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Introduction
This poster describes Lenstras Elliptic Curve Algorithm
for factoring large numbers. The authors starts from the
definition of elliptic curves over fields of characteristic
different than 2 or 3. Then he introduces a construction
of the abelian group over the K-rational points of an
elliptic curve. Next he reminds Pollards p 1 algorithm
and introduces Lenstra’s Algorithm. This poster discusses
how Lenstras improves upon Pollard and it gives a brief
note on application.

Background
The name of elliptic curves is connected with the problem
of determining the arc length of an ellipse using the
so-called elliptic integral of the second kind. They cannot
be expressed using elementary functions. Functions
inverse to elliptic integrals are called elliptic functions

Example
One of the elliptic integrals is the function:

u =

∫ ∞
y

dt√
4t3 − g2t − g3

The function inverse is the Weierstrass elliptical function
y = ℘(u), which satisfies the dependence:

℘′(u)2 = 4℘(u)3 − g2℘(u)− g3.

The elliptic function satisfies the equation of a curve. As a
result, this curve is called an elliptic curve elliptic curve.

Definitions
Let us call the elliptic curve in R2 as a set of solutions
of the Weierstrass equation:

y 2 = x3 + ax + b

together with a point at infinity O where the constants
a,b meet the additional condition: 4a3 + 27b2 6= 0. We
mark the set of solutions as E (R). Thus, the elliptic
curve is a set of:

E (R) =
{

(x , y) ∈ R2 : y 2 = x3 + ax + b
}
∪ {O} .

The condition
∆E 6= 0

where ∆E = −16 · (4a3 + 27b2) means that the
polynomial x3 + ax + b does not have multiple roots.

The algorithm of adding points on the
elliptic curve

Let E (R) be an elliptic curve, and M1,M2 ∈ E (R),
where

M1 = (x1, y1),

M2 = (x2, y2),

and O is ”a point at infinity” [1], then:

∀i ,j∈{1,2}(Mi ∈ O ⇒ Mi + Mj = Mj)

∀i ,j∈{1,2}(Mi /∈ O ∧Mj /∈ O ∧ xi 6= xj ⇒ Mi + Mj =
(x3, y3)), where:{

x3 = λ2 − x1 − x2
y3 = −y1 + λ(x1 − x3)

and

λ =
y2 − y1
x2 − x1

.

∀i ,j∈{1,2}(Mi /∈ O ∧ xi = xj ∧ yi = −yj ⇒ Mi + Mj =
O)

∀i ,j∈{1,2}(Mi /∈ O ∧Mi = Mj ⇒ Mi + Mj = (x3, y3)),
where: {

x3 = ρ2 − 2x1
y3 = −y1 + ρ · (x1 − x3)

and

ρ =
3x21 + a

2y1
.

Theorem 1
(E ,+) is an abelian group with neutral element O.

Elliptic Curve Groups
Let K be a field over which the curve is defined and

denoted by E . Then the K -rational points of E are the
points on E whose coordinates all lay in K , including the
point at infinity. It forms a group too, because properties
of polynomial equations show that if P is in E (K ), then P
is also in E (K ), and if two of P ,Q, and R are in E (K ),
then so is the third. Additionally, if K is a subfield of L,
then E (K ) is a subgroup of E (L).

Trial Division
The simplest method of finding the prime factors of a
given integer n is the well known Trial Division. We check
for every prime p between 2 and

√
n whether p divides n.

This is fairly efficient if n < 1020 but for larger n we need
a more sophisticated approach.

Pollard’s p − 1 algorithm

Theorem 2 (Fermat)
If p is a prime and a is any number not divisible by p,
then

ap−1 ≡ 1 (mod p)

If the assumptions of the theorem are true, then every
multiple of k of p − 1 has the property

ak ≡ 1 (mod p)

p|ak − 1

We are looking for a prime divisor p of the number n, it is
also a divisor of n and ak − 1, where k is a multiple a
numbers p − 1.
If we choose k such that the number ak − 1 is divisible by
n, ie

gcd(aL − 1; n) = n

we do not get new information. If we find k such number
ak − 1 is not divisible by n, that is

gcd(aL − 1; n) = p

then the calculation of ak − 1 and gcd(aL − 1; n) will lead
to finding the divisor of n. [3, 5]

Algorithm
1 Choose a random integer such as 1 < a < n.
2 If gcd(a; n) > 1, then this gcd is a prime factor of n,

so we are done.
3 For each r = 2, 3, . . . , compute d = gcd(ar ! − 1; n).

a) If d = n, go back to step 1 and pick an integer a
we haven’t tried yet.

b) If d 6= n but d > 1, then d is a prime factor of n,
so we are done.

c) If d = 1, increment r and repeat this loop.

Example
Let n = 10001. Let’s start with a = 2. Then clearly
gcd(2; 10001) = 1, so we proceed into the loop. We first
compute a2! = 22 = 4. Then

gcd(a2! − 1, n) = gcd(3, 10001) = 1

so we continue. Now a3! = (a2!)3 = 43 = 64, and

gcd(a3! − 1, n) = gcd(63, 10001) = 1

Next a4! = (a3!)4 = 644 ≡ 5539 (mod 10001), and

gcd(a4! − 1, n) = gcd(5538, 10001) = 1

Next a5! = (a4!)5 = 55395 ≡ 7746 (mod 10001), and

gcd(a5! − 1, n) = gcd(7745, 10001) = 1

Next a6! = (a5!)6 = 77466 ≡ 1169 (mod 10001), and

gcd(a6! − 1, n) = gcd(1168, 10001) = 73.

We’ve run into a gcd that is bigger than 1 and not equal
to n = 10001, so jackpot! 73 must be a prime factor of n.
Then we can compute quickly that 10001/73 = 137, so
10001/73 = 137 and we are done.

Lenstras Elliptic Curve Method
Given an integer n, we use the following steps to find factors

of n. [2]

1 Check that n isn’t divisible by 2 or 3, and that n isn’t a

perfect power.

2 Choose random integers a, x , y between 1 and n.

3 Let b = y 2 − x3 − ax (mod n).

4 Calculate D = gcd(4a3 + 27b2; n).

If 1 < D < n, we are done.

If D = 1, proceed to Step 5.

If D = n, go back to Step 2 and choose a different a.

5 Let E be the elliptic curve E : y 2 = x3 + ax + b, and let

P = (x , y) ∈ E .

6 Choose a number k which is a product of small primes

raised to small powers. For example, a good choice is

k = lcm(2, 3, . . . ,B) for some integer B ≈ 100.

7 Compute kP (mod n).

8 If kP lies on E , go back to Step 2 and choose different

values for a, x , y . Otherwise, Step 7 yields a factor of n.

Example
Consider n = 455839. Let E : y 2 = x3 + 5x − 5, P = (1, 1),

k = 10! We begin by finding

2!P = 2P (mod n)

by using the algorithm of adding points on the elliptic curve

2P = (14,−53) (mod 455839)

4P = (259851, 116255) (mod 455839)

6P = (179685, 28708) (mod 455839)

Similarly, we find that 4!P , 5!P , . . . 7!P all lie on E , but

computing 8!P requires inverting 599 (mod n) which isn’t

possible. This is because 599 is a factor of n, and we conclude

that n = 599 · 761.

Summary
Lenstra’s ECM is known to reliably find factors with up to 25

digits, and there has even been found a prime factor with 83

digits using ECM [6]. The algorithm is, however, much more

difficult to implement as the point addition is a more

complicated procedure and it isn’t quite clear which elliptic

curve should be chosen. It is not obvious when we should stop

sing Lenstra’s ECM to find factors. In fact, the success of

Lenstra’s ECM is somewhat random (if we choose random

curves), but even so its average success rate is so high that in

practice one typically uses Lenstra’s ECM after using Trial

Division to ”filter out” more small factors before moving on to

more general purpose factoring algorithms.
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