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Introduction
The paper presents application of algebraic geometry in cryptography. In the first part we go from basic issues, among other things, such as elliptic curves, then get to know the various cryptographic systems based on elliptic curves. At the end we show
some examples of applications of these methods to protect the information used in the modern world.

For millennia, rulers needed efficient and secure commu-
nication systems to efficiently govern their countries and
command their armies. The danger of intercepting mes-
sages by unauthorized persons was the main motive of de-
vising ciphers and codes. The ability to encrypt well, or to
break ciphers, often influenced the course of events. Often
cited an example is the story of Mary Stuart, where encryp-
tion was of little avail, because the messenger was a dou-
ble agent, who passed all the correspondence (including the
encryption key) to the minister the English Court, which
eventually led to the beheading of the authoress.

The beginnings of cryptography date back to ancient
times. It was already the ancient Egyptians who encrypted
their hieroglyphs, and so did also the ancient Hebrews en-
crypting some words in their scripts. One of the most fa-
mous ways to encrypt information is the Caesar cipher.

A lot of encryption systems that use mechanical devices
were developed in the first half of the 20th century. These
systems were used, among other things, during the Second
World War. Some of them, such as the German Enigma
system broken by three Polish mathematicians, i.e. Marian
Rejewski, Jerzy Rozycki and Henryk Zygalski, were effec-
tively broken.

For centuries, the language barrier was an important factor
supporting the power of ciphers. Due to its specificity, none
of the codes based on the languages of native Americans
has ever been broken, although US troops often used such
codes, especially during the war with Japan.

Review of the literature
The development of electronics in the 20th century pro-
vided tremendous opportunities to perform computing op-
erations at a relatively low cost, which contributed to fast
development in the field of designing encryption systems.

For several years, the asymmetric cryptography tech-
nique, also called elliptic curve cryptography (ECC), has
enjoyed great popularity. The security of ECC is based on
the computational complexity of discrete logarithms on el-
liptic curves (ECDLP = Elliptic Curve Discrete Logarithm
Problem). Currently, it is the use of conic curve cryptogra-
phy that is of special interest and importance in order to in-
crease the protection of information systems based on com-
putationally difficult problems.

However, more and more advanced work on the construc-
tion of quantum computers indicates the need for a new
approach to information protection. Currently used meth-
ods are based on computationally difficult problems, such
as e.g. the problem of factorization of large numbers or the
discrete logarithm problem, which problems will be han-
dled very well by quantum computers. Individuals and in-
stitutions involved in cryptography have a duty today to
seek new methods of information protection, which will
also be effective in the era of quantum computers. Particu-
larly noteworthy, therefore, are the so-called post-quantum
algorithms which are likely to find application in the era
of quantum computers. They are based on, inter alia, the
hash function based on the hash table (hash-based cryptog-
raphy), line codes (code-based cryptography), lattice the-
ory (lattice-based cryptography), and polynomials of the
second degree of multiple variables (multivariate-quadratic-
equations cryptography).

The methods based on lattice theory, which has numerous
applications in quantum physics being the "older sister" of
quantum computing, appear to be particularly promising.
The arrival of quantum computers will also mark the end
of modern cryptography based on computationally difficult
problems, which is why the development of quantum cryp-
tography is so important for the protection of transmission
and collection of information in the future.

Elliptic curves
The name of elliptic curves which appears in cryptography
is slightly misleading. It is connected with the problem
of determining the arc length of an ellipse using the so-
called elliptic integral of the second kind. These integrals
are called elliptic integrals and cannot be expressed using
elementary functions. Functions inverse to elliptic integrals
are called elliptic functions.

Example 1. One of elliptic integrals is the function:

u =

∫ ∞
y

dt√
4t3 − g2t− g3

(1)

A function inverse to it is the Weierstrass elliptical function
y = ℘(u), which satisfies the dependence:

℘′(u)2 = 4℘(u)3 − g2℘(u)− g3.

The elliptic function satisfies the equation of a curve. It is
for this reason that this curve is called an elliptic curve.

EC in Euclidean spaces
Let us call the elliptic curve in R2 as a set of solutions of
the Weierstrass equation:

y2 = x3 + ax + b (2)

together with a point at infinity O where the constants a,b
meet the additional condition: 4a3 + 27b2 6= 0. We mark the
set of solutions as E(R). Thus, the elliptic curve is a set of:

E(R) =
{

(x, y) ∈ R2 : y2 = x3 + ax + b
}
∪ {O} .

The condition ∆E 6= 0 (where ∆E = −16 · (4a3 + 27b2))
means that the polynomial x3 + ax + b does not have mul-
tiple roots.

The operation of "addition"
It is on elliptic curves that we can define operations of "ad-
dition". Let us take two different points M1 and M2 lying
on the elliptic curve. In this case, the straight line passing
through them intersects the curve at exactly three different
points M1,M2,M . We assume that the result of adding will
be point M3 of the curve symmetrical to M , relative to the
axis of abscissae.

Addition for M1 6= M2 Addition for M1 = M2

In the case when M1 = M2, we are considering the tangent
to the curve at point M1, and repeat the above procedure.
We encounter a problem when we want to add two points
symmetrical with respect to the axis of abscissae, or double
the point lying additionally on the axis of abscissae. Then,
a relevant straight line assumes the position parallel to the
axis of ordinates, and does not intersect the elliptic curve at
any other point. The solution is to introduce point O called
"a point at infinity".

The algorithm of adding points on the
elliptic curve (algebraic approach)
Let E(R) be an elliptic curve, and M1,M2 ∈ E(R), where
M1 = (x1, y1), M2 = (x2, y2), and O is "a point at infinity",
then:

• ∀i,j∈{1,2}(Mi ∈ O ⇒Mi + Mj = Mj)

• ∀i,j∈{1,2}(Mi /∈ O ∧Mj /∈ O ∧ xi 6= xj ⇒ Mi + Mj =
(x3, y3)), where: x3 =

(
y2−y1
x2−x1

)2
− x1 − x2

y3 = −y1 +
(

y2−y1
x2−x1

)2
(x1 − x3)

• ∀i,j∈{1,2}(Mi /∈ O∧xi = xj∧yi = −yj ⇒Mi+Mj = O)

• ∀i,j∈{1,2}(Mi /∈ O ∧Mi = Mj ⇒ Mi + Mj = (x3, y3)),
where:  x3 =

(
3x21+a

2y1

)2
− 2x1

y3 = −y1 +
(
3x21+a

2y1

)2
(x1 − x3)

Remark 1. Remark It is easy to show that along with the
aforementioned operation of "addition", and "a point at in-
finity", elliptic curve E(R) is an Abelian group.

The use of elliptic curves in the context of finite fields
changes their appearance (in finite fields the diagram ceases
to be a continuous curve and assumes the form of a set of
points; this is a consequence of adopting a domain which
is a discrete set). The method of the addition algorithm de-
scribed above does not change, the only modification being
that we operate in a finite field).

Example 2. Let E be the elliptic curve y2 = x3 + 3x over
field F5. Then, curve E consists of 10 points:

E(F5) = {OE, (0, 0), (1, 2), (1, 3), (2, 2), (2, 3),

(3, 1), (3, 4), (4, 1), (4, 4)}.

The elliptic curve y2 = x3 + 3x over field F5.

Let us note that the points beyond point (0,0) still retain
their horizontal symmetry.

Practical applications of elliptic
curves
Starting around 1985, the theory of elliptic curves was ap-
plied to deal with a variety of cryptographic problems such
as the partition of natural numbers into prime factors, tests
examining whether a number is a prime number or a struc-
ture of different cryptosystems. The groups of points of
elliptic curves over finite fields are similar to the multi-
plicative groups of finite fields. ECC algorithms provide
security comparable to that of RSA with less complex keys.
This provides much more efficient encryption compared to
RSA, which is considered too slow and requiring consider-
able computing power.

The discrete logarithm problem
One may wonder about the difficulty of finding for certain
points G,H ∈ E(K) such an integer n that:

G + G + . . . + G︸ ︷︷ ︸
n−1 additions in E(K)

= [n]G = H.

This is the so-called discrete logarithm problem in the group
of elliptic curve points. We designate the number sought as
n = logGH , and say that n is a discrete elliptic logarithm
with base G from H. On the basis of knowledge of G and
H, the opponent must designate n, that is, solve a seemingly
simple equation, whose complexity stems from the defini-
tion of the operation of addition of elliptic curve points, to-
gether with the modular arithmetic in field Fp. In fact, this
issue is a problem extremely difficult computationally (at
least for large p). In the case of some curves, this problem
can be effectively reduced to the discrete logarithm problem
in the multiplicative group of a finite field. Therefore, only
those curves that meet certain conditions regarding security
are selected for cryptographic applications.

The Diffie-Hellman key exchange
A classic example of a protocol of exchanging encryption
keys is the Diffie - Hellman key exchange that allows two
parties to establish a secret key in an unsecured network.
It does not require the knowledge of any classified informa-
tion, or the presence of a trusted "third party". This protocol
was the first practical solution to the problem of key distri-
bution. It is resistant to passive attacks, but vulnerable to
active ones due to the lack of transmitted information au-
thentication keys. The security of this protocol is based on
the complexity of the discrete logarithm problem.

The ECIES encryption scheme
The Elliptic Curve Integrated Encryption Scheme (ECIES)
is a static version of the Diffie-Hellman key exchange, in
which the exchange of the key does not take place with
the active participation of both parties to the protocol. In
practice, it comes down to the fact that one of the parties
provides their public key to all who would like to exchange
information with them in a secure manner. The algorithm is
popular mainly because of the very high prevalence of use
of the Diffie-Hellman protocol. All systems implementing
the ECDH (Elliptic Curve Diffie-Hellman) protocol can be
adapted to support ECIES encryption, which is important
in systems with limited storage resources.

ElGamal digital signature
A mechanism to ensure the authenticity of transmitted data
was presented in 1985 by ElGamal. At the core of this algo-
rithm’s operation lies the discrete logarithm problem. The
algorithm allows the encryption and support of digital sig-
natures.

Description of the algorithm

1. We select such a large enough prime number p, that the
calculation of the discrete logarithm is virtually impos-
sible.

2. We select integer 0 < a < p − 1 and number g, and
then calculate b ≡ ga (mod p); numbers {b, g, p} consti-
tute the public key, whereas numbers {a, g, p} the private
key.

3. In order to encrypt message M, we select random num-
ber k relatively prime to number p−1, and then calculate
c1 ≡ gk (mod p) and c2 ≡ M · bk(mod p). The pair of
numbers c1 and c2 creates a cryptogram, which is longer
than the plain text.

4. Decryption consists in calculating:

M = c2(c
a
1)
−1 (mod p)

Example 3. Let p = 47 and g = 5 , we select a = 20 and
calculate

b = ga = 520 (mod 47) = 3.

Thus, numbers {3, 5, 47} constitute the public key,
and numbers {20, 5, 47} are the private key.

Encryption:
Let the message be M = 38. We select such k = 11 that
GCD(38, 11) = 1 (this number is not disclosed),

c1 = 511 (mod 47) = 13

and
c2 = 38 · 311 (mod 47) = 11

Decryption:

M = c2 · (ca1)−1 (mod 47) ≡ 11 · 12(mod 229) = 38.

A special representative of the ElGamal signature is the
Digital Signature Algorithm (DSA), which constitutes the
basis of the Digital Signature Standard (DSS). Elliptic curve
cryptography is also based on the concept of the ElGamal
algorithm. In this case, instead of the multiplicative group
of field Zp we use the group of points on the elliptic curve.

Security requirements
Security guaranteed by the systems in question is connected
with existing algorithms serving to determine the discrete
logarithm on elliptic curves. The best-known algorithms
allowing to solve or significantly simplify the problem in-
clude, among others, the Pollard’s rho algorithm and the
Pohlig-Hellman algorithm.

Summary
As already mentioned at the beginning of the article, new
methods are needed to increase the security of information
transmission. In the world using modern technology, stud-
ies in the field of number theory and algebraic geometry
constitute now a mathematical foundation and, therefore, a
key challenge for modern cryptography. Another very im-
portant area of research includes methods that guarantee the
security of information in times of availability of quantum
computers.

Examples of applications

National Scrambler (WAT & WASKO)

Bitcoin - payment system
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