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Chapter 1.  
 
Andrzej CHMIELOWIEC1*1 

Wojciech HOMIK22 

MODELLING OF A TORSIONAL VIBRATIONS 
VISCOUS DAMPER USING THE 
HYDRODYNAMIC THEORY OF ROTATING 
ELEMENTS LUBRICATION 

Abstract 
Viscous dampers are one of the ways of reducing torsional vibrations in 
multi-cylinder internal combustion engine crankshafts. The damping 
element often used in this type of devices is a plunger immersed in silicone 
oil of very high viscosity. Until now the state of a damper has been 
modelled based on rather idealized assumptions and without any 
hydrodynamic analysis of the state of oil inside it. Unfortunately such 
models do not explain the reasons behind excessive and too fast wear of oil 
and the active surfaces of the damper. Searching for the causes of damper 
breakdowns, the authors decided to develop a new mathematical model 
based on the rotating elements lubrication theory. This paper explains the 
hydrodynamic modelling of a torsional vibrations viscous damper and 
discusses the problems that must be solved so that the model can be 
developed. 
 
Keywords: 
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1. Introduction 
The second part of this paper outlines the issue of torsional vibrations occurring 
in combustion engines. Apart from a general characteristic of this problem, it also 
provides an insight into the methods used so far to model torsional vibration 
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dampers. The third part proposes to add hydrodynamic modelling of the effects 
that occur during the operation of the said dampers to the methods used so far. 
The initial numerical results allow us to suspect that this type of modelling may 
substantially contribute to this field of science. 
 
2. Torsional vibrations in multi-cylinder combustion engines 
The main source of vibrations in a multi-cylinder combustion engine is the 
performance of the crank and piston system, or strictly speaking, the conversion 
of reciprocating motion into circular motion. A kinematic analysis of a crank 
system may be conducted if we replace a real system with the diagram presented 
in Figure 1.1. The main geometric parameters characterising this diagram include  
[1, 2, 3, 5, 8, 9, 13, 14]: 

1. length of connecting rod l = AB (measured from the axis of the piston pin 
to the axis of the crankpin), 

2. crank throw r = BO = S / 2, 
3. piston stroke S (measured as the distance travelled by the piston between 

TDC and BDC), 
ratio of crank throw r to the crank length = r / l. 
 

 
 

Fig. 1.1. Diagram of a simple crank system 
 

In a real crank system the motion of the piston is not exactly harmonic. Piston 
velocity c in function of the angle of rotation of the shaft  is given by [2, 3]: 
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𝑐(𝜑) =  
𝑑𝑥

𝑑𝑡
= 𝑟𝜔 (sin𝜑 +

𝜆

2
sin2𝜑) = 𝑟𝜔 sin𝜑 + 𝑟𝜔

𝜆

2
sin2𝜑. (1) 

 
Figure 1.2 shows a graph of piston velocity c and its two harmonic components. 
 

 
 

Fig. 1.2. Piston velocity c = c’ + c”  in function of the angle of rotation of 
the crankshaft  

 
By differentiating equation (1) with respect to time, we obtain the relation of 
piston acceleration b in function of the angle of rotation of crankshaft φ: 
 

𝑏(𝜑) =  
𝑑𝑐

𝑑𝑡
= 𝑟𝜔2 cos𝜑+𝑟𝜔2𝜆 cos2𝜑. (2) 

 
Changes in constituent and resultant accelerations in function of the angle of 
rotation of the shaft are analysed in Figure 1.3. 
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Fig. 1.3. Changes in piston acceleration b = b’ + b” in function of angle  
 

The source of the above accelerations are forces which act upon the crank system 
and cause the crankshaft of the engine to vibrate. These forces include 
(Figure 1.4) [2, 3, 5, 13, 14]: 

1. gas pressure forces generated in the mixture combustion process, 
2. inertia forces originating from the masses in reciprocating and circular 

motion (sliding forces and centrifugal forces). 
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Fig. 1.4. Balance of forces in a crank and piston system 
 
Gas pressure forces Pg  and inertia forces Pb  change periodically [2, 3, 1, 14]. In 
four-stroke engines the inertia forces change during one full turn of the 
crankshaft, while gas pressure forces change during two turns of the crankshaft 
or one full turn in two-stroke engines. The resultant force is the sum of the forces 
mentioned above: 
 
𝑃 = 𝑃𝑔 + 𝑃𝑏 . (3) 
 
As shown in Figure 1.4, force S acts upon the crank of the crankshaft and 
decomposes into two components: component T tangent to the circle drawn by 
the crank throw and radial component K operating along the temporary location 
of the crank arm. The forces are characterised by the following relations: 
 

𝑇 = 𝑆 𝑠𝑖𝑛(𝛼 + 𝛽) =
𝑃

𝑐𝑜𝑠 𝛽
𝑠𝑖𝑛(𝛼 + 𝛽), (4) 

 

𝐾 = 𝑆 𝑐𝑜𝑠(𝛼 + 𝛽) =
𝑃

𝑐𝑜𝑠𝛽
𝑐𝑜𝑠(𝛼 + 𝛽). (5) 
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Periodic changes in gas pressure forces Pg and inertia forces Pp generate the 
following types of crankshaft vibrations [2, 3, 1, 5, 14]: 

1. transverse vibrations, 
2. longitudinal vibrations, 
3. torsional vibrations. 

Vibrations are a kind of defence available to machine parts made of elastic 
materials, which makes them give in to the imposed load and gradually absorb 
the energy transferred to them. 
Regardless of the dynamic system in which the engine operates, the greatest threat 
to the crankshaft is posed by torsional vibrations [2, 3, 1, 5, 13, 14]. The source 
of torsional vibrations is the periodic variability of force T. It is worth stressing 
that the scale of torsional vibrations is limited only by the torsional stiffness of 
the shaft and when the vibrations are not damped, their amplitude theoretically 
tends to infinity. Once the maximum amplitude is exceeded, the shaft breaks 
down. 
 

 
 

Fig. 1.5. Viscous torsional vibration damper: 1 - housing of the damper, 2 - 
thrust bearing, 3 - inertia ring, 4 - seal, 5 - radial bearing, 6 - silicone oil, 

7 - cover 
 
In order to minimize the threat posed by torsional vibrations, devices called tor-
sional vibration dampers are used. Most frequently they are located at the free 
end of the crankshaft of the engine [2, 3]. Over the years, the following types of 
dampers have been used [2, 3]: 

1. friction dampers,  
2. viscous dampers, 
3. rubber dampers, 
4. spring dampers. 
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Viscous torsional vibration dampers are most frequently used in  medium and 
large-size multi-cylinder combustion engines (Figure 1.5).  
 

a)  b)   c)    

 

e)  f)   

 

g) h)   

 
Fig. 1.6. Examples of damper modelling: a) viscous damper with torque M(t) 

applied to the housing, b) dynamic damper with torque M(t) applied to the hub, 
c) rubber damper with kinematic torque applied to the hub, d) viscous damper 
with viscoelastic fluid (Maxwell’s model) with kinematic torque, e) dual mass 

model of a viscous damper with kinematic torque, f) model of a system 
comprising a viscous damper with reduced moment of inertia of the crank and 

piston system and torque M(t) applied to the hub, g) model of a system 
comprising a viscous damper with reduced moment of inertia of the crank and 

piston system with damped inner shaft and torque M(t) applied to the hub. 
 
Viscous torsional vibration dampers are designed individually for every type of 
engines (power transmission systems) based on the results of a harmonic analysis 
of torsional vibrations in the shaft (e.g. the crankshaft or the camshaft). Before 
the work on designing a new damper starts, the engine producer should provide 
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the designer with an appropriate set of data about the engine, including data on 
the basic units supporting the engine [2, 3]. Based on these data, a model of the 
power transmission system comprising a model of the damper is built. In practice, 
a variety of methods are used to model torsional vibration dampers [2, 3]. Discrete 
systems provide an adequate approximation.  
 Most frequently viscous dampers are modelled as dual mass systems 
(Figure 1.7). The masses are interconnected by damping element w.  Periodic 
torque M(t) is applied to mass Iw connected with spring element kw. The other end 
of the spring is immobilized, which corresponds to the node of the first form of 
torsional vibrations [2, 3]. 
 

 
 

Figure 1.7. Discrete model of a viscous torsional vibration damper 
 
Damping function αw in a viscous torsional vibration damper depends on many 
variables, including in particular: 

1. kinetic viscosity of the fluid, 
2. dynamic viscosity of the fluid, 
3. density of the fluid, 
4. size of clearances, 
5. mass moment of inertia of the inertia ring of the damper. 

They affect the value of the damper’s moment of friction, which in turn directly 
translates into the volume of energy dispersed by the damper [10, 15].  
Analytical calculations for viscous dampers are made mainly based on models 
assuming linear spring element and linear damping. While the first assumption is 
roughly met, the second one about fluid being linear may prove to be an 
oversimplification, especially in the case of fluids of viscosity greater than 
500,000 [cSt]. Therefore, it seems advisable to enrich the modelling of viscous 
torsional vibration dampers with elements of hydrodynamic modelling. 
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3. Elements of hydrodynamic modelling of the viscous torsional 
vibration damper 

The discrete model presented in the previous section is quite accurate in 
predicting the performance of a damper in the steady state. However, it provides 
no information on how a damper performs in the start-up phase and when it is 
displaced from the steady state, e.g. by an abrupt external acceleration. The 
modelling of such conditions may prove particularly vital due to the fact that we 
are currently unable to answer the questions about mechanical damage occurring 
to a damper during its operation. Periodic inspections revealed dampers with 
seriously damaged active surfaces of the housing and the plunger, and with oil 
having a gel-like or even solid consistency. Since no one has yet proposed an 
explanation for such situations, we felt inclined to develop a model capable of at 
least partly explaining the reasons behind them. Therefore, in the next sections 
we will present certain elements of a theory of hydrodynamic modelling of the 
performance of a viscous torsional vibration damper. 

However, before we get to that, we must define the terms and symbols that 
will be used later on to describe the geometry of a viscous damper. Figure 1.8 
shows active surfaces of a plunger (an inertia ring in this particular case). Among 
others, a plunger consists of: 

1. outer surface of the plunger - Figure 1.8 a), 
2. lateral surface of the plunger - Figure 1.8 b),
3. inner surface of the plunger - Figure 1.8 c). 

For each surface of the plunger there is a matching surface of the housing named 
analogically, i.e. outer surface of the housing, lateral surface of the housing and 
inner surface of the housing.  
 

a)  b)  c)  
 

Figure 1.8. Surfaces of the plunger: a) outer surface, b) lateral surface, 
c) inner surface 
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Figure 1.9 shows the radiuses of the outer and inner surfaces of both a plunger 
and the housing. We make an assumption that the inner radiuses may equal 0. If 
that is the case, the plunger has the shape of a cylinder. 
 

 
 

Fig. 1.9. Radiuses of the plunger and the housing: R1,z - outer radius of the 
plunger, R1,w - inner radius of the plunger, R2,z - outer radius of the housing, 

R2,w - inner radius of the housing, e - eccentricity 
 
3.1. Basics of the rotating elements wet friction theory 

At the end of the 19th century, Reynolds [11] proposed an equation for 
determining the pressure of a fluid film residing between two hard, moving 
surfaces. It turns out that if: 

1. the fluid flow is laminar, 
2. the force of gravity and the force of inertia are negligibly small compared 

to the force of viscosity, 
3. the fluid is incompressible, 
4. the fluid is Newtonian with constant viscosity, 
5. the pressure of the fluid remains unchanged across the film’s height,  
6. the rate of change of velocity in directions x and z is negligibly small 

compared to the rate of change of velocity in direction y, 
7. there is no slipping between the fluid and the surface touching it, 

the fluid pressure equation takes the following form: 
 
𝜕

𝜕𝑥
(ℎ3 𝜕𝑝

𝜕𝑥
) +

𝜕

𝜕𝑧
(ℎ3 𝜕𝑝

𝜕𝑧
) = 6𝜂 [(𝑈1 + 𝑈2) 𝜕ℎ

𝜕𝑥
+ 2𝑉2], (6) 
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where η is fluid viscosity, p is pressure and the remaining values are defined in 
Figure 1.10. 
 

 
 
Fig. 1.10. Absolute velocities of the surfaces between which the analysed fluid 

resides 
 
It must be stressed that in the form presented above the equation assumes that 
axis x was chosen as the direction of the relative motion of both surfaces. 
Consequently, we can assume that V1 = W1 = W2 = 0. If we additionally assume 
that there is no flow towards axis z, the Reynolds equation is simplified to: 
 
𝜕

𝜕𝑥
(ℎ3 𝜕𝑝

𝜕𝑥
) = 6𝜂𝑈1

𝜕ℎ

𝜕𝑥
. (7) 

 
Using the Reynolds equation we can determine the pressure of the oil film 
residing between the outer and inner surfaces of the plunger and the housing. For 
this purpose we use a model assuming that oil does not flow in the axial direction 
(z) of both of these elements. In addition, we assume that ϕ from range [0, 2π] is 
the angular coordinate for which pressure is calculated,  η is oil viscosity, Rz 
and Rw are outer and inner radiuses of the plunger and the housing (we assume 
that for the purpose of the Reynolds theory Rz = R1,z = R2,z and Rw = R1,w = R2,w), 
uz and uw are relative velocities of the plunger and the housing respectively in the 
outer and inner layer, which satisfy the relation uz = uwRz/Rw,, cz = R2,z – R1,z is 
outer radial clearance, cw = R1,w – R2,w is inner radial clearance, εz = e/cz  is outer 
relative eccentricity, and εw = e/cw is inner relative eccentricity. At this point, it is 
worth stressing that in practice the outer radial clearance of a damper is greater 
than the inner radial clearance. Consequently, the plunger may touch the housing 
only on the inner surface on which the bearing tape is also placed. In practice, 
this means that the relative inner eccentricity εw may take values from range [0, 1] 
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and the relative outer eccentricity εz is restricted to range [0, δ], where δ < 1. 
Using the above symbols, we can express the oil film pressure in the outer and 
inner slot by the following formula [4]: 
 

𝑝𝜙 =
6𝜂𝑢𝑅

𝑐2
[∫

𝑑𝜙

(1+𝜀 cos𝜙)2
−

ℎ𝑚
𝑐
∫

𝑑𝜙

(1+𝜀 cos𝜙)3
] + 𝐶2, (8) 

 
where R is radius of curvature of the slot, u is relative velocity of the surfaces of 
the slot, c is radial clearance of the slot, hm is height of the oil film where the 
pressure is the highest and C2 is the integration constant. 
In order to solve the following integrals: 
 

∫
𝑑𝜙

(1+𝜀 cos𝜙)𝑛
 (9) 

 
we use the substitution proposed by Sommerfeld [4, 12]: 
 

1 + 𝜀 cos𝜙 =
1−𝜀2

1−𝜀 cos𝜑
 (10) 

 
where φ is a new variable with range of variation [0, 2π] – the same as for 
variable ϕ. In addition, the change of variables results in the following 
transformations 0 → 0, π → π and 2π → 2π. For a substitution expressed this way 
the following relations are true: 
 

𝐽1 = ∫
𝑑𝜙

(1+𝜀 cos𝜙)
= 𝐾𝜑, (11) 

 

𝐽2 = ∫
𝑑𝜙

(1+𝜀 cos𝜙)2
= 𝐾3(𝜑 − 𝜀 sin𝜑), (12) 

 

𝐽3 = ∫
𝑑𝜙

(1+𝜀 cos𝜙)3
= 𝐾5 (𝜑 − 2𝜀 sin𝜑 +

𝜀2

2
𝜑 +

𝜀2

4
sin 2𝜑), (13) 

 
where 𝐾 = 1/√1 − 𝜀2. 
Using these symbols, the oil film pressure in function of angle may be expressed 
as follows: 
 

𝑝𝜙 =
6𝜂𝑢𝑅

𝑐2
[𝐽2(𝜑) −

ℎ𝑚
𝑐
𝐽3(𝜑)] + 𝐶2, (14) 

 
For the completeness of the above formula it is necessary to determine integration 
constants hm and C2. We can achieve this by assuming specific pressure values. 
In this particular case we assume that [6]: pϕ(0) = pφ(0) = p0 and pϕ(2π) = pφ(2π) = 
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p0, while the equality of pressures pϕ(0) = pφ(0) and pϕ(2π) = pφ(2π) results from 
the fact that the applied substitution ϕ → φ transforms 0 → 0 and 2π → 2π. 
Determining a specific value of p0 is not obvious, as it depends, among others, 
from the absolute angular velocity of both the housing and the plunger. We will 
analyse this problem in greater detail further in this paper. Ultimately, for 
constants: 
 

ℎ𝑚 =
2(1−𝜀2)

2+𝜀2
𝑐, (15) 

 
𝐶2 =  𝑝0 (16) 
 
and after returning to the original variable ϕ, we obtain: 
 

𝑝(𝜙) = 𝑝0 +
6𝜂𝑢𝑅

𝑐2
𝜀(2+𝜀 cos𝜙) sin𝜙

(2+𝜀2)(1+𝜀 cos𝜙)2
= 𝑝0 +

6𝜂𝑢𝑅

𝑐2
𝛾(𝜀,𝜙), (17) 

 
where γ is a dimensionless distribution of the oil film pressure, whose graph for 
several ε values is shown in Figure 1.11. 

 
Fig. 1.11. Graph of dimensionless pressure γ for several ε values 
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3.2. Gümbel’s condition for the inertia ring 
Gümbel’s condition was originally proposed for improved modelling of  the oil 
film forces in high pressure conditions. Gümbel postulated that p0 = 0 and that 
the negative part of pressure p(ϕ) equals zero. What it means is that the pressure 
function is exactly the same as that proposed by Sommerfeld for range [0, π], 
while for range [π, 2π] it equals zero. Figure 1.12 shows the parts of the oil film 
generating actual force under Gümbel’s assumptions. 
 

 
 
Fig. 1.12. Balance of forces for Gümbel’s condition in the case of a ring-shaped 

plunger 
 
An analysis of forces in the presented system leads to an equilibrium condition 
in which the oil film pressure entirely counterbalances the weight of the inertia 
ring Q. 
 
𝑄 cos 𝜃 = −𝐿𝑅𝑧 ∫ 𝑝𝑧 cos𝜙𝑧𝑑𝜙𝑧

𝜋
0 − 𝐿𝑅𝑤 ∫ 𝑝𝑤 cos𝜙𝑤𝑑𝜙𝑤

𝜋
0 , (18) 

 
𝑄 sin 𝜃 = 𝐿𝑅𝑧 ∫ 𝑝𝑧 sin𝜙𝑧 𝑑𝜙𝑧

𝜋
0 + 𝐿𝑅𝑤 ∫ 𝑝𝑤 sin𝜙𝑤 𝑑𝜙𝑤

𝜋
0 , (19) 

 
where L is the width of the inertia ring. In order to determine equilibrium angle 
θ, first we need to solve the following integrals: 
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∫ 𝑝 sin𝜙𝑑𝜙
𝜋

0 , (20) 
 
∫ 𝑝 cos𝜙𝑑𝜙
𝜋

0 . (21) 
 
We use integration by parts to solve both integrals: 
 

∫ 𝑝 sin𝜙𝑑𝜙
𝜋

0 = [−𝑝 cos𝜙]0
𝜋 + ∫

𝑑𝑝

𝑑𝜙
cos𝜙𝑑𝜙

𝜋
0 = ∫

𝑑𝑝

𝑑𝜙
cos𝜙𝑑𝜙

𝜋
0 , (22) 

 

∫ 𝑝 cos𝜙𝑑𝜙
𝜋

0 = [𝑝 sin𝜙]0
𝜋 − ∫

𝑑𝑝

𝑑𝜙
sin𝜙𝑑𝜙

𝜋
0 = −∫

𝑑𝑝

𝑑𝜙
sin𝜙𝑑𝜙

𝜋
0 , (23) 

 
Taking into account equation (8), we obtain: 
 
𝑑𝑝

𝑑𝜙
=

6𝜂𝑢𝑅

𝑐2
[

1

(1+𝜀 cos𝜙)2
−

ℎ𝑚
𝑐

1

(1+𝜀 cos𝜙)3
], (24) 

 
which allows us to calculate integrals (22) and (23). After making calculations 
for outer and inner surfaces, we obtain the following: 
 

𝑄 cos𝜙 = 𝜂𝑢𝑧𝐿 (
𝑅𝑧
𝑐𝑧
)

2 12𝜀𝑧2

(2+𝜀𝑧
2)(1−𝜀𝑧

2)
+ 𝜂𝑢𝑤𝐿 (

𝑅𝑤
𝑐𝑤
)

2 12𝜀𝑤2

(2+𝜀𝑤
2 )(1−𝜀𝑤

2 )
, (25) 

 

𝑄 sin𝜙 = 𝜂𝑢𝑧𝐿 (
𝑅𝑧
𝑐𝑧
)

2 6𝜋𝜀𝑧
(2+𝜀𝑧

2)(1−𝜀𝑧
2)

+ 𝜂𝑢𝑤𝐿 (
𝑅𝑤
𝑐𝑤
)

2 6𝜋𝜀𝑤
(2+𝜀𝑤

2 )(1−𝜀𝑤
2 )

. (26) 

 
Relations (25) and (26) allow us to determine the relationship between the relative 
velocity of the housing and the plunger, capacity of the oil film and the shape of 
the slot. They will form the basis for the numerical analysis conducted below. 
3.3. Numerical analysis based on real data 
We conducted a numerical analysis of an actual damper characterised by the 
following geometric parameters: R1,w = 74.685 [mm], R1,z = 109.480 [mm], R2,w 
= 74.605 [mm], R2,z = 109.705 [mm] and L = 28.500 [mm]. Both the housing and 
the inertia ring were made of steel of density  7800 [kg/m3]. The fluid used was 
silicone oil of static viscosity 300000 [cSt] = 0.3 [m2/s] and density 1000 [kg/m3]. 
Using these data and equations (25) and (26) we determine the number of turns 
for a given εw that should be made by the housing against the inertia ring so that 
it remains in equilibrium. At this point, it must be stressed that the results show 
the relative number of turns, i.e. how many more turns are made by the housing 
per hour. Graphs in Figures 1.13 and 1.14 show how the number of relative turns 
changes depending on the relative inner eccentricity εw. Be reminded that the 
relative outer eccentricity εz satisfies the following equation: 
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𝜀𝑧 = 𝜀𝑤
𝑐𝑤
𝑐𝑧

, (27) 

 
which makes εw the only independent variable determining the number of relative 
turns of both components of the damper. In the light of experiments conducted in 
a company manufacturing viscous dampers, the graph shown in Figure 1.14 is 
particularly interesting. It shows that when inner relative eccentricity εw equals 
0.005, the housing makes one additional turn per hour. Experimental research 
carried out in that period produced similar results. What it means is that models 
assuming that the housing and the ring are concentric in the steady state are 
entirely justified. 
 

 
 

Figure 1.13. Number of turns of the housing against the inertia ring per hour, 
necessary for maintaining the ring in static equilibrium (range [0, 1]) 
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Figure 1.14. Number of turns of the housing against the inertia ring per hour, 
necessary for maintaining the ring in static equilibrium (range [0, 0.1]) 

 
4. Conclusions 
This paper analyses the hydrodynamic effects occurring on the outer and inner 
surface of the inertia ring. The results of the numerical analysis conducted by the 
authors partially confirmed the results of experiments performed in a company 
manufacturing viscous dampers. Therefore, it seems legitimate to say that the 
presented approach is a step toward better understanding of the workings of 
a torsional vibration damper. However, the model outlined above does not 
comprehensively analyse this issue in its entirety.  It must be clearly stated that 
the model does not cover the effects occurring on the lateral surfaces of the 
housing and the inertia ring, i.e. wet friction on these surfaces and increase in 
pressure p0 caused by centrifugal force. The authors are continuing their research 
into this topic. 
 
Research work carried out under contract No. U-18217 concluded between the DAMPOL Company 
implementing project no. POIR.01.01.01-00-0317/17 and the Rzeszów University of Technology. 
Project title: "Development of innovative technologies for the diagnosis and control of torsional 
vibration dampers in the crankshaft of an internal combustion engine and the selection of optimal 
methods for regeneration and repairs" 
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