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‘ Abstract I

In this paper, we discuss modern crypto-
graphic systems dedicated to sensor net-
work that bases its functioning on combina-
torial problems.

‘ 1. Elliptic curves I

An elliptic curve E over a field F' can be
given by the Weierstrass equation:

y2 + a1y + azy = T3+ asx® + aux + ag,

where the coefficients a;, € E for ¢ =
1,2,3,4,6. Koblitz [1] and Miller [2] were the
first to show that the group of rational points
on an elliptic curve E over a finite field F,
could be used for the discrete logarithm
problem in a public-key cryptosystem.

The canonical short Weierstrass form of an
elliptic curve is given by the equation:

y* =2 + ax + b,

together with a point at infinity © where the
constants a, b meet the additional condition:

4a® + 27b* # 0.

The algorithm of adding points on the ellip-
tic curve

Let £ be an elliptic curve, and M, M, € E,
where M, = ($17y1)7 M, = (l’g,yg), Ms =
(x3,y3) and M35 = M, + Mo, [3, 4] then:

{xg,:)\Q—xl—xg
ys = AMx1—23) —y1

2 .
3%? if (x1,y1) = (22, £12)

A { B Gf (2, ) # (22, %)

2. Maps between elliptic

curves

Definition 1 (j-invariant). Let £ : y* = 2° +
ax + b be an elliptic curve, The j-invariant of
E is given by the formula:

4a’
4a3 + 270%
Two curves are isomorphic over the alge-
braic closure k if and only if they have the
same j- invariant.

‘ 3. Isogenies I

Let ¢ : E — E’ be a map between elliptic
curves. These conditions are equivalent:

e ¢ is a surjective group morphism,

§(E) = 1728

e ¢ is a group morphism with finite kernel,

e ¢ IS a non-constant algebraic map of
projective varieties sending the point at
infinity of £ onto the point at infinity of
E'.

If they hold ¢ is called an isogeny.
Definition 2 Two curves are called isoge-

nous if there exists an isogeny between
them.

Example 1 /sogenies: an example over Fy;

E:y’=z3+z E : y?=2%4z

Figure 1: o(z,y) = (£,y=5")
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Definition 3 (Supersingular isogeny prob-
lem) Given a finite field K and two super-
singular elliptic curves E, E' defined over K
such that |E| = |F’'|, compute an isogeny
¢: E— E'[5].

Definition 4 (Complex lattice) A complex
lattice A is a discrete subgroup of C that
contains an R-basis [7].

Explicitly, a complex lattice is generated by
a basis (wy,ws), such that w; # Aw, for any
AN € R, as

A= wlz + wQZ

Definition 5 (Complex torus). Let A be a
complex lattice, the quotient C'/\ is called
a complex torus [7].

Figure 2: A complex lattice (black dots) and
its associated complex torus (grayed funda-
mental domain)

[3la
.ZZ q, L ] e ¢

s

Figure 3: Addition and scalar multiplication

Definition 6 An Expander graph is a
sparsely populated graph that is well con-
nected [8].

Figure 4: The Schreier graph of (S; G\{1}),
where G = (g), ord(g) = 13

4. Key exchange from
Schreier graphs

\\..—_.
gBA — JAB

Figure 5: g4 = G2-3-2-5: gp = 932-5.2;
gap = Bpa=g* -3°-5° [6]

Public parameters:
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e A group G = {(g) of order p;
e Asubset S C (Z/pZ)".

1. Alice takes a secret random walks S, :
g — g4 of length O(log p);

2. Bob does the same;
3. They publish g4 and gg:;

4. lice repeats her secret walk s, starting
from gp. Bob repeats his secret walk sp
starting from g 4.

Definition 7 A sparse graph is a graph in
which the total number of edges is few com-
pared to the maximal number of edges [8].

Example 2 Consider a simple graph G with
n vertices and 2 edges originating from
each vertex. There are 2n edges in this
graph. If this graph was a complete graph,
every vertex connected to every other ver-
tex, we would need n! edges. It is clear that
this graph is sparse since n! > 2n.

5. Supersingular isogeny
Diffie—Hellman key exchange
(SIDH)

This paragraph recalls the SIDH key ex-
change protocol . The public parameters
are the supersingular curve Ey/F,; whose
group order is (¢5¢<P f)?, two independent
points P, and Q4 that generate Ey[¢%'], and
two independent points Pz and )z that
generate Ey[(<’]. To compute her public key,
Alice chooses two secret integers my,n4 €
7./05)7. not both divisible by ¢4, such that
Ra = [ma]Py + [n4]Q4 has order (5. Her
secret key is computed as the degree ¢!
isogeny ¢4 = Ey — E 4 whose kernel is Ry,
and her public key is the isogenous curve
FE 4 together with the image points ¢4(Pp)
and ¢4(Qp)-

Similarly, Bob chooses two secret integers
mp,nNp < Z/KQBBZ not both divisible by g,
such that Rg = |[mp|Pp + [np]@p has or-
der ¢¢¥. He then computes his secret key
as the degree ¢ = Ey — Ep whose ker-
nel is Rz, and his public key is Ez together
with ¢p(P4) and ¢p(Q.4). To compute the
shared secret, Alice uses her secret inte-
gers and Bob’s public key to compute the
degree (. isogeny ¢, = Ep — Ep4 whose
kernel is the point [mal¢pPa + [naléopQa =
op(malPs+ [na]Qa) = Q. Similarly, Bob
uses his secret integers and Alice’s pub-
lic key to compute the degree ¢¢7. isogeny
¢, = Ep — E,5 whose kernel is the point
[mB]quPBJr[nB]gbAQB = gbAQB It follows that
Epa and E,p are isomorphic, so Alice and
Bob can compute a shared secret as the
common J-invariant j(Ep4) = j(Eap) [9]-

DH ECDH SIDH
Elements integers g modulo | points P in curve curves E in
prime group isogeny class
Secrets exponents x scalars k isogenies ¢
computations g,x P g* k,P - [k]P ¢, E » ¢p(E)
hard problem given g, g* given P, [k]P given E, ¢ (E)
find x find k find ¢

Figure 6: Comparison of Diffie-Hellman al-
gorithms [10].

‘ 6. Current isogeny problems I

1. Isogeny computation Given an elliptic
curve E with Frobenius endomorphism
m, and a subgroup G C FE such that
7(G) = G, compute the rational fractions
and the image curve of the separable
isogeny ¢ : E — FE/G [6].
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2. Explicit isogeny Given two elliptic
curves E, E’' over a finite field, isoge-
nous of known degree d, find an isogeny
¢ : E — E' of degree d [6].

3. Isogeny walk Given two elliptic curves
E: E, over a finite field k,such that #F =
#LE', find an isogeny ¢ : E — E' of
smooth degree [6].

Cryptography helps in building a more
trusted world. When quantum computers
appear, many modern methods of informa-
tion protection will lose their validity and we
will be forced to use newer and more reli-
able methods of information security.
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