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Chapter 4 

THE APPLICATION OF BAYESIAN METHODS 
IN STUDIES ON ECONOMIC GROWTH 

IN REGIONS 

The considerations on the issue of economic convergence and inequality 
in European regions presented in the previous chapters, facilitate a better under-
standing of the issues of economic growth and convergence, and add to the ex-
tensive literature around the world on this subject. The results of the empirical 
studies discussed in chapters 2 and 3 provide grounds for the logical continua-
tion of considerations in the field of analysis of the sources of economic growth 
in regions. It is one of the most significant challenges of contemporary theory of 
economics and economic policy to accurately identify the factors influencing the 
pace of economic growth. This task becomes particularly important when ana-
lyzing the regions of the European Union.  

The literature on the subject, e.g. Sala-i-Martin et al. [2004] and J.C. 
Cuaresma et al. [2008], encompasses a range of studies that refer to various 
factors and groups of factors responsible for the processes of economic 
growth. These studies provide the foundation for the considerations below. 
There is consent in the literature that methods developed on the basis of Bayes-
ian econometrics are generally applicable in the analysis of such a complex eco-
nomic phenomenon as the determination of the sources of economic growth.  

The purpose of this chapter is to present the Bayesian methods applied  
in the research into the factors responsible for regional economic growth.  
It presents the assumptions of the Bayesian pooling approach in regression mo-
dels, the elements of Bayesian inference, and the details of the MC3 algorithm 
applied in successive stages of this study. The chapter also discusses the issue  
of the collinearity of explanatory variables. These issues constitute the theoreti-
cal core of empirical studies on convergence in the EU regions, conducted in the 
following chapter.  
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4.1. The Bayesian pooling approach in linear  
regression models  

This section concerns selected elements of Bayesian inference in a linear 
regression model. It presents the estimation of the model parameters, comparison 
of competitive specifications, and Bayesian pooling approach [cf. Osiewalski 
and Steel 1993]. In this case, the Bayesian pooling approach means the averaging 
of posterior distributions of the parameters that are of interest, weighted by the 
posterior probabilities of individual specifications. In the case of regression 
models, this method is referred to as BMA (Bayesian Model Averaging) in the 
literature on the subject and has found numerous applications in such fields  
of science as medicine, sociology and economics [cf. Hoeting, Madigan, Raftery 
and Volinsky 1999; Steel 2011]. Another essential element discussed in this sec-
tion is the presentation of a numerical procedure referred to as MC3 (Markov 
Chain Monte Carlo Model Composition), which is a special case of the Monte 
Carlo method, based on Markov chains (Markov Chain Monte Carlo – MCMC) 
and applied in the BMA method.  

Bayesian inference, along with the MC3 algorithm, allows the selection  
of the most likely combination of independent variables (i.e. factors responsible 
for the processes of economic growth) from a very large set of variables to be 
made, as well as the calculation of the explanatory power of all the interesting 
models and their ranking from the most to the least likely one, and the averaging 
of posterior estimations (including the mean and variance), weighted with the 
posterior probability of the models.  

Why is it necessary to apply a Bayesian pooling approach and numerical 
techniques for a simple regression model if the estimation results can be obtained 
analytically, provided that prior distributions are selected accurately20? The ans-
wer is very simple. When the number of independent variables in a regression 
model is very large, it is very time consuming, or virtually impossible, to compute 
all the possible combinations of these variables. It also frequently turns out that 
the model with the greatest explanatory power has small posterior probability. 
When we focus on this one model exclusively, we actually ignore a vast amount 
of additional information provided by other models whose total posterior proba-
bility can be very high.  

Madigan and Raftery [1994] additionally indicated that popular methods 
of choosing variables applied in the classical approach can lead to different se-
lections of independent variables, and thus to different conclusions.  

                                                 
20 Cf. Zellner [1971]. 
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Let us consider, for example, a regression model with three potential in-
dependent variables X1, X2, X3. In this case, we have L=23=8 linear combinations 
of independent variables. They can be listed as follows:  

1 0:M y eα= + ,  2 0 1 1:M y X eα α= + + ,  

3 0 2 2:M y X eα α= + + ,  4 0 3 3:M y X eα α= + + , 

5 0 1 1 2 2:M y X X eα α α= + + + ,  6 0 1 1 3 3:M y X X eα α α= + + + , 

7 0 2 2 3 3:M y X X eα α α= + + + ,  8 0 1 1 2 2 3 3:M y X X X eα α α α= + + + + .  

Let us assume that a random element has normal distribution. Given con-
jugate prior distributions, the estimation of the parameters in all the above-listed 
models can be performed analytically, without the need for numerical methods21. 
The assumptions adopted also allow the analytical calculation of the explanatory 
power of competitive models to be performed, and for the most probable poste-
rior one to be determined.  

In the classical approach, a typical procedure for regression model con-
struction involves the estimation of the parameters of the model  followed by the 
rejection of insignificant variables so that a single accurate model is designed.  
In this approach, the uncertainty related to the explanatory value of a model  
is ignored, which means that we are unable to estimate its probability.  The dif-
ference between Bayesian inference and the classical approach is, among other 
things, that the former takes into account the uncertainty related to the selection 
of a model by means of calculating its posterior probability. Let us assume that 
model five (M5) obtained the highest explanatory power with posterior probabil-
ity amounting to 0.3. All the remaining models had a smaller explanatory power, 
but their total likelihood amounted to 70%. If we analyze only one model we 
will ignore an abundance of additional information included in the remaining 
models. That is why it is sometimes necessary to apply the Bayesian pooling 
approach involving, among other things, the averaging of parameter estimations 
and their posterior distributions weighted with the posterior probabilities of indi-
vidual specifications. We can make conclusions on all the interesting values not 
only on the basis of a single model, but all the models, consistent with their ex-
planatory power.  

                                                 
 21 The concept of conjugate distributions says that if the prior distribution of a para-
meter we are interested in belongs to a given family of distributions, then its posterior 
distribution also belongs to the same family for any size of an n sample and any num-
ber of observations. An ideal family of distributions is one allowing an easy point es-
timation of a parameter to be obtained, and one flexible enough to easily express ini-
tial information. 
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When a set of potential independent variables comprises 30 elements, the 
number of possible combinations increases to as many as 8247410731230 ==L . 
Assuming that computing each combination takes only one second, it would take 
as long as 34 years to calculate all of them! Therefore we need a more efficient 
algorithm to compute combinations, in order to focus on the most likely variants 
and ignore those with negligible posterior probability. That is the purpose of the 
MC3 algorithm, developed by Madigan and York [1995]. 

4.2. The elements of Bayesian inference 

Let θ signify the vector of parameters, which is the object of an exami-
nation. Let us also assume that the initial information concerning this vector can 
be expressed by means of prior density. Let us subsequently consider an econo-
metric model where the observation vector ( )1,..., Ny y y ′=  has a probability dis-
tribution expressed by the density function ( )p y θ . The foundation of Bayesian 
inference concerning the vector of parameters q is a well-known Bayesian for-
mula:  

 ( ) ( ) ( )
( ) ( ) ( )|

p p y
p y p p y

p y
θ θ

θ θ θ= ∝   (1) 

where ( )p yθ  stands for the posterior density distribution, describing a re-
searcher’s ‘final’ knowledge of the parameter q, computed on the basis of initial 
(prior) knowledge and derived from the sample; ( )p y  stands for the density  
of marginal distribution of the observation vector y, expressed for a continuous 
random variable as ( ) ( ) ( )p y p p y dθ θ θ= ∫ ; ( )p y θ  is the sample density, 
which determines the degree of confidence concerning the values assumed by  
an examined phenomenon, given a set value of the parameter q. It corresponds  
to the probability function, i.e. ( ) ( );l y p yθ θ= , or density treated as a function 
of the parameter given a fixed outcome. 

The initial information on the parameters of a sample model is thus ex-
pressed in the prior distribution p (q), whereas the information from the sample  
is included in the sample density ( )p y θ . The final result obtained in Bayesian 
inference, in contrast to classical methods, is not a point estimation of a parameter, 
but its entire distribution. The equivalence of point estimation of a parameter 
known in classical inference is provided by the measures of the central tendency 
and the dispersion of posterior distributions, such as a median, expected value, 
variance and interquartile deviation.  
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In Bayesian inference likelihood can be used to express information on more 
than just parameters. Another fundamental issue concerns the estimation of the 
explanatory power of the econometric model and the calculation of its posterior 
probability.  

Let us consider a set of mutually exclusive and competitive models 
1,..., mM M  and the corresponding prior probabilities ( ) ( )1Pr ,...,Pr mM M , whose 

total amounts to one, i.e. ( )
1

Pr 1
m

r
r

M
=

=∑ . The posterior probability of any model 

iM can be computed in the following manner on the basis of the Bayesian for-
mula:  

 

 
( ) ( )
( ) ( )

1

Pr |
Pr ( | )

Pr |

i i
i m

r r
r

M p y M
M y

M p y M
=

=
∑

.  (2) 

Formula (2) allows the posterior probability of every model 
rM ( )1,...,r m=  to be calculated provided that we know the density of marginal 

distribution ( )| rP y M . In a linear regression model density can be calculated ana-
lytically (cf. formula 10). In more complex models numerical integrations are ne-
cessary, which can significantly complicate the computation process [Osiewalski 
2001]. 

As already mentioned, the BMA method consists in the averaging of poste-
rior distributions of interesting parameters, weighted by the posterior probabili-
ties of individual specifications.  Let us describe the method in a more formal 
manner. 

Let us assume that a researcher is interested in the parameter ψ , which  
is a common element of all competitive models. Since we know the posterior 
probability of each model, the following density of posterior distribution can be 
a source of information: 

 ( ) ( ) ( )
1
Pr ,

m

r r r
r

p y M y p y Mψ ψ
=

=∑ .  (3) 

Density ( )p yψ  is therefore obtained by means of the weighted averag-
ing of individual densities of posterior distributions ( )rp yψ , weighted by the 
posterior probabilities of competitive models. Selected moments of posterior 
distribution can be averaged analogically:  
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( ) ( ) ( )

1
Pr ,

m
s s

r r r
r

E y M y E y Mψ ψ
=

=∑ ,  (4) 

where s  stands for the order of the moment ( )1,2,...s = . 

4.3. Regression model and its estimation  

Let us assume that we have data derived from 1,...,i N=  objects22. The 

vector of observations ( )1,..., Ny y y=  refers to the response variable. Let us also 
assume that we have K potential explanatory variables related to a response vari-
able. The matrix with dimensions N K×  contains observations on the explana-
tory variables. Let rM  stand for 1, ...,r m=  regression models, where m stands 
for a maximum number of combinations of independent variables, i.e. 2Km= . 

The considered regression model has the following form: 

 N r ry l Xα β ε= + + ,  (5) 

where Nl  means an 1N ×  vector of ones, rX  is an rN k×  matrix related to 
model rM , and containing some (or all) columns of matrix X , rβ  is a 1rk ×  
vector of structural parameters, α  is an intercept coefficient, common for all 
regression models, a random component ε  is a vector of dimensions 1N ×  and 
normal distribution ( )10, NN h I− , parameter h  is an inverse variance of random 

component, i.e.  2

1h
σ

= , and the symbol NI  stands for an identity matrix of size N.    

Let us assume that we have initial information on regression coefficients 
βr, and some knowledge on common parameters, i.e. h  and α : 

 
( )11| ~ 0 ,

rr k r r rh N h g X Xβ
−− ⎡ ⎤′⎣ ⎦

 (6) 

and 

 
( ) 1p h

h
∝ , ( ) 1p α ∝ . (6a) 

                                                 
 22 For more on the estimation of parameters in a linear regression model of algo-
rithm MC3 cf. G. Koop [2003]. 
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Symbol ( ),N a B  stands for a multidimensional normal distribution with 
mean a, and variance B, rg  stands for a constant defined as follows: 

 

2
2

2

1 dla

1 dla
r

N K
Kg

N K
N

⎧ ≤⎪⎪= ⎨
⎪ >⎪⎩

 (7) 

 Using Bayesian formula (1) we obtain the posterior distribution of the 
parameters we are interested in. It can be demonstrated that in this case, the pos-
terior distribution of the vector of regression coefficients βr is a multivariate Stu-
dents-t distribution with the following vector of means: 

 ( ) ( ) 1 '| , 1r r r r r rE y M g X X X yβ
−

⎡ ⎤= + ′⎣ ⎦  (8) 

It can be easily observed that for small values, i.e. when 0rg → , the pos-
terior expected values are very close to those that can be obtained by means  
of the classical method of least squares.  

The matrix of posterior covariance has the following form: 

 
( ) ( )

2
1

var | , 1
2

r
r r r r r

Ns
y M g X X

N
β

−
⎡ ⎤= + ′⎣ ⎦−

, (9) 

where 
( ) ( )

2

1
1 1r

r
X N N

r r
r

gy P y y yl y yl
g g

s
N

′+ − −′
+ +

= . 

Given the above-mentioned assumptions, the sample density after the ana-
lytical integration of parameters in model r is as follows:  

 
( ) ( ) ( )

1
2 21|

1 1 1

r

r

k N

r r
r X N N

r r r

g gp y M y P y y yl y yl
g g g

−−
⎛ ⎞ ⎡ ⎤′∝ + − −′⎢ ⎥⎜ ⎟+ + +⎝ ⎠ ⎣ ⎦

, (10) 

where ( ) 1

rX N r r r rP I X X X X
−

= − ′ ′ .  

On the basis of formulas (8) and (9), the posterior point estimations of re-
gression coefficients can be calculated, while formulations (10) and (2) allow the 
posterior probability of each potential combination of explanatory variables to 
be calculated. More information on Bayesian inference in single-equation mod-
els in Polish is provided by J. Osiewalski [1991].  
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4.4. The MC3 algorithm 

Let us now discuss the foundations of the MC3 algorithm. It facilitates 
easy ‘capturing’ of the models with the greatest explanatory power. Its main task 
is to sample in the regions where the most likely models occur, while neglecting 
the areas with the least likely models. The MC3 algorithm, developed by Madi-
gan and York [1995], is a special case of a numerical procedure, referred to in 
the literature on the subject as the Metropolis-Hastings method, which in turn  
is a special case of the Monte Carlo method, based on Markov chains. Before 
discussing the details of the MC3 algorithm, let us first consider the foundations 
of the MCMC methods and the Metropolis-Hastings procedure. In the Polish 
literature Osiewalski [2001], Pajor [2003] and Marzec [2008], among others, 
discuss the MCMC methods in detail. 

The fundamental idea of the MCMC methods is as follows: given a cer-
tain posterior distribution with density ( )p yθ  a Markov chain ( )1 2, ,...θ θ   
is generated whose stationary distribution is posterior distribution. Thus we ge-
nerate d initial samples and test their convergence with the stationary distribu-
tion (burn-in period). After convergence occurs, further stages ( )1 2, ,...d dθ θ+ +  
involve the samples from the distribution  ( )p yθ  and can serve the purpose  
of approximation of its characteristics.  

In order to estimate the parameters in the Metropolis-Hastings algorithm, 
samplings from the proposal density ( )* 1if θ θ −  are used to generate a Markov 
chain. A general outline of the Metropolis-Hastings algorithm is as follows: 
1. Starting point 0θ is selected 
2. For successive iterations  i = 1, 2, …: 

– value *θ  is sampled from a proposal density ( )f ⋅ ,  

– ( )( )1* * ifθ θ θ −← , 

– acceptance probability ( )( )1 *,iα θ θ−  is calculated,  

– ( ) *iθ θ=  is assumed with the likelihood ( )( )1 *,iα θ θ−  as well as 
( ) ( )1i iθ θ −=  with the likelihood ( )( )1 *1 ,iα θ θ−− . 

3. After the chain’s convergence occurs, the characteristics of posterior distribu-
tion are calculated on the basis of iterations performed.  

The appropriate selection of a proposal density is a crucial element of the 
Metropolis-Hastings algorithm. An ideal proposal density coincides in shape and 
location with the posterior distribution. A good proposal density should meet the 
following criteria: 
– it can be easily sampled from,  
– acceptance probability can be easily calculated, 
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– each successive iteration is relatively distant from the previous one (it en-
sures better convergence with the stationary distribution), 

– successive iterations are accepted relatively frequently (otherwise the Mar-
kov chain remains in one point for too long). 

In the MC3 algorithm a chain of models is generated instead of the values 
of parameters. The general idea of the MCMC does not fundamentally change. 
Let us mark the model sampled (and accepted) in the i iteration of the chain  
as iM . The successive steps of the MC3 algorithm can be presented in the fol-
lowing manner: 
1.  The starting model iM ( )1i =  is adopted.  
2. For 2i = , from the set of models containing: (a) model ( )1iM −  sampled and 

accepted in the previous step; (b) all models derived as a result of the elimi-
nation of a single independent variable from the model ( )1−iM ; (c) all mo-
dels derived as a result of the addition of a single independent variable from 
the model ( )1−iM ; a candidate model *M  is sampled (with uniform likeli-
hood).  

3. If the posterior probability of a sampled model is significantly higher, it replaces 
the former model ( )1* −= iMM . Otherwise we return to step 2 and adopt 

( )1( ) iiM M −= . 
The formal presentation of the acceptance probability is as follows:  

 

( )( ) ( ) ( )
( )( ) ( )( )

* *
1 *

1 1

|
, min ,1i

i i

p y M p M
M M

p y M p M
α −

− −

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

, (11) 

where densities ( )*|p y M  i ( )( )1| ip y M −  are calculated from the formula (10). 
When all models have the same prior probability, the formula (10) is reduced to 
a simpler form:  

 

( )( ) ( )
( )( )

*
1 *

1

|
, min ,1i

i

p y M
M M

p y M
α −

−

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

. (12) 

The posterior probability of models rM , i.e. ( )Pr rM y , can be very  
easily approximated with the following formula: 

 
( )  the number of samplings where model is accepted

total number of samplings
Pr r

r
MM y ≈ . (13) 
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Posterior characteristics of selected parameters can be obtained by means 
of weighted averaging of individual posterior distributions (formula (3)) or Rao 
and Blackwell approach [cf. Koop 2003]. 

Summing up, it should be emphasized that Bayesian inference provides 
tools that describe the uncertainty related to the selection of a model in a strictly 
probabilistic manner. The above-mentioned MC3 algorithm is in turn an effi-
cient technique providing for sampling in the areas where the most likely models 
occur, while neglecting those where models with very small explanatory power 
emerge.  

4.5. The issue of the collinearity of explanatory variables  

Since the study involved a database of a relatively large size and adopted 
the classical assumption of a linear econometric model (linear multiple regres-
sion), independent variables cannot be collinear23. Two issues have to be borne  
in mind [Welfe 2003, p. 140]: 
– collinearity is the characteristic of the set of data we possess and not of the 

variables themselves, 
– there always occurs a correlation between economic variables, the only prob-

lem is the degree of this correlation.  
Let X stand for the observation matrix on independent variables and Y – 

for the vector of observation on response variable. The OLS estimator is derived 
as a result of the following transformation:  

 ( ) 1T Ta = X X X Y
− . (14) 

If independent variables generate a linear combination (are strictly  
collinear), the determinant of square matrix  TX X  equals zero and there is  no 
matrix that would be inverse to it ( ) 1TX X

−
, meaning that there is no OLS  

estimator.  
The problem of collinearity is slightly different when independent variab-

les do not form a (strict) collinear combination, but are strongly correlated. 
The determinant of square matrix TX X  then approximates zero, resulting  
in a distorted value of the variance matrix – the covariance of the estimates  
of structural parameters, determined using the formula: 

                                                 
 23 Cf. Maddala [2006], pp. 318-321; Gruszczyński et al. [2009], pp. 57-59; Grusz-
czyński et al. [2003], pp. 41-43; Gajda [2004], pp. 96-100; Greene [2003], p. 14; David-
son, MacKinnon [2004], p. 99; Kufel [2011], p. 64; Borkowski et al.  [2003], p. 26; 
Welfe [2003], pp. 139-152. 
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 ( ) ( ) 12 2 T
eD a = S X X

−
, (15) 

where 2
eS  is residual variance (the estimation of random component variances). The 

distortion of the variance-covariance matrix produces distorted t-Student statistics 
which serve the purpose of inferring on the significance of the influence of indi-
vidual independent variables on the response variable, and the deformed estimates 
of structural parameters of the model. This is a paramount econometric issue 
which may lead to the following cognitive errors [Welfe 2003, p. 141]: 
– failing to reject the hypothesis of the insignificance of a given independent 

variable when it actually exerts influence on the response variable, 
– measure of the force of influence the independent variables exerted on the 

dependent variable.  
In the case of collinearity, the variables (a variable) which generate this 

problem in a data set have to be rejected.  
It follows from the above that the issue of collinearity is an essential issue 

related to the analysis of multiple regression. To verify whether this issue con-
cerns the analyzed set of data, the method of matrix conditional number (CN), 
developed by Belsley, Kuh and Welsch (BKW) (presented in Belsley et al. 
[1980]), can be applied. It is a broadly applied measure allowing the variables 
which generate the issue of collinearity in a given database to be identified. 

Another frequently applied measure of collinearity is variance inflation 
factor (VIF), based on the analysis of coefficients of multiple correlation be-
tween independent variables, although both instruments are criticized [Maddala 
2006, pp. 318-321]. 

The procedure in the BKW method is as follows [Welfe 2003, p. 145]: 
– transformation matrix: ( )* TX P X X P= is determined, where: 

 

1( ) 1( )

2( ) 2( )

( ) ( )

1 0 0

10 0

10 0

T
i i

T
i i

T
k i k i

x x

x xP

x x

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, (16) 

where k is a number of independent variables, 
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– eigenvalues of matrix *X are determined, 
– CN measure is determined as: 

 

max

min

CN
λ
λ

=  , (17) 

where the index value above 20 is considered an indication of the potential pre-
sence of collinearity. 

The study presented in the following chapter of this book was carried out 
on the basis of the original software24 allowing the MC3 algorithm to be exten-
sively applied. The implementation of the BKW method in a MATLAB envi-
ronment, licensed by GNU GPL, was created by James P. LeSage (Department 
of Economics, University of Toledo; http://www.business.txstate.edu/users/jl47/). 
The BMA solution presented in this study applies this very code. The function 
implementing a CN measure is automatically activated each time the order of ma-
trix X is smaller than k.  

The example of the application of the BKW method (Figure 28) results 
from the analysis obtained by means of this original software, and is an initial step 
in the empirical application of the MC3 algorithm. 

The BKW procedure produced a matrix, where the first column contains 
the values of CN conditional indicators (arranged in a non-decreasing order), 
whereas the rows contain determined Pearson coefficients of linear correlation 
between individual variables, which is demonstrated in Figure 31. This ar-
rangement of results means that collinear variables need to be sought in the 
last rows, and the number of variables to eliminate can be determined on the 
basis of the conclusion printed below the results of the BKW procedure, be-
ginning with “Rząd macierzy wynosi…” (“The order of matrix amounts to”), 
circled in red in Figure 31. 

There are 39 37 2− =  collinear variables in the presented example. The 
numbers of these variables should be sought in the resulting matrix header. For 
example, on the basis of the results in Figure 31, variables ranging from 34 to 39 
form a block of collinear variables, therefore one (any) of them should be de-
leted25. If independent variables are not collinear, the software displays a win-
dow where basic parameters that control its course can be set.  
                                                 
 24 The authors of the source code of the MATLAB software are: Marcin Błaże-
jowski from Toruń School of Banking and Jacek Kwiatkowski from Nicolaus Coperni-
cus University in Toruń. 
 25 The decision on which variable to delete should always be made on substantive 
grounds. For instance, one can delete a variable with the least intuitive interpretation, as a factor  
to influence the values of response variable Y.   
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Figure 31. Application of BKW method 
Source: author’s own analysis 

The above methods and theoretical tools serve the purpose of classifica-
tion of the models and variables that are most likely to influence the pace  
of economic growth in the regions of the European Union, conducted in chap-
ter 5. 

 
 

 

 

 

 

 

 

 

 


