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Abstract

In this paper, we discuss modern crypto-
graphic systems dedicated to sensor net-
work that bases its functioning on combina-
torial problems.

1. Elliptic curves

An elliptic curve E over a field F can be
given by the Weierstrass equation:

y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6,

where the coefficients ai ∈ E for i =

1, 2, 3, 4, 6. Koblitz [1] and Miller [2] were the
first to show that the group of rational points
on an elliptic curve E over a finite field Fq
could be used for the discrete logarithm
problem in a public-key cryptosystem.
The canonical short Weierstrass form of an
elliptic curve is given by the equation:

y2 = x3 + ax + b,

together with a point at infinity O where the
constants a, b meet the additional condition:

4a3 + 27b2 6= 0.

The algorithm of adding points on the ellip-
tic curve
Let E be an elliptic curve, and M1,M2 ∈ E,
where M1 = (x1, y1), M2 = (x2, y2), M3 =

(x3, y3) and M3 = M1 + M2, [3, 4] then:{
x3 = λ2 − x1 − x2
y3 = λ(x1 − x3)− y1

,

where:

λ =

{
y2−y1
x2−x1

if (x1, y1) 6= (x2,±y2)
3x21+a

2y1
if (x1, y1) = (x2,±y2)

.

2. Maps between elliptic
curves

Definition 1 (j-invariant). Let E : y2 = x3 +

ax+ b be an elliptic curve, The j-invariant of
E is given by the formula:

j(E) = 1728
4a3

4a3 + 27b2
.

Two curves are isomorphic over the alge-
braic closure k̄ if and only if they have the
same j- invariant.

3. Isogenies

Let φ : E → E ′ be a map between elliptic
curves. These conditions are equivalent:
• φ is a surjective group morphism,

• φ is a group morphism with finite kernel,

• φ is a non-constant algebraic map of
projective varieties sending the point at
infinity of E onto the point at infinity of
E ′.

If they hold φ is called an isogeny.
Definition 2 Two curves are called isoge-
nous if there exists an isogeny between
them.

Example 1 Isogenies: an example over F11

Figure 1: φ(x, y) =
(
x2+1
x , yx

2−1
x2

)

Definition 3 (Supersingular isogeny prob-
lem) Given a finite field K and two super-
singular elliptic curves E,E ′ defined over K
such that |E| = |E ′|, compute an isogeny
φ : E → E ′ [5].

Definition 4 (Complex lattice) A complex
lattice Λ is a discrete subgroup of C that
contains an R-basis [7].

Explicitly, a complex lattice is generated by
a basis (ω1, ω2), such that ω1 6= Λω2 for any
Λ ∈ R, as

λ = ω1Z + ω2Z
Definition 5 (Complex torus). Let Λ be a
complex lattice, the quotient C/Λ is called
a complex torus [7].

Figure 2: A complex lattice (black dots) and
its associated complex torus (grayed funda-
mental domain)

Figure 3: Addition and scalar multiplication

Definition 6 An Expander graph is a
sparsely populated graph that is well con-
nected [8].

Figure 4: The Schreier graph of (S;G\{1}),
where G = 〈g〉, ord(g) = 13

4. Key exchange from
Schreier graphs

Figure 5: gA = g2 · 3 · 2 · 5; gB = g3
2·5·2;

gAB = BBA = g2
3 · 33 · 52 [6]

Public parameters:

• A group G = 〈g〉 of order p;

• A subset S ⊂ (Z/pZ)x.

1. Alice takes a secret random walks SA :

g → gA of length O(log p);

2. Bob does the same;

3. They publish gA and gB;

4. lice repeats her secret walk sA starting
from gB. Bob repeats his secret walk sB
starting from gA.

Definition 7 A sparse graph is a graph in
which the total number of edges is few com-
pared to the maximal number of edges [8].

Example 2 Consider a simple graph G with
n vertices and 2 edges originating from
each vertex. There are 2n edges in this
graph. If this graph was a complete graph,
every vertex connected to every other ver-
tex, we would need n! edges. It is clear that
this graph is sparse since n!� 2n.

5. Supersingular isogeny
Diffie–Hellman key exchange

(SIDH)

This paragraph recalls the SIDH key ex-
change protocol . The public parameters
are the supersingular curve E0/Fp2 whose
group order is (`eAA `

eB
B f )2, two independent

points PA and QA that generate E0[`
eA
A ], and

two independent points PB and QB that
generateE0[`

eB
B ]. To compute her public key,

Alice chooses two secret integers mA, nA ∈
Z/`eAA Z not both divisible by `A, such that
RA = [mA]PA + [nA]QA has order `eAA . Her
secret key is computed as the degree `eAA
isogeny φA = E0 → EA whose kernel is RA,
and her public key is the isogenous curve
EA together with the image points φA(PB)

and φA(QB).

Similarly, Bob chooses two secret integers
mB, nB ∈ Z/`eBB Z not both divisible by `B ,
such that RB = [mB]PB + [nB]QB has or-
der `eBB . He then computes his secret key
as the degree φB = E0 → EB whose ker-
nel is RB, and his public key is EB together
with φB(PA) and φB(QA). To compute the
shared secret, Alice uses her secret inte-
gers and Bob’s public key to compute the
degree `eAA . isogeny φ′A = EB → EBA whose
kernel is the point [mA]φBPA + [nA]φBQA =

φB(mA]PA + [nA]QA) = φBQA Similarly, Bob
uses his secret integers and Alice’s pub-
lic key to compute the degree `eBB . isogeny
φ
′
B = EB → EAB whose kernel is the point

[mB]φAPB+[nB]φAQB = φAQB It follows that
EBA and EAB are isomorphic, so Alice and
Bob can compute a shared secret as the
common J-invariant j(EBA) = j(EAB) [9].

Figure 6: Comparison of Diffie-Hellman al-
gorithms [10].

6. Current isogeny problems

1. Isogeny computation Given an elliptic
curve E with Frobenius endomorphism
π, and a subgroup G ⊂ E such that
π(G) = G, compute the rational fractions
and the image curve of the separable
isogeny φ : E → E/G [6].

2. Explicit isogeny Given two elliptic
curves E,E ′ over a finite field, isoge-
nous of known degree d, find an isogeny
φ : E → E ′ of degree d [6].

3. Isogeny walk Given two elliptic curves
E;E0 over a finite field k,such that #E =

#E ′, find an isogeny φ : E → E ′ of
smooth degree [6].

Cryptography helps in building a more
trusted world. When quantum computers
appear, many modern methods of informa-
tion protection will lose their validity and we
will be forced to use newer and more reli-
able methods of information security.
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