naukową Stanisława Jemioło

Seria Monografie Zakładu Wytrzymałości Materiałów, Teorii Sprężystości i Plastyczności

Warszawa 2016

Publikacja jest I tomem Serii Wydawniczej "Monografie Zakładu Wytrzymałości Materiałów, Teorii Sprężystości i Plastyczności"

Opiniodawcy Dr hab. inż. Aniela Glinicka, prof. PW Dr hab. inż. Leszek Małyszko, prof. UWM

Redaktor naukowy Stanisław Jemioło

Projekt okładki Danuta Czudek-Puchalska

© Copyright by Zakład Wytrzymałości Materiałów, Teorii Sprężystości i Plastyczności Wydział Inżynierii Lądowej Politechniki Warszawskiej, Warszawa 2012, 2016

Utwór w całości ani we fragmentach nie może być powielany ani rozpowszechniany za pomocą urządzeń elektronicznych, mechanicznych, kopiujących, nagrywających i innych, w tym nie może być umieszczany ani rozpowszechniany w Internecie bez pisemnej zgody posiadacza praw autorskich

ISBN 978-83-7814-066-5

Druk i oprawa: Drukarnia Oficyny Wydawniczej Politechniki Warszawskiej, tel. 22 234-55-93 Oficyna Wydawnicza PW, ul. Polna 50, 00-644 Warszawa. Wydanie II uzup. Zam. nr 535/2015

Przedmowa do wydania I

Oddana do rąk Czytelników monografia dotyczy sprężystości i hipersprężystości. Autorami poszczególnych rozdziałów są pracownicy Zakładu Wytrzymałości Materiałów, Teorii Sprężystości i Plastyczności, Instytutu Inżynierii Budowlanej Wydziału Inżynierii Lądowej Politechniki Warszawskiej. Cztery pierwsze rozdziały poświęcone są liniowej teorii sprężystości materiałów izotropowych i anizotropowych. Piąty rozdział dotyczy nieliniowej teorii sprężystości małych przemieszczeń i odkształceń materiałów transwersalnie izotropowych. Kolejne rozdziały od szóstego do czternastego dotyczą hipersprężystości i teorii dużych deformacji.

Zagadnienia prezentowane w monografii są od wielu lat przedmiotem zainteresowań naukowych pracowników Zakładu. Są to zarówno zagadnienia klasyczne, takie jak zagadnienie skręcania prętów pryzmatycznych, wyznaczania trajektorii pól tensorowych naprężeń i odkształceń w tarczach oraz momentów zginających w płytach, jak i implementacje numeryczne nieliniowych relacji konstytutywnych sprężystości w systemie metody elementów skończonych ABAQUS. Dalsze rozdziały dotyczą teorii hipersprężystości, której efektywne zastosowania wiążą się z rozwojem metod numerycznych i możliwości obliczeniowej komputerów. Według opinii autorów *podstawową trudnością, która jest niezależna od rozwoju metod numerycznych, jest wybór adekwatnego modelu materiału*, określenie parametrów i funkcji materiałowych oraz ich weryfikacja doświadczalna. Wobec tego w monografii uwypuklone są zagadnienia dotyczące teorii relacji konstytutywnych hipersprężystości.

Stanisław Jemioło

Przedmowa do wydania II

W wydaniu drugim monografii dodano pięć rozdziałów, trzy z nich dotyczą sprężystości małych odkształceń, natomiast dwa rozdziały są związane z relacjami konstytutywnymi hipersprężystości materiałów anizotropowych.

Stanisław Jemioło

Spis treści

Rozdział I
Swobodne skręcanie prętów pryzmatycznych o przekroju w kształcie wycinka koła albo pierścienia9
Stanisław JEMIOŁO, Aleksander SZWED
Rozdział II
Tarcze i rodzaje anizotropii materiałów liniowo sprężystych
Rozdział III
Cztery typy płaskiej anizotropii na przykładzie modelu kompozytu włóknistego
Rozdział IV
Trajektorie wartości własnych w zagadnieniach płaskich57
Aleksander SZWED, Stanisław JEMIOŁO, Marcin GAJEWSKI
Rozdział V
Niejednorodne, nieliniowe materiały transwersalnie izotropowe i ich implementacja MES73 Stanisław JEMIOŁO, Marcin GAJEWSKI
Rozdział VI
Optymalne orientacje materiału ortotropowego
Stanisław JEMIOŁO
Rozdział VII
Drgania własne kamertonu jako przykład testowy MES
Marcin GAJEWSKI, Stanisław JEMIOŁO
Rozdział VIII
Zagadnienia brzegowe 2D liniowej sprężystości materiałów anizotropowych - zastosowanie systemu PDE MATLAB
Marcin GAJEWSKI, Stanisław JEMIOŁO
Rozdział IX
Najprostsze modele hipersprężystości materiałów izotropowych103

Stanisław JEMIOŁO

Rozdział X
Przykłady modeli materiałów ściśliwych i mało-ściśliwych115
Stanisław JEMIOŁO
Rozdział XI
Implementacja numeryczna w MES modeli CNH i MCNH
Stanisław JEMIOŁO
Rozdział XII
Hipersprężysta kula obciążona własnym ciężarem jako test numeryczny zadania kontaktowego
Stanisław JEMIOŁO, Marcin GAJEWSKI, Cezary AJDUKIEWICZ
Rozdział XIII
Ortotropowy materiał Saint-Venanta-Kirchhoffa149
Stanisław JEMIOŁO
Rozdział XIV
Szczególne przypadki ortotropowego materiału SVK161
Stanisław JEMIOŁO
Rozdział XV
Przykłady modeli SVK169
Stanisław JEMIOŁO
Rozdział XVI
Implementacja MES modeli konstytutywnych hipersprężystych materiałów zbrojonych włóknami
Stanisław JEMIOŁO, Marcin GAJEWSKI
Rozdział XVII
Symulacja numeryczna i weryfikacja doświadczalna testu rozciągania płaskownika z uwzględnieniem teorii sprężysto – plastyczności dużych deformacji
Cezary AJDUKIEWICZ, Marcin GAJEWSKI, Stanisław JEMIOŁO
Rozdział XVIII
Uogólnienia modeli konstytutywnych ortotropowego materiału SVK w płaskich zagadnieniach hipersprężystości
Stanisław JEMIOŁO
Rozdział XIX
Porównanie modeli materiałów ortotropowych w zagadnieniach płaskich
Stanisław JEMIOŁO