
Hierarchical, multi-label classification of scholarly
publications:

modifications of ML-KNN algorithm

Michał Łukasik, Tomasz Kuśmierczyk, Łukasz Bolikowski, and Hung Son
Nguyen

Interdisciplinary Centre for Mathematical and Computational Modelling,
University of Warsaw

{m.lukasik, t.kusmierczyk, l.bolikowski}@icm.edu.pl

Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw
son@mimuw.edu.pl

Abstract. One of the common problems when dealing with digital li-
braries is lack of classification codes in some of the documents. In the
following publication we deal with this problem in a multi-label, hier-
archical case of Mathematics Subject Classification System. We develop
modifications of ML-KNN algorithm and show how they improve results
given by the algorithm on example of Springer textual data.

Keywords: document classification, multilabel classification, hierarchi-
cal classification, ML-KNN, YADDA2 software platform

1 Introduction

Document classification is an old problem and does not require a computer
to be solved. A good example is a library, in which categories are assigned to
books. A problem that occurs with manual approach is scalability. Automatic
text classification is considered since 1960s [1].

Nowadays, document classification is a common problem. Sebastiani [1] brings
up such examples as: document indexing, document filtering, meta-data extrac-
tion, word sense disambiguation, creating hierarchical catalogue of Internet web-
sites. This list can be extended with analysis of emotions expressed by a text’s
author [2]. An important problem which appears when dealing with text corpora
is assigning classification codes to documents, based on previously classified doc-
uments.

In this paper we inspect an established multi-label classification algorithm:
ML-KNN. We show a problem that might occur when dealing with noisy data
and develop a new KNN-based algorithm that is more resistant to noise. We also
use an established method of dealing with hierarchical classification problem and
join the method with ML-KNN modifications. We show on real data how the
new algorithms perform better than ML-KNN.



The rest of this work is organised as follows: in section 2 we formally define
what a classification problem is. We show different classification measures for
multi-label classification and specify a measure for hierarchical classification.
In section 3 we review literature on multi-label and hierarchical classification.
Section 4 contains a detailed description of ML-KNN algorithm. We show a
problem, which might occur when working with noisy data using this algorithm.
We propose and describe novel modifications of ML-KNN which are not prone
to this specific problem. Section 5 describes the data, on which we tested our
algorithms. Section 6 shows what experimental settings have been taken, whereas
section 7 contains the results for the data. We finish our work with summary
and propositions of future work which might improve the algorithms.

2 Problem statement

In this section we formalize a classification problem of documents. We consider
an example of such problem in section 5.

2.1 Classification problem

In the classification problem of scientific documents a set of documents D is
considered. Furthermore, k attribute functions are defined, each mapping a doc-
ument into a value from some domain:

∀i∈1,··· ,k : ai : D → Dai (1)

Let Q = {q1, · · · , qn} be the set of n labels describing documents from set D.
We can then specify a function K : D ×Q→ {0, 1}, such that K(d, q) = 1⇔ q
describes document d. Let K(d) be the set of labels describing d.

The solution to the classification problem is creating a function K ′ : D×Q→
{0, 1}, which is as similar in a given sense to K as possible. It is done based on
some finite set of training documents Dtrain ⊂ D.

2.2 Evaluation

Testing is evaluating, how similar function K ′ is to K. It is based on comparing
values K ′(d) and K(d) returned for documents d from some set of documents
Dtest ⊂ D.

Different approaches to evaluation exist in the literature. It is worth noting,
that many labels may be assigned to a single document, which brings even
more complexity to the problem. We have shown some of the existing evaluation
methods below [3].

Accuracy(K,K ′, Dtest) =
1

|Dtest|
∑

dtest∈Dtest

|K(dtest) ∩K ′(dtest)|
|K(dtest) ∪K ′(dtest)|

(2)



Accuracy measures classification quality, not distinguishing the errors result-
ing from choosing too many labels from errors resulting from not choosing the
label that should be chosen.

Let P and R (defined by equations: (3) and (4)) be: Precision and Recall
evaluated for a document. Precision is the ratio of correct decisions made by a
classifier to all the labels that have been chosen. Recall is the ratio of correct
decisions made by a classifier to all the labels that describe a document.

P (K,K ′, dtest) =
|K(dtest) ∩K ′(dtest)|

|K ′(dtest)|
(3)

R(K,K ′, dtest) =
|K(dtest) ∩K ′(dtest)|

|K(dtest)|
(4)

Based on P and R, analogous variables can be specified for the whole data
set: these are the arithmetic means of measures calculated for single documents
(equations: (5) and (6)).

Precision(K,K ′, Dtest) =
1

|Dtest|
∑

dtest∈Dtest

P (K,K ′, dtest) (5)

Recall(K,K ′, Dtest) =
1

|Dtest|
∑

dtest∈Dtest

R(K,K ′, dtest) (6)

F-measure is a popular classification measure, which deals with a problem of
imbalanced label representation. F-measure for a single document is defined as
a harmonic mean of Precision and Recall. In equation (7) F-measure is defined
as an arithmetic mean of such variables calculated for each of the documents.

F -measure(K,K ′, Dtest) =
1

|Dtest|
∑

dtest∈Dtest

2
P (K,K ′, dtest)R(K,K ′, dtest)

P (K,K ′, dtest) +R(K,K ′, dtest)

(7)
The last 2 measures we list show how wrong the classifier was in the evalu-

ation process. Hamming Loss (8) returns number of labels, for which incorrect
answer has been given, averaged over all documents .

Hamming-loss(K,K ′, Dtest) =
1

|Dtest|
∑

dtest∈Dtest

|(K(dtest)−K ′(dtest)) ∪ (K ′(dtest)−K(dtest))|
|Q|

(8)
Subset Zero-One loss (9) returns amount of documents for which at least one

error has been made in the classification process.

Zero-One-loss(K,K ′, Dtest) =
1

|Dtest|
∑

dtest∈Dtest

K(dtest) 6= K(dtest) (9)



2.3 Label dependencies

In the classification problem dependencies among the labels may be specified.
They can be given in a form of a relation: R ⊂ Q × Q. An example of such
relation is as follows: q1Rq2 ⇔ q1 is a sub-category of q2. In such a case, labels
with their dependencies form a graph. In general, each label may have a few
parental labels. When adding a constraint that each label can have only one
parental node, categories form a tree. Only the case of a balanced tree will be
considered in this paper.

In a problem stated in such a way one of 2 possibilities can occur. The first
possibility is that each of the labels assigned has to be a leaf node in a category
tree. The second possibility is the opposite. In this paper we will consider the
first option.

In the literature, many approaches to evaluating hierarchical classifiers exist.
The common idea behind most of the evaluation methods is that the closer the
labels in the category graph are, the less punishment in the evaluation process
they should bring when the mistake is made for the other label. There is no
established method for hierarchical evaluation yet [4].

In this paper, we evaluate the classifier by comparing functions K and K ′

in the following way: for each height h of nodes in the tree of labels (where
maximum height is taken by the leaves, and minimum value of 0 by the root)
project all the leaf nodes to their ancestor nodes of height h. Such projected
labels can be compared in the traditional way, for example using F-measure. We
will receive as many results as there are levels in the tree. Because we consider
only the case of balanced tree, where only leaf nodes are assigned, we will not
encounter a problem that an assigned label does not have an ancestor node of
given height.

3 Previous work

In this section we review methods for solving multi-label and hierarchical clas-
sification problems.

3.1 Multi-label classification

Multi-label classification methods can be divided into 2 groups: problem trans-
formation methods and algorithm adaptation methods. Problem transformation
methods are algorithms that decompose a multi-label problem into one or more
single-label problems. Algorithm adaptation methods are about extending an
established single-label algorithm to deal with multiple labels.

Problem Transformation Methods One of the simple approaches to the
multi-label classification is creating a single-label classifier for each label, which
discriminates between a label and all the other labels. There are |Q| classifiers,
each of which is trained on whole data set. At classification time each classifier



answers to a question whether a given label should be assigned to an object or
not.

Another approach is about training |Q|2− |Q| classifiers, which discriminate
between all pairs of labels: q1 and q2. The set of positive samples consists of
objects to which label q1 has been assigned, whereas the set of negative samples
contains only objects with label q2 assigned. Comparing to previous approach,
there are more classifiers to be trained and less training examples for each of
them.

It is worth noting that each of the methods mentioned above assumes in-
dependence between the labels. An approach to multi-label classification which
does not make such an assumption is about creating a new set of labels Q′,
which contains the power set of the set Q. The problems with this approach are:
small number of training samples for each of the new categories and exponential
number of new labels.

Read et al describe a method called classifier chains in [5], which assigns
labels one after another, at each step using information about labels assigned
this far. A problem how to determine the order of labels is solved by randomly
choosing several options.

Zhang proposes in [6] an algorithm based on creating a Bayesian network,
which models dependencies between the labels. Information about the dependen-
cies is fetched from correlations between errors given by single-label classifiers.

Algorithm Adaptation Methods There are various algorithm adaptation
methods for multi-label classification. Clare and King described in [7] a modifi-
cation of C4.5 algorithm, with appropriately modified formula for entropy cal-
culation.

There exist modifications of Ada-Boost approach which allow multi-label
classification, that are not transformation based [8]. The idea is very similar to
the idea behind basic Ada-Boost approach.

A popular approach in Multi-label classification based on algorithm adapta-
tion is Multi-label KNN, introduced in [9]. It is a Bayesian classifier based on
distance features, calculated on neighbours from the training set. The classifier
is described in details in next section.

3.2 Hierarchical classification

In case, when labels form a tree, using the information about the dependencies
might increase the efficiency of a classifier. There exist various approaches to
how to use such information [10] [4].

First approach is called the flat method, which is about ignoring the hierar-
chical dependencies and just using some standard classification algorithm.

Another approach is about dividing nodes by their distance from the root.
Each set of nodes is then treated as a separate flat classification problem.

The most popular approach is about creating one classifier per node of a
label tree [10]. Each of the classifiers is trained on appropriately narrowed data



set. There are different subclasses of this approach. There might be a single-label
classifier in each node, returning the truth value whenever a class describes a
given object. There might also be multi-label classifiers in parental nodes. In
such approach a classifier can choose multiple labels from node’s children.

The last category of hierarchical classification listed in [10] is the Big-Bang
approach. It is about training a single classifier for the whole hierarchy, which
is somehow built in the algorithm. The arguments for using this approach are
savings in time and space complexity. There has not been made much research
about this kind of classifiers [10]. An example of the Big-Bang approach is:
casting the hierarchical classification into a multi-label problem, saving the in-
formation about the hierarchy by adding the labels that are parents of those
describing objects [11]. The post-processing step enforces consistency with the
hierarchy.

4 ML-KNN

ML-KNN (Multi-Label KNN)[9] is a popular multi-label classification algorithm
[3]. It uses 2 popular approaches to classification [12]: Naive Bayes and KNN.

Naive Bayes is an algorithm, which is popular because of its efficiency: in
case of simple features it uses only linear time for training.

KNN is an algorithm, which achieves efficiency close to the best classifiers. In
case of problems, for which Bayes Error Rate equals 0, 1NN algorithm converges
to the optimal classifier as the training data becomes larger [12].

It is worth noting, that already in 1998 Joachims noticed some serious argu-
ments for using SVM for text classification [13]. However, SVM depends heavily
on solving a quadratic programming problem, which makes it a computationally
demanding task. At the same time, KNN-based algorithms can be efficiently im-
plemented, for example using k-d trees. When working with big text corpora it is
therefore worth considering more efficient methods than SVM, such as ML-KNN.

In this section we describe in detail ML-KNN algorithm and inspect its na-
ture. We point at a possible problem when working with ML-KNN on real data.
We deal with this problem, developing novel modifications of ML-KNN that do
not increase asymptotic time complexity.

4.1 Basic algorithm

Let us use the notation defined in section 2 and moreover let us define:

– Sx - neighbourhood of object x, e.g. its k nearest neighbours (where k is
earlier defined)

– Sx(q) - number of occurrences of label q ∈ Q among the objects from Sx

Let Hq be an event, that a given object belongs to class q, and let ¬Hq be
the opposite event. Let ESx(q) be an event, that an object has Sx(q) neighbours
belonging to class q.



Category q is being assigned to a given object, if P (Hq|ESx(q)) > P (¬Hq|ESx(q)).
Bayes theorem states, that this inequality is equivalent to the following:

P (ESx(q)|Hq)P (Hq) > P (ESx(q)|¬Hq)P (¬Hq) (10)

It is possible to estimate variables from the inequality (10) using the training
set.

Algorithm 1 ML-KNN(D,Q,m,K, k, s)
1: Initialize 2-dimensional arrays c and c′, both of size |Q| × (k + 1)
2: for q ∈ Q do
3: P (Hq) =

s+
∑

x∈D K(x,q)

2s+m

4: P (¬Hq) = 1− P (Hq)
5: end for
6: for x ∈ D do
7: Sx = find k nearest objects to x in D
8: for q ∈ Q do
9: i = how many times class q occurs among objects in Sx

10: if K(x, q) then
11: increment c[q][i]
12: else
13: increment c′[q][i]
14: end if
15: end for
16: end for
17: for q ∈ Q do
18: for i ∈ 0..k do
19: P (Ei|Hq) =

s+c[q][i]
s(k+1)+

∑
p∈{0..k} c[q][p]

20: P (Ei|¬Hq) =
s+c′[q][i]

s(k+1)+
∑

p∈{0..k} c′[q][p]

21: end for
22: end for
23: return ∀q∈QP (Hq), ∀q∈QP (¬Hq), ∀q∈Q∀i∈{0,··· ,k}P (Ei|Hq),
∀q∈Q∀i∈{0,··· ,k}P (Ei|¬Hq)

The training algorithm for ML-KNN is shown in listing: Algorithm 1 (D is
the training set, Q is the label set, m is its size, K is the known classification of
the training objects, k is the neighbourhood size, s is the smoothing parameter).
It uses 2 arrays: c and c′, both of size |Q| × (k + 1). Their purpose is explained
below.

The algorithm works as follows. First, a-priori probabilities for each label
occurrence are calculated. This is performed by calculating occurrences of cat-
egories in the training set. Next, in the double-nested loop, values c[q][i] are
calculated. They denote, how many times the following situation occurs: object
belonging to class q has exactly i neighbours, which belong to class q. Simi-
larly, c′[q][i] can be evaluated. They correspond to situations, when object not



belonging to class q has exactly i neighbours belonging to class q. In the end,
the posterior probabilities are calculated using values from arrays c and c′.

Classification of an object is implemented as the inequality (10) defines.
Each category is considered separately. Therefore, label independence is as-

sumed.
The ML-KNN algorithm depends on values calculated in the arrays c and c′.

It can be noticed, that when smoothing parameter s equals 0, the algorithm is
equivalent to comparing counts c[q][i] and c′[q][i] (for given i) and choosing class
q iff c[q][i] > c′[q][i] (in [9] it was not stated). This can be shown by the following
series of equivalent inequalities:

P (ESx(q)|Hq)P (Hq) > P (ESx(q)|¬Hq)P (¬Hq) (11)

c[q][Sx(q)]∑
p∈{0..K} c[q][p]

∑
p∈{0..K} c[q][p]

m
>

c′[q][Sx(q)]∑
p∈{0..K} c

′[q][p]

∑
p∈{0..K} c

′[q][p]

m
(12)

c[q][Sx(q)] > c′[q][Sx(q)] (13)

4.2 Threshold ML-KNN

Let us consider the following situation: 2 objects x1 and x2 are given for clas-
sification and the following inequality holds for them: Sx1(q) < Sx2(q) for
some label q. In such case, ML-KNN algorithm allows the following to hap-
pen: P (Hq|ESx1 (q)

) > P (¬Hq|ESx1 (q)
) and at the same time P (Hq|ESx2 (q)

) <
P (¬Hq|ESx2

(q)). It means, that classifier can learn to assign category q to object
x1 with small number of neighbouring objects described by category q and at
the same time not to assign category q to object with big number of neighbours
described by class q. Such a situation has been observed when analyzing data
described in chapter 5. At the same time, the classifiers efficiency was low.

Example of data, where such situation should be allowed is shown in figure
1. Nevertheless, intuitively this phenomenon corresponds to noise. Therefore, it
seems reasonable to consider a modification of ML-KNN, which does not allow
such situations to happen.

In order to achieve this, we propose the following modification. Instead of
estimating the probabilities shown in inequality (10), threshold number of neigh-
bours p can be chosen for each category, such that K(x, q) = 1⇔ Sx(q) > p. In
the training data it is possible that such a value does not exist. Common situa-
tion is such as shown in table 1. It shows, that in almost all cells non-zero value
exists. Nevertheless, intuitively the threshold in the case of data shown in table
1 should be chosen for p=1, because ∀t>1 : c[l] > c′[l] and ∀t≤1 : c[l] ≤ c′[l]. It is
less obvious, what the threshold should be like in case of data shown in table 2,
because: c[1] < c′[1], c[2] > c′[2], c[3] < c′[3] and c[4] > c′[4].

We propose to choose threshold by maximizing the F-measure. Let us use
the following notation:



Fig. 1. An example, where situation described should be allowable. When considering
neighbourhood of size 4, each of the circles has only 3 neighbouring circles, whereas
the square has 4 neighbouring circles.

Table 1. Example table with counts for category q.

neighbours
count

c c’

0 0 100
1 20 40
2 30 24
3 10 8
4 8 1

– FN (false negatives), number of objects incorrectly classified as not belonging
to class q. These are the samples incrementing the count c[q][i] for i ≤ p,

– TP - (true positives), number of objects correctly classified as belonging to
class q. These are the samples incrementing the count c[q][i] for i > p,

– TN - (true negatives), number of objects correctly classified as not belonging
to class q. These are the samples incrementing the count c′[q][i] for i ≤ p,

– FP - (false positives), number of objects incorrectly classified as belonging
to class q. These are the samples incrementing the count c′[q][i] for i > p.

Now, the threshold p can be chosen in such a way, that F-measure is maxi-
mized. F-measure is calculated using the following formula:

F1 =
2PR

P +R
(14)

In the formula (14), P means precision and R means recall. They are calcu-
lated in the following way: P = TP

TP+FP , R = TP
TP+FN .

Complete training algorithm for Threshold ML-KNN is shown in listing:
Algorithm 2. It uses 2 arrays: c and c′, both of size |Q| × (k + 1). Furthermore,
an array p of size |Q| and an auxiliary variable bestf1 are used. Their meanings
are explained below.

The agorithm works as follows. In lines 3 - 13 counts c and c′ are calculated
in a similar way as in case of ML-KNN. Next, for each category q a threshold



Table 2. Example table with counts for category q: complicated situation.

neighbours
count

c c’

0 0 100
1 20 40
2 30 21
3 10 14
4 8 1

value p[q] maximizing F-measure is being chosen. F-measure is calculated using
values from arrays c and c′, as explained above. An array p is returned.

Algorithm 2 THRESHOLD-ML-KNN(D,Q,K, k, s)
1: Initialize 2-dimensional arrays c and c′, both of size |Q| × (k + 1)
2: Initialize 1-dimensional array p of size |Q| and floating point variable bestf1
3: for x ∈ D do
4: Sx = find k nearest objects to x in D
5: for q ∈ Q do
6: i = how many times class q occurs among objects in Sx

7: if K(x, q) then
8: increment c[q][i]
9: else
10: increment c′[q][i]
11: end if
12: end for
13: end for
14: for q ∈ Q do
15: p[q] = −1
16: bestf1 = −1
17: for i ∈ 0..k do
18: FN =

∑
l∈{0,··· ,i−1} c[q][l]

19: TP =
∑

l∈{i,···k} c[q][l]

20: TN =
∑

l∈{0,··· ,i−1} c
′[q][l]

21: FP =
∑

l∈{i,···k} c
′[q][l]

22: F1 = Calculate F-measure based on FN, TP, TN and FP
23: if F1 > bestf1 then
24: p[q] = i
25: bestf1 = F1
26: end if
27: end for
28: end for
29: return p



4.3 Ensemble Threshold ML-KNN

Choice of value for parameter k is a problem that appears each time a KNN
based algorithm is used. The way how Threshold ML-KNN has been defined
allows to cope with the problem by using different values at the same time.
A few Threshold ML-KNN classifiers may be constructed simultaneously, not
making the asymptotic time complexity larger.

Algorithm 3 ENSEMBLE-THRESHOLD-ML-KNN-TRAIN(D,Q,K, k-list, s)
1: Initialize 3-dimensional arrays c and c′, both of size k-listlen×|Q|×(max(k-list)+1)
2: Initialize 2-dimensional arrays p i bestf1, both of size k-listlen × |Q|
3: for x ∈ D do
4: Sx = find max(k-list) nearest objects to x in D
5: for q ∈ Q do
6: for kj ∈ k-list do
7: i = how many times class q occurs among first kj objects in Sx

8: if K(x, q) then
9: increment c[j][q][i]
10: else
11: increment c′[j][q][i]
12: end if
13: end for
14: end for
15: end for
16: for kj ∈ k-list do
17: for q ∈ Q do
18: p[j][q] = −1
19: bestf1[j][q] = −1
20: for i ∈ 0..kj do
21: FN =

∑
l∈{0,··· ,i−1} c[j][q][l]

22: TP =
∑

l∈{i,···kj} c[j][q][l]

23: TN =
∑

l∈{0,··· ,i−1} c
′[j][q][l]

24: FP =
∑

l∈{i,···kj} c
′[j][q][l]

25: F1 = Calculate F-measure based on FN, TP, TN and FP
26: if F1 > bestf1[j][q] then
27: p[j][q] = i
28: bestf1[j][q] = F1
29: end if
30: end for
31: end for
32: end for
33: return p, bestf1

After finding k nearest neighbours of an object in a sorted order, it is possible
to find j nearest neighbours out of them efficiently, for j ≤ k. Therefore, for a
list of neighbour sizes k-list = [k1, k2, · · · , kn] it is enough to find a number of



max(k-list) nearest neighbours once in order to calculate the parameters needed
to train a number of Threshold ML-KNN classifiers (each of them corresponds to
a value kj ∈ k-list). When training Threshold ML-KNN classifiers, we can make
use of already fetched nearest neighbours. Such a solution allows for savings in
time complexity, because the most time consuming part of training is finding
nearest neighbours.

After the training process, the estimated F-measure values can be used to
choose the best Threshold ML-KNN for each class.

In the listing: Algorithm 3 the training algorithm for Ensemble Threshold
ML-KNN is shown. It makes use of the following data structures:

– 3-dimensional arrays: c and c′, both of size: k-listlen×|Q|×(max(k-list)+1)
(k-listlen denotes length of the list),

– 2-dimensional arrays: p and bestf1, both of size: k-listlen × |Q|,

First, counts c and c′ are calculated. After calculations, c[j][q][i] shows how
many times the following situation occurs: object belonging to class q has exactly
i neighbours out of the closest kj nearest neighbours (where kj belongs to list
k-list), which belong to class q. On the other hand, c′[j][q][i] shows how many
times object not belonging to class q has exactly i neighbours out of the closest
kj neighbours, which belong to class q.

Next, arrays p and bestf1 are calculated. After calculations, p[j][q] shows,
what minimum number of neighbours out of the closest kj neighbours should be
described by class q in order to assign class q to an object. bestf1[j][q] shows what
F-measure value has been achieved for such threshold. Based on these arrays the
best value kq ∈ k-list in terms of achieved F-measure can be chosen for each
class q.

5 Data description

In this section we describe data on which we tested algorithms described in
previous sections. The classifiers have been evaluated on Springer data1, which
has been made available to the ICM2.

5.1 General description

Data made available consists of 1342882 records, describing consecutive scientific
papers. Each record is described by meta-data such as: list of authors, title,
abstract, keywords. Full list of fields has been shown in table 3.

Each record is described by a list of labels. There are different categorization
systems in data, such as: MSC3, PACS4 (Physics and Astronomy Classification
Scheme) etc. In table 4 we show basic statistics describing categorization systems.
1 http://www.springer.com/
2 http://www.icm.edu.pl/
3 http://www.ams.org/mathscinet/msc/msc2010.html
4 http://publish.aps.org/PACS



Table 3. Fields describing the records.

Field Description
an Unique identifier.
py Publication year.
ti Title.
ut Keywords.
ab Abstract. Consisting of 1-4 short sentences describing the paper.
au List of authors.
jy Year of journal publication.
mc MSC classification tags.
jp Journal publisher.
ps Page numbers in the journal.
jt Journal title.
uv Affiliations of authors.
vl Volume of a journal.
jc ISSN number of a journal.

Table 4. Statistics about various categorization systems in the corpus.

Categorization No. of documents No. of occurrences No. of distinct codes
ZDM 297 783 125
PACS 13715 38639 3970
CLC 8536 8536 2495
QICS 37 66 40
MSC 20275 54410 5130
JEL 7927 22349 860

The categories are very rare in the corpus. Therefore, in the evaluation pro-
cess we consider MSC only.

5.2 MSC codes

MSC (Mathematics Subject Classification) is the classification system for docu-
ments on mathematics. It consists of more than 5000 categories, each represented
by a string of 2, 3 or 5 characters. Each document can be described using more
than one category (in such case, first category is considered as most important).
Categories form a hierarchy, in which each category is represented by a string
of 2 or 3 characters and is divided into subcategories. In picture 2 we show part
of the MSC tree. Each node corresponds to some field of mathematics. In the
example shown, 60 corresponds to probability theory and stochastic processes,
60E to distribution theory, and 60E15 to inequalities and stochastic orderings.



Fig. 2. Part of an MSC category tree.

5.3 Analysis of record content

There are many fields containing information concerning the publications in the
meta-data. It seems that some introduce relevant information (such as keywords
and title) and some do not (such as page numbers).

It can be stated, that the most important fields are textual ones: title, ab-
stract and keywords. List of authors can also contain relevant information, since
if a person published in some field, then it is very possible that he or she is still
going to work on it.

In table 5 we showed how many records contain all fields from given sets.
We excluded fields, which do not seem to introduce important information for
choosing the topic of a paper.

After counting fields occurences it can be noticed, that number of records
containing all the textual information (title, abstract and keywords) is not much
smaller then number of records containing MSC codes.

5.4 Data filtering

In picture 3 we show a histogram showing number of codes with consecutive
occurrence numbers. It can be noticed, that there is a big number of codes with
very few occurrences. Training a classifier on a small number of training samples
is a hard task.

Because of low number of occurrences of some codes, we performed data
filtering. We left only these codes, which appeared at least 30 times and at the
same time have not been the only subcategory of their parental category. The
criterion has been applied recursively to codes of 2nd and 3d level. As a result,
some codes have been left without any labels, therefore they have been removed
from the corpus. Finally, 240 different codes for the bottom level remained. We
got 9180 records.



Table 5. Number of records containing subsets of fields.

ab 1105609
au 1289023
jt 14959
mc 20275
py 1342065
ti 1281409
ut 851240
ab au mc py ti 20155
ab au mc py ut 17977
ab au mc ti ut 17959
au mc py ti ut 18017
au jt mc py ti ut 470
ab au jt mc py ti 502
ab au jt mc py ut 468
ab au jt mc ti ut 468
ab au mc py ti ut 17959
ab jt mc py ti ut 468
ab au jt mc py ti ut 468
ab au jt mc py ti ut 468

5.5 Data characteristics

Tsoumakas in [3] describes measures which describe complexity of the data: label
cardinality and label density.

Label cardinality shows, how many labels on average are being assigned to a
record. In our case the value is 1.56.

Label density describes, what part of all the labels is on average assigned to
a document. The value for the data is 0.65%.

The corpus can also be described by measures describing, how homogeneous
labels assigned to a document are on average. In table 6 we showed in how many
documents there are at least 2 similar codes (similar in the hierarchical sense)
and at least 2 different codes.

6 Experimental settings

We decided to use only textual fields in the experiments. We joined keywords,
title and abstract of each record to form a single text describing each document.
We removed stop words and projected words to their base forms using Porter
stemmer. We then performed a popular text analysis technique called TF-IDF
[12]. This way, we got vectors of numbers describing each document.

In each algorithm, we used cosine distance, which is a good measure to dis-
tinguish between high dimensional objects, such as texts described by TF-IDF
vectors [12].



Fig. 3. Number of MSC codes of a given number of occurrences in the corpus before
filtering.

Table 6. The percentage amount of records with at least 2 similar (different) codes.
The criterion for similarity is being subcategory of the same category.

Property Percentage
Contains at least 2 sub-codes of the same highest
level category

35.39%

Contains at least 2 sub-codes of different highest
level categories

13.66%

Contains at least 2 sub-codes of the same 2nd level
category

29.59%

Contains at least 2 sub-codes of different 2nd level
categories

24.78%

As for ML-KNN algorithms, we used the following settings for the parame-
ters:

– smoothing parameter (s): 1
– k parameter: 5
– k-list parameter: [ 3, 5, 8 ]

As was the case in [9], we also noticed, that value for parameter k does not
influence the relative performance of the algorithms.

7 Experimental results

In this section we show results for classifiers described earlier.
We have evaluated the following classifiers: ML-KNN, Threshold ML-KNN

and Ensemble Threshold ML-KNN, where the 2 latter algorithms are our mod-
ifications of ML-KNN algorithm (they have been described in section 4).



Furthermore, we have evaluated modifications, where we put each of the 3
listed classifiers into parental nodes of the hierarchical structure of labels. This
is one of the most popular approaches to hierarchical classification, as stated in
section 3. We list tested algorithms in table 7.

Table 7. Evaluated classifiers. We separately test flat approaches and hierarchical ap-
proaches. Novel methods that have been proposed in this paper have been highlighted.

Approach Base Algorithm Modification Ensemble Modification
Flat ML-KNN Threshold ML-KNN Ensemble Threshold

ML-KNN
Hierarchical Hierarchical ML-KNN Hierarchical Threshold

ML-KNN
Hierarchical Ensemble
Threshold ML-KNN

The evaluation has been performed on data described in section 5, prepared
as stated in section 6. 5-fold cross validation has been performed.

We used measures described in section 2.2. Furthermore, we used method for
evaluating hierarchical classification problems, described in section 2.3. Results
for each consecutive level of the label tree are shown in tables: 8, 9, 10.

It can be noticed, that ML-KNN algorithm yields low efficiency. This is a
result of problems introduced in chapter 4. Much better results given by proposed
modifications support this hypothesis.

Ensemble Threshold ML-KNN is the only classifier which does not use hi-
erarchical information and that exceeds 50% in terms of Accuracy in table 8.
Comparing to ML-KNN, each of the modifications (Threshold ML-KNN and
Ensemble Threshold ML-KNN) gives much better results in terms of all used
measures.

As for the results given by the hierarchical approaches, it can also be noticed,
that each of the modifications exceed the simple Hierarchical ML-KNN algorithm
in terms of all used measures. The best results are given by the most advanced
classifier: Hierarchical Ensemble Threshold ML-KNN. What is interesting is that
hierarchical approaches introduce low improvement (a few percent in table 8 and
even less in table 10). In some works similar observation has been made: use of
hierarchy brings small improvement in terms of classification correctness [12].

8 Future work

There are many directions, in which our work can be improved. We listed some
of the possibilities below.

– In our work, we assumed a bag of words model, which in turn assumes
independence between the words. What can be done to improve this is to
try extracting semantic information from the text.

– We excluded non-textual attributes from data. It seems that information
about authors can be very useful to categorize documents.



Table 8. Evaluation measures for results projected to the 1st level of labels.

Classifier Accuracy Precision Recall F-
measure

Hamming
Loss

Subset
0/1 Loss

ML-KNN 21.30% 23.08% 21.35% 21.90% 0.38% 80.49%
Threshold ML-KNN 44.36% 47.48% 45.23% 45.68% 0.30% 59.55%
Ensemble Threshold ML-
KNN

63.33% 66.59% 72.38% 67.43% 0.29% 48.59%

Hierarchical ML-KNN 44.62% 48.09% 45.91% 46.20% 0.32% 60.03%
Hierarchical Thresh. ML-
KNN

50.95% 54.73% 51.75% 52.47% 0.28% 53.55%

Hierarchical Ens. Thresh.
ML-KNN

66.59% 70.66% 71.33% 69.54% 0.25% 42.06%

Table 9. Evaluation measures for results projected to the 2nd level of labels.

Classifier Accuracy Precision Recall F-
measure

Hamming
Loss

Subset
0/1 Loss

ML-KNN 18.40% 21.52% 18.51% 19.44% 0.45% 84.59%
Threshold ML-KNN 36.49% 41.76% 37.85% 38.67% 0.40% 69.72%
Ensemble Threshold ML-
KNN

49.42% 54.19% 61.72% 55.14% 0.49% 66.44%

Hierarchical ML-KNN 35.27% 40.69% 37.38% 37.76% 0.44% 71.78%
Hierarchical Thresh. ML-
KNN

40.91% 46.95% 42.78% 43.53% 0.41% 66.59%

Hierarchical Ens. Thresh.
ML-KNN

51.83% 57.57% 61.75% 57.00% 0.46% 62.41%

Table 10. Evaluation measures for results directly on leaf nodes.

Classifier Accuracy Precision Recall F-
measure

Hamming
Loss

Subset
0/1 Loss

ML-KNN 13.83% 18.87% 14.03% 15.45% 0.59% 90.61%
Threshold ML-KNN 25.12% 32.60% 27.71% 28.43% 0.60% 83.92%
Ensemble Threshold ML-
KNN

31.74% 37.14% 46.55% 38.56% 0.84% 85.82%

Hierarchical ML-KNN 24.78% 32.63% 27.11% 28.04% 0.63% 84.03%
Hierarchical Thresh. ML-
KNN

26.60% 34.32% 30.39% 30.45% 0.66% 83.82%

Hierarchical Ens. Thresh.
ML-KNN

31.94% 37.37% 48.62% 38.92% 0.96% 85.34%



– We used TF-IDF algorithm to generate weights. There exist other algorithms
(such as LSA or LDA), which may improve the results.

– The most popular approach to make use of hierarchical structure between
the labels has been chosen. One can try other solutions.

– We narrowed our work to a single algorithm (ML-KNN). We could try use
other approaches and join them with our algorithms. For example we could
form a hierarchy of different classifiers, where our algorithm deals with the
first classification step, and more difficult situations to decide are delegated
to more effective classifiers (such as SVM).

– Evaluating hierarchical classification is not a trivial problem and it can be
further explored.

9 Summary

In this paper we dealt with a problem of multi-label hierarchical classification
of documents. We chose to work on ML-KNN and supported our decision with
efficiency of this algorithm. Analysis of ML-KNN algorithm has been performed.
It turns out, that when there is noise in data, the algorithm fits to it very much.
We proposed modifications of ML-KNN, which help to deal with this issue.

The problem has been noticed when working on data, on which algorithms
have been evaluated. It turns out, that a situation, where document’s neighbour-
hood is not very stable is not rare. The algorithm’s ability to learn about such
instabilities causes degradation in classification.

What is worth mentioning is that our modifications, apart from giving bet-
ter results, sustain low computational cost of the algorithm. This is important,
because as we pointed out earlier, it is one of the biggest strengths of this ap-
proach.

10 Acknowledgements

This work is supported by the National Centre for Research and Development
(NCBiR) under Grant No. SP/I/1/77065/10 by the Strategic scientific research
and experimental development program: "Interdisciplinary System for Interac-
tive Scientific and Scientic-Technical Information."

References

1. Sebastiani, F.: Machine learning in automated text categorization. ACM Comput-
ing Surveys 34(1) (March 2002) 1–47

2. Melville, P., Gryc, W., Lawrence, R.D.: Sentiment analysis of blogs by combin-
ing lexical knowledge with text classification. In: Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining. KDD
’09, New York, NY, USA, ACM (2009) 1275–1284

3. Tsoumakas, G., Katakis, I.: Multi-label classification: An overview. IJDWM 3(3)
(2007) 1–13



4. Costa, E., Lorena, A., Carvalho, A., Freitas, A.: A review of performance evaluation
measures for hierarchical classifiers. In Drummond, C., Elazmeh, W., Japkowicz,
N., Macskassy, S., eds.: Evaluation Methods for Machine Learning II: papers from
the AAAI-2007 Workshop, AAAI Technical Report WS-07-05, AAAI Press (July
2007) 1–6

5. Read, J., Pfahringer, B., Holmes, G., Frank, E.: Classifier chains for multi-label
classification. In: Proceedings of the European Conference on Machine Learning
and Knowledge Discovery in Databases: Part II. ECML PKDD ’09, Berlin, Hei-
delberg, Springer-Verlag (2009) 254–269

6. Zhang, M.L., Zhang, K.: Multi-label learning by exploiting label dependency. In:
Proceedings of the 16th ACM SIGKDD international conference on Knowledge
discovery and data mining. KDD ’10, New York, NY, USA, ACM (2010) 999–1008

7. Clare, A., Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype
data. In: In: Lecture Notes in Computer Science, Springer (2001) 42–53

8. Zhu, J., Rosset, S., Zou, H., Hastie, T.: Multi-class adaboost. Technical report
(2005)

9. Zhang, M.L., Zhou, Z.H.: Ml-knn: A lazy learning approach to multi-label learning.
Pattern Recognition 40(7) (2007) 2038–2048

10. Silla, C., Freitas, A.: A survey of hierarchical classification across different ap-
plication domains. Data Mining and Knowledge Discovery 22 (2011) 31–72
10.1007/s10618-010-0175-9.

11. Kiritchenko, S., Matwin, S., Nock, R., Famili, A.F.: Learning and evaluation in the
presence of class hierarchies: application to text categorization. In: Proceedings
of the 19th international conference on Advances in Artificial Intelligence: Cana-
dian Society for Computational Studies of Intelligence. AI’06, Berlin, Heidelberg,
Springer-Verlag (2006) 395–406

12. Manning, C.D., Raghavan, P., Schtze, H.: Introduction to Information Retrieval.
Cambridge University Press, New York, NY, USA (2009)

13. Joachims, T.: Text categorization with support vector machines: learning with
many relevant features. In Nédellec, C., Rouveirol, C., eds.: Proceedings of ECML-
98, 10th European Conference on Machine Learning, Heidelberg et al., Springer
(1998) 137–142

14. Sylwestrzak, W., Rosiek, T., Bolikowski, L.: YADDA2 – Assemble Your Own Digi-
tal Library Application from Lego Bricks. In: Proceedings of the 2012 ACM/IEEE
Joint Conference on Digital Libraries. (2012)

A Implementation in the YADDA2 architecture

Results of research presented in this paper are currently implemented as a mod-
ule in the SYNAT system. SYNAT is a strategic project commissioned by the
Polish National Centre for Research and Development, with the goal of building
“Interdisciplinary System for Interactive Scientific and Scientific Technical In-
formation.” YADDA2 framework, developed at ICM UW, is a core part of that
system.

YADDA2 [14] has a two-tier architecture, with base services tier providing
generic fuctionalities independent of the type of content being processed, and
application tier where business logic and user interfaces are located. YADDA2
facilitates creation of several types of products:



– stand-alone repositories with a web front-end and a publication application
in the back-end;

– repository federations containing multiple autonomous collections, accessed
through a central front-end;

– publication data warehouses aggregating content from multiple repositories
in order to provide long-term preservation of data and access for researchers
and analysts.

Several configurable components are already implemented and are ready to be
used, for example: meta-data and content storage, full-text indexing, batch pro-
cessing engine, relational index, user annotation service. Results of this research
are being implemented as yet another reusable module, providing hierarchical,
multi-label classification tailored for scholarly publications.

The classification module is intended to be part of back-end work-flows for
improving meta-data quality and enriching it with inferred information. In a
typical setting, one back-end process fetches from a storage all the documents
that are already classified using codes from a given classification scheme, passes
them to the module in question in order to train it and places results of the
training in a storage. Another back-end process fetches all documents from a
given domain lacking codes from a given classification scheme, pipes them to the
module for classification (configured to use the results of an earlier training) and
updates document meta-data using output from the classifier.


