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Andrzej CHMIELOWIEC15 

IMPLEMENTATION OF THE MOUNTAIN 
CLUSTERING METHOD AND COMMENTS ON 
ITS PRACTICAL USE FOR DETERMINING 
CLUSTER CENTRES 

Abstract 
For certain applications a need arises to reduce a large set of measurement 
data and select a group of the most representative data. Such a situation 
occurs for example in the case of the fuzzy logic algorithms whose 
computational complexity makes them inapplicable to too large input sets. 
One of the methods to reduce a data set is to determine the centre of 
clusters, that is the elements being the optimum representation of the entire 
set. The purpose of this paper is to describe the operation of the potential 
method designed to locate the centres of clusters in the entire set of 
measurement data. We present the selection algorithm based on the 
assumption that in certain local environments data are normally distributed. 
This assumption proves to be correct in numerous practical applications; 
however, in some cases a different probability distribution may seem more 
appropriate. For these cases we will only hint at how one can try to modify 
the potential function to produce the most reliable effect. Along with the 
mathematical description of the method we also present the functionality 
of a dedicated software implemented for this purpose. 
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1. Introduction 
Over the recent years, methods of acquiring large quantities of measurement 

data have developed significantly. The processing of ever larger data sets poses 
a major challenge for statistical analysis, inference and machine learning 
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algorithms. One approach assumes that enormous data sets are partitioned into 
subsets called clusters represented by individual elements - cluster centres. 

Section two presents the mountain clustering method designed to locate 
cluster centres. Section three discusses how this method is linked with statistics 
and probability, and provides guidelines on how to prepare measurement data 
properly. Finally, section four presents the results of the author’s implementation 
of the subtractive mountain clustering method. 
 
2. Mountain Clustering 
 Proposed by Yager and Filev [27, 28, 29], mountain clustering is one of the 
best methods to divide a set into a certain number of clusters/subsets. However, 
in order to create specific subsets, it is necessary to locate the so-called cluster 
centres. In general, any point of the measured space can be a cluster centre. Such 
an approach, however, results in computationally intensive algorithms of 
exponential complexity. The subtractive mountain clustering method [7], 
developed by Chiu and discussed in this article, takes a slightly different 
direction. It assumes that only an element of a set of data points can be a cluster 
centre. Thus, the method proposed by Chiu determines the starting points of 
clusters made up of a single point being the first element of a subset. Under the 
subtractive mountain clustering method, the searched space is limited to a divided 
set of points. However, due to its quadratic complexity with respect to the number 
of elements of a set, it is only used for medium-size sets [10]. 
  The idea of subtractive mountain clustering is to determine function P for 
each point xi  representing its potential. It is therefore assumed that the potential 
in the i-th point of a set is given by 
 

𝑃(𝑖) = ∑ 𝑒−𝛼‖𝑥𝑖−𝑥𝑗‖
2

𝑁
𝑗=1 , (1) 

 
for i = 1, …, N, and α = 4 / (ra)2 for constant ra > 0. The form of the mountain 
function clearly shows that a data point with more neighbouring data points will 
have a higher potential value. This property makes subtractive mountain 
clustering much more resistant to disturbances caused by the emergence of 
random points compared with other clustering algorithms, such as C-means [17, 
15] and FCM [4, 5, 6, 11]. 
 
 After computing potential P(i) of every data point, the data point with the 
highest potential is selected as the first cluster centre. Consequently, c1 = xu, 
where u = argi max P(i), and P(u) is given by P* and is assumed to be the reference 
potential for the selection of new cluster centres. In addition, each time we select 
the next centre of the next cluster ck = xu (for the relevant u), we revise the value 
of the mountain function assigned to particular points of a set in the following 
manner 
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𝑃(𝑖) = 𝑃(𝑖)− 𝑃(𝑢)𝑒−𝛽‖𝑥𝑖−𝑐𝑘‖
2
, (2) 

 
where β = 4 / (rb)2 for rb > 0 is a constant defining the range of the mountain 
function. For the sake of practicality, we assume that rb > ra and most often rb = 
1.25 ra. We continue to estimate new cluster centres until the potential of all 
points exceeds threshold εdP* for εd  selected from range (0, 1). 
 
The following algorithm presents how subtractive mountain clustering works 
[7, 8]. 

1. Select ra,, rb,, εu and εd. 
2. Compute potential P(i) of every point from set (i = 1, …, N). 
3. Select point xu with the highest potential Pu = P*  as the first cluster centre. 
4. Assume that k = 2. 
5. Then, keep repeating the following steps: 

a) Select point xu with the highest potential Pu. 
b) If Pu > εuP*, then xu becomes the centre of the k-th cluster. If εuP* 

> Pu > εdP*, then xu becomes centre ck of the k-th cluster if it 
meets additional criteria (depending on how the algorithm is 
implemented). 

c) Assume that k = k+1. 
d) If Pu > εdP*, end the clustering process - there are no more cluster 

centres. 
 Subtractive mountain clustering can be improved by incorporating a search by 
different values of α and β parameters. This way we obtain a least biased method 
[3]. We can even try to come up with a result similar to that produced by methods 
designed to estimate clusters with the lowest possible entropy [21, 20]. In 
addition, it is possible to replace the Gaussian potential function with the first-
order Cauchy function [1]. A modified mountain function may also be used to 
estimate other types of clusters, for example circular shells [18].  
 If we add to that the option to replace the Euclidean distance with a kernel-
induced distance [14], it turns out that subtractive mounting clustering is highly 
useful for estimating clusters in a given set. 
 The cluster centres determined using subtractive mountain clustering can be 
used to establish fuzzy inference rules for the purpose of various artificial 
intelligence algorithms [1, 19, 22, 23, 24]. In particular, they can be used to 
develop models predicting the behavior of various types of complex systems over 
time [16, 12, 9, 13], or in other words, to create machine learning algorithms. 
 
3. Links of mountain clustering with statistics and probability 
 Let us now determine the relationship between equation (1) and the classical 
theory of probability. First, note that the mountain function is very similar to the 
probability density function for a normal distribution, which for μ = 0 is given by  
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Φ(𝑥) =
1

𝜎√2𝜋
exp (−

𝑥2

2𝜎2
). (3) 

 
Taking into account the values of mountain function P, we can see that the 
following approximation is true 
 

exp(−𝛼𝑥2) = exp (−
4𝑥2

𝑟𝑎
2 ) = exp (−

8
9
𝑥2

2(𝑟𝑎/3)2
) ≅ exp (−

𝑥2

2(𝑟𝑎/3)2
). (4) 

 
This means that ra corresponds to approximately three standard deviations σ of 
a normal distribution presented in Figure 3.1. This interpretation of the mountain 
function means that clusters are in fact subsets of points concentrated around the 
centres according to a normal distribution with a given standard deviation. This 
correspondence would be accurate, if parameter α was defined as 4.5 / (ra)2. 
 

 
 

Fig. 3.1. Normal distribution curve for μ = 0, σ = 1 
 
Now, it is easy to imagine that the Gaussian mountain function is replaced with 
another continuous probability distribution. This way we can better match the 
division into clusters in terms of points having a different probability distribution 
on individual coordinates. We can even try to define the mountain function for 
each coordinate of a point separately. 
 Another major conclusion from the above observations is that we can attempt 
to replace values ||xi – xj|| with any other metric - not necessarily the Euclidean 
distance. Speaking of metrics, we must emphasize how important the process of 
normalizing coordinates of a point is to subtractive mountain clustering. If points 
xi have only one coordinate, then normalization does not affect the results 
obtained. However, if points xi have two or more coordinates, a failure to 
normalize individual coordinates may result in there being only one coordinate 
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significantly affecting the final result. For example, let us imagine that the values 
of the first coordinate are from range [0, 1] and the values of the second 
coordinate are from range [99, 100]. It is not difficult to find such examples in 
the measuring practice. Note that, in principle, only the second coordinate having 
high absolute values has any significant effect on the value of the mountain 
function. That is why, before employing subtractive mountain clustering, it is 
important to scale down the values of each coordinate and move them, for 
example, to variability range [0, 1]. Then, the weight of each coordinate of a point 
will be identical and will have the same effect on the value of the mountain 
function. 
 
4. Application for Estimating Cluster Centres 
  The subtractive mountain clustering algorithm has been implemented in the 
form of a browser application with graphical presentation of results. The 
implementation is available for download from the author’s website: 
https://achmie.v.prz.edu.pl/materialy-do-pobrania/materialy-ogolnodostepne/mo
untain-clustering-3.html 
Figure 3.2 shows the result produced in the application for a sample set of 200 
data points with three coordinates. The individual stages of determining the 
subsequent cluster centres are presented in Figure 3.5 at the end of the article. 
 

a)  

b)  
Fig. 3.2. Values of the mountain function for a sample of 200 three-dimensional 
points: a) values of the mountain function when the algorithm starts to run, b) 

values of the mountain function after all cluster centres have been located 
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In order to illustrate how the implemented method works, a version of the 
application dedicated exclusively to two-dimensional data has been developed. 
Its main purpose is to show the readers what cluster centres should really be. 
 

 
 

Fig. 3.3. The cluster centres located in the centres of individual clusters of 
points - the effect of a proper selection of radiuses ra = 0.10 and rb = 0.14 

 
Figure 3.3 is a perfect illustration of the above. It shows that for well-chosen 
parameters ra and rb cluster centres should occur more or less in the centres of 
clusters of points. For poorly chosen parameters there may be too many or too 
few cluster centres as shown in Figures 3.4 a) and 4 b) respectively. Proper 
selection of these parameters is impossible without a thorough knowledge of the 
measurement data. These parameters can be, for example, in close correlation 
with certain settings and properties of the measuring device or may be related to 
the statistical distribution of a given coordinate. The two-dimensional version of 
the application features a button making it possible to disable normalization of 
the coordinates used in individual measurements. This allows us to check how 
much the results of this method depend on the absolute values of coordinates (as 
mentioned in the previous section). 
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a) b)  
 

Fig. 3.4. Cluster centres located too densely and too sparsely due to poor choice 
of radiuses: a) too densely for ra = 0.06 and rb = 0.08, b) too sparsely for 

ra = 0.28 and rb = 0.36 
 
5. Conclusions 
  The article proposes a practical approach to subtractive mountain clustering 
and presents an IT tool designed for its implementation. Sections three and four 
discuss practical issues related to the proper use of the method in question. In 
particular, special attention is paid to the need to normalize all coordinates before 
starting the clustering process. The second important conclusion is drawn from 
the practical examples showing how the final results are influenced by poor 
choice of input parameters such as ra and rb. 
 
 The study was carried out with the use of apparatus purchased from funds of the project 
‘Establishment of the Scientific and Research Inter-University Laboratory in Stalowa Wola’, 
realized as part of the Operational Programme Eastern Poland 2007–2013, Priority axis I ‘Modern 
Economy’, Measure 1.3 ‘Supporting Innovativeness’ as per contract No. POPW.01.03.00-18-
016/12-00. 
 

a)  
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b)  

c)  

d)  

e)  
 

f)  



53 
 

g)  

h)  

i)  

j)  

k)  
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l)  

m)  
 
Fig. 3.5. Subsequent steps of the subtractive mountain clustering method on the 
example of a sample set of 200 three-dimensional data points; letters from a) to 
m) mark figures showing the modified mountain function curves and selected 

cluster centres 
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