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Abstract. Mathematical publications are often labelled with Mathe-
matical Subject Classi�cation codes. These codes are grouped in a tree-
like hierarchy created by experts. In this paper we posit that this hierar-
chy is highly correlated with content of publications. Following this as-
sumption we try to reconstruct the MSC tree basing on our publications
corpora. Results are compared to the original hierarchy and conclusions
are drawn.
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1 Introduction

1.1 Research Problem

There are several established classi�cation schemes for scholarly literature, for
example: Mathematics Subject Classi�cation (MSC), Physics and Astronomy
Classi�cation Scheme (PACS), Journal of Economic Literature (JEL) Classi�ca-
tion System, ACM Computing Classi�cation System, or a much broader Dewey
Decimal Classi�cation. All these systems are created by human experts (rather
than generated by an algorithm), all are hierarchical, and many undergo peri-
odical updates which result in minor-to-moderate di�erences between revisions.

In this research, we are primarily interested in building algorithms that
would, as far as it is possible, recreate a classi�cation system for a given domain.
In a wider sense, we are interested in studying the process that governs the
development of such classi�cation systems, in particular, understanding which
features of the classi�ed documents have the largest impact on the �nal hierarchy.
While most of our theoretical work is applicable to any hierarchical classi�ca-
tion scheme, our experiments are conducted on the 2000 revision of Mathematics
Subject Classi�cation.



This paper is structured as follows. In the remainder of this section we brie�y
summarize the MSC 2000 system, similarity as it is understood in computer
science, and the data set used in our experiments. In Section 2 we investigate
approaches to measuring structural similarity of objects, we outline state-of-the-
art, present our original ideas and analyze the results of our experiments. In
Section 3 we focus on similarity of documents. Section 4 describes methodology
of evaluation of similarity matrices, and Section 5 presents various experiments
related to reconstructing MSC 2000 hierarchy. The last sections contain summary
and conclusions.

1.2 MSC Codes

MSC codes 1 are a hierarchical system for multi-tagging of mathematical doc-
uments. It was created by experts from Mathematical Reviews and Zentral-
blatt MATH 2. There are two slightly di�erent version of codes: MSC2000 and
MSC2010.

In MSC hierarchy there are three levels of codes:

� leaves (denoted as L) - named with 5 characters (2 digits + letter or special
character `-` + 2 digits) - for example: 05C05 means `Trees`

� middle level (denoted as M) - named with 3 characters - for example: 05C
means `Graph theory`

� higher level (denoted as H) - named with 2 characters - for example: 05
means `Combinatorics`

Special character `-` is used for special purpose documents (instructional expo-
sition, proceedings etc.).

In MSC every single document can have one or more codes assigned. First
code is the most important and is called `primary`. Subsequent are called `sec-
ondary`. What is more, not only leaf-codes can be assigned but also codes from
upper levels.

1.3 Similarity

Similarity is an intuitive and subjective concept. Many di�erent approaches to
this idea exist in psychology.

One of the earliest and the one that has most in common with computer sci-
ence is mental distance approach [18]. In this approach objects are represented as
points within the space and similarity is represented by some distance function.

The second most in�uential approach is featural approach [19] (in formalism
closely related to Jaccard Coe�cient). In this method objects are represented
as sets of features. Similarity is then measured by comparing two sets of fea-
tures. It increases with the number of common features and decreases with the
number of di�erences. This approach deals with several psychological aspects of

1 http://www.ams.org/mathscinet/msc/msc2010.html
2 http://www.zentralblatt-math.org/zbmath/



similarity but has several disadvantages e.g. an assumption that commonalities
and di�erences are independent.

In computer science, properties of similarity measures are formulated closely
to the featural approach [11]:

F1) similarity is a value in [0, 1]
F2) similarity reaches its maximum when two objects are identical
F3) the more di�erences two objects have, the less similar they are
F4) the more commonalities two objects share, the more similar they are
F5) 1.0− similarity has metric properties apart from triangle inequality

During our work we dealt with similarity of objects of di�erent kinds e.g.
documents and elements localized in di�erent structures. Details are described
in further sections.

1.4 Data Description

We used 13,609 documents tagged with MSC2000 codes. Documents originated
from following digital libraries:

� ZentralBlatt-MATH 3

� CEDRAM 4

� NUMDAM 5

Every document was represented by an abstract, keywords and a title that were
merged into single list of words (apart from bigram calculation where bigrams
are calculated before the merge). Length statistics (in words; after �ltering - see
section 5.1) of these �elds are shown in table 1. Some symptoms of preprocess-
ing problems can be found. Especially it is rather uncommon to have abstract
containing over 35 thousands of words. The most probable explanation is that
during extraction process some parts of document were glued to the abstract.
Similar situations can happen in real, fully automatic systems. Due to this fact
we decided to leave data after preprocessing without further modi�cations.

Table 1. Length statistics of documents.

�eld min max avg std

abstract 11 35522 509.23 493.66
keywords 7 374 77.17 39.13
title 10 318 64.59 34.74

merged 47 35846 651.00 505.39

3 http://www.zentralblatt-math.org/zbmath/
4 http://www.cedram.org/
5 http://www.numdam.org/?lang=en



In our experiments we decided to consider only typical leaf codes composed
of 5 letters and leave out special codes (with special character '-' instead of one
letter in the name of a code). It should not in�uence our results much, as codes
of di�erent types account for less than 5% of all codes.

We also �ltered out the codes that occurred less often than 10 times as a
primary code. In the end, we had 345 non-special leaf-codes (level L). At level
M of MSC tree we had 144 codes. Each of these codes had, on average 2.40,
children (std=2.33). 76 codes had only single child and the maximum number
of children was 13. On the H-level of MSC tree we had 37 codes out of which
15 had only a single child. Average number of children at this level was 3.89
(std=3.38) and the maximum number of children was 12. Statistics presented
above show how diverse MSC subtree is and how complicated is the problem of
its reconstruction.

The �ltering left only 10, 201 documents in corpus: 7, 575 with primary code
assigned and 7, 032 with at least one secondary code. Every leaf-code occurred as
a primary code on average 21.96 times (with standard deviation 19.48; max=185)
and as a secondary code 29.54 times (with standard deviation 24.01; max=204).
What is worth noting, every code appeared at least once as a secondary code.

Before �ltering, single document had averagely 2.98 codes assigned. After
�ltration, an average of only 1.74 codes was left (standard deviation = 0.88).
The maximum noticed number of codes per document was 10. Every document
had averagely 0.74 primary codes (std=0.44; before �ltering=1.00) and 1.00
secondary codes (std=0.89; before �ltering=1.98).

2 Similarity of Structures

To compare two structures (e.g. original MSC hierarchy and the reconstructed
tree) we decided to adapt pairwise comparisons (in psychology called paired
comparisons). In classical clusterings comparisons this group of methods is de-
scribed as counting of pairs of elements (other two are: information-theoretical
mutual information and summation of set overlaps). It was extended for purpose
of comparing fuzzy clusterings. Later, we adapted it for hierarchical structures
and introduced simple formalism.

Having two elements (e.g. leaves of MSC tree or publications) li and lj , the
bonding (introduced in [3]) between them is described by the function:

Bij = bT (li, lj) ∈ [0, 1] (1)

Index T denotes the structure in which leaves are positioned. It means that
bonding in di�erent structures T and T ′ can be di�erent. Indexes i and j always
denote the row and the column in a matrix.

Bonding measures how close two elements are to each other. Complementary
value:

Cij = 1−Bij ∈ [0, 1] (2)

measures how much two elements (indexed by i and j) are separated according
to structure T .



Having bondings (and complementary values) of two elements li and lj in
structures T and T ′ we need to decide how much these values `agree`. It is
performed by another function τ :

Θ(β, β′)ij = τ(βij , β
′
ij) ∈ [0, 1] (3)

where: β, β′ can be either B, B′ or C, C ′ matrices for T and T ′. For example
Θ(B,B′)ij measures how much two structures `agree` on how much elements li
and lj should be bonded.

Using four matrices:

Θ(B,B′), Θ(B,C ′), Θ(C,B′), Θ(C,C ′)

we calculate four coe�cients:

a = h( Θ(B,B′) )
b = h( Θ(B,C ′) )
c = h( Θ(C,B′) )
d = h( Θ(C,C ′) )

where h is a function that aggregates values from matrices. It can be interpreted
as summarizing over all pairs and therefore can be implemented as:

h(X) =
∑
i,j>i

Xij

Derived coe�cients measure how much two structures `agree` (a, d) and `dis-
agree` (b, c). Using them we can adapt similarity indexes designed for typical
clusterings comparisons. The most common is the Rand index ∈ [0, 1] [15]:

RI = a+d
a+b+c+d

RI = a+d
|LL|

RI = |LL|−(b+c)
|LL|

(4)

where number of pairs of elements (n = |L| stands for number of elements):

|LL| ≡ n(n− 1)

2

The measure strongly depends on the number of clusters in the clustering struc-
ture [12] (we showed that this property is preserved for hierarchical structures).
It was shown [5] that for some kinds of structures its value increases up to 1.0
with number of clusters. What is more, it was shown that RI for two random
clusterings is not a constant. For these reasons Rand Index was modi�ed to
Adjusted Rand Index [3]:

ARI ′ = 2(ad−bc)
c2+b2+2ad+(a+d)(c+b) ∈ [−1, 1]

ARI = ARI′+1
2 ∈ [0, 1]

(5)



Strong critic [4] is also given to RI for equal treatment of a and d. In some
situations d dominates over a what can be a serious problem [8]. To overcome
this problem Jaccard coe�cient was introduced:

JI =
a

a+ b+ c
∈ [0, 1] (6)

Presented above methods of similarity measurement depend on two functions:
bT (li, lj) and τ(βi,j , β

′
i,j). Their selection changes the properties of measures.

In section 1.3 we assumed that 1.0− similarity should have metric's proper-
ties (apart from triangle inequality). For above indexes (apart from Rand Index ),
it is not known what bT (li, lj), τ(βi,j , β

′
i,j) to use and how to modify them to ful-

�ll this condition. Especially, when comparing T to itself we can obtain similarity
lower than 1.0. Examples of such behaviour can be found in [7].

In [7] authors modi�ed Rand Index in a way that 1.0−RI is a metric (apart
from the condition: d(T, T ′) = 0 =⇒ T = T ′ which may not be ful�lled).
During our research we showed that, assuming τ(a, b) ≡ min(a, b) and taking
second formula for RI in equation 4, their result can be shown in our formalism.
Assumption for 1 − RI to be (almost) metric is that 1 − bT (li, lj) must be a
metric.

In the context of MSC-like trees our proposition for bT (li, lj) is to use the com-
mon fraction (∈ [0, 1]) of two paths from root to leaves. In this case bT (li, lj) = 0
when two leaves have only root in common and bT (li, lj) = 1 iff li = lj . Other
metric properties were also proven.

An example of such measure is shown in the �gure 1. For leaves l1 and l3
common fraction of paths has length q. For l1 and l2 it has the length p+ q.

This measure is well-de�ned for trees where all leaves have the same depth. If
we want to generalise to all trees, for two leaves: li and lj , we have two fractions
of paths fi and fj . Having fi and fj we can use bT (li, lj) = F (fi, fj) where F
can be average, min, max etc.

An alternative to `path fraction` approach can be cosine-like measure:

bT (li, lj) ≡ 1−
2 cos−1( vi

|vi| ·
vj

|vj | )

π
∈ [0, 1] (7)

where vi, vj are membership vectors assigned to li and lj . Their length is equal
to the number of nodes at the medium (M) level in MSC tree. The value of an
m-th component in this vector describes the a�liation of the m-th element to a
(M -level) node:

� 2.0⇔ element and node have common pre�x of length 3 (for example `03A`)
� 1.0⇔ element and node have common pre�x of length 2 (for example `03`)
� 0.0⇔ element and node have no common pre�x

2.1 Experiment 1

To show behaviour of our indexes in di�erent situations we tested them with
randomly generated trees. We took n = |L| ∼ 350 MSC leaves. These leaves
describe part of MSC tree. Out of them we built 100 trees.



Fig. 1. Common fraction of paths from root to leaves.

In the �rst step, out of range [n0.25, n0.75] we randomly selected number (m)
of nodes at M level. Then, every leaf was assigned to one of the m nodes. In
the next step, we randomly selected h out of range [m0.25,m0.75] and assigned
middle-level nodes to high-level nodes. In such procedure we generated single
random tree. This procedure was repeated 100 times. In the end, we obtained
100 random trees.

In the picture 2 there are values of di�erent indexes. We compared random
trees and part of the original MSC tree. Pre�xes of indexes stands for di�erent
con�gurations of bT and τ :

� Hf - bT - path fraction, τ(a, b) = min(a, b)

� Hm - bT - formula 7, τ(a, b) = min(a, b)

� Bf - bT - path fraction, τ(a, b) = ab

� Bm - bT - formula 7, τ(a, b) = ab

Conclusions:

� ARI does not depend on number of nodes and is the most stable

� JI is also very stable but slightly decreases with number of nodes

� RI is very unstable and strongly increases with number of clusters

� τ does not in�uence much results (Hm-RI and Bm-RI give almost equal
results; the same for Hf-RI and Bf-RI)

� bT does not change order (plots for Hm-RI and Hf-RI are just translated and
scaled; the same for Bm-RI and Bf-RI)



In the end, Bf-ARI and Hf-ARI seem to be the best measures. They take constant
value (∼ 0.5) for random tree no matter how much tree has nodes. The calcu-
lation of a common path is also more intuitive and faster than the calculation
of a membership vectors. Having n = |L| leaves overall complexity is O(D×n2)
where D stands for height of trees. To select between these two measures we
designed further experiments.

Fig. 2. Indexes' values for random trees.

2.2 Experiment 2

In the �gure 3 behaviour of two indexes: Bf-ARI, Hf-ARI is shown. For each index
10 runs of an experiment is shown. There is also black, thick line that represents
an average over all runs. In the single run we randomly selected nodes from H
level and split them according to its child nodes. Every node from H level was
replaced with cx nodes, where cx is a number of children of the node x ∈ H.
Each new node has just single child (one of the previous children of x).

An analysis of �gure 3 reveals that for comparing MSC subtree (described in
the section 1.4) to itself (0 modi�cations) values of the indexes are di�erent and
smaller than 1.0 (0.71 for Bf-ARI and about 0.76 for Hf-ARI). This behaviour
is consistent with description from the beginning of the section 2. Another con-
clusion is that both indexes decrease monotonically (in every single run) with
number of such modi�cations. It is consistent with the intuition.

2.3 Experiment 3

In the �gure 4 another experiment's results are shown. For each index 10 runs
of an experiment is shown. In the single run we randomly selected nodes from



Fig. 3. Indexes' behaviour for splitting nodes at H level.



H level and merged their child nodes. For every node from H-level we took all
its children and merged them into single child node. In the end, every node from
H-level had only single child node.

Fig. 4. Indexes' behaviour for merging nodes at M level.

An analysis of �gure 4 reveals that Bf-ARI behaves counter-intuitively for
such modi�cations what makes it useless for further use.

2.4 Measure Selection

An analysis of the behaviour of di�erent indexes showed that the best, out of
described indexes, is Hf-ARI. This index is resistant to change of number of



nodes (section 2.1), to `pushing` nodes down (section 2.2) and up (section 2.3).
The index have also relatively low computational complexity ( O(D × n2) ).

For the tree described in the section 1.4 the lower bound of Hf-ARI is equal
to 0.5 (value for random trees) and the upper bound is equal to 0.759 (value for
a comparison of the tree to itself). This two values state the range in which we
expect to operate.

3 Similarity of Documents

Modern techniques of similarity determining split into two groups [2] [11]:

� content-based
� link-based

We focused on the �rst group.
For the reason that dealing with structure in documents is very demanding

task, bag-of-words model is applied. In this model single document is represented
as a set of pairs: (term, count). To compare such representations several measures
was developed. One of the most successful [10] is Ratio Model [19] that is related
to the �rst model described in section 1.3:

simtv(di, dj) =
|di ∩ dj |
|di ∪ dj |

(8)

where di - bag of terms (words, bigrams etc.) representing i-th document.
More advanced approaches apply vector space model [17] (related to the sec-

ond model from section 1.3) in which documents are represented as vectors of
numbers. Document di is thus represented by a vector wi. While vectors are
often sparse, cosine-like measurements are used [12]:

simcos(di, dj) = 1−
2 cos−1( wi

|wi| ·
wj

|wj | )

π
(9)

The most popular method of constructing vector representation of documents
is TF × IDF weighting scheme. TF × IDF belongs to wider group of methods
called LW ×GW where LW stands for local weight and GW for global weight.
For every term t in document d single weight is generated:

wt = LWt,d ×GWt (10)

Intuitively, weight should be higher if term is more important for document
(e.g. occurs many times) but lower if is not very characteristic (e.g. occurs in
many documents) (for further description see [12]). In TF × IDF :

TFt,d =
dt

|d|
(11)

IDFt = log(
N

N t
) (12)

where:



� dt - number of occurrences of t in document d
� |d| - number of all terms in document d
� N - number of documents in corpus
� N t - number of documents having term t

There are many doubts about TF×IDF scheme. Particularly, TF grows linearly
with the number of term occurrences but psychologically the occurrence is more
important than count. For example, it does not make big di�erence whether
term t occurred 4 or 6 times. To overcome this problem another local weight can
be introduced:

WFt,d =

{
1 + log(1 + TFt,d) TFt,d > 0
0 otherwise

(13)

Also for IDF there exist many replacements e.g. ENT [13] was reported as
particularly e�cient [10]:

ENTt = 1 +

∑
d pt,d log(pt,d)

log(N)
(14)

pt,d =
TFt,d

GFt
(15)

where GFt stands for t frequency in whole corpus.
The most advanced techniques (ESA, LSA, LDA etc.) that calculate vector

representations try to discover some semantic behind documents. In this group
the dominating approach is LSA (for details see [12]) in which original dimen-
sions are linearly combined into new ones. Then, only the most `informative`
dimensions are kept. New dimensions are believed to be latent `topics` of docu-
ments. The method is close to dimensionality reduction techniques.

LSA is calculated using Singular Value Decomposition. In our experiments we
used Gensim implementation [16] because of its scalability and stream processing
mode.

3.1 MSC Leaves Similarity

In our experiments we performed clustering (reconstruction of a MSC hierarchy)
of MSC leaves. We assumed that leaves' similarity can be computed basing on the
similarity of tagged documents. We considered several strategies of aggregation
documents' similarity into MSC leaves similarity.

The �rst strategy is to consider only primary tags: MSC leaf is represented
as a set of documents tagged with it at �rst place. Sets are disjoint. To estimate
similarity between two leaves li and lj aggregating function is calculated:

simpr(li, lj) = A({sim(dk, dl) : primary(dk) = li, primary(dl) = lj}) (16)

We considered A ≡ average (denoted avg) and A ≡ max (single linkage, denoted
single). Complete linkage in this situation is pointless as in two sets of documents
there are always two with similarity equal to 0.



The second strategy is to consider both: primary and secondary tags. It
means that sets of documents overlap. In such case we assigned to every tag li
of a document dk weight: ek,i. Now, similarity between li and lj is calculated as
a weighted average:

simsec(li, lj) =
1

Z

∑
li∈tags(dk),lj∈tags(dl)

(ek,i + el,j) · sim(dk, dl) (17)

Z =
∑

li∈tags(dk),lj∈tags(dl)

ek,i + el,j (18)

Primary codes have always weight 1.0. Secondary codes can have constant
weight ek,i = 0.5 (strategy denoted as avg − e0.5) or ek,i = 0.75 (avg − e0.75)
or weight dependent on number of secondary codes assigned to particular docu-
ment:

ek,i =
C

|secondary(dk)|
(19)

where C = 0.75 (denoted as avg − s0.75) or C = 0.5 (denoted as avg − s0.5).

4 Similarity Matrices Evaluation

Typical approach in clustering [9] is to perform evaluation in the end of the
process - after clustering. For this strategy, in our case, having similarity matrices
we should cluster using one of the clustering algorithms and then compare results.

Although, in practical applications, where the goal is to tune clustering pro-
cess as much as it is possible, it is reasonable, this strategy does not give knowl-
edge about similarity matrices themselves. To deal with this problem we decided
to evaluate di�erent features and similarity matrices just before clustering.

There are several intuitive assumptions about clustering algorithms. The
most common and the most intuitive is that closer object should be joined more
likely than distant. According to this rule, formal conditions can be set up [1].
Having three elements: li,lj ,lk the requirement that li,lj should be merged more
likely than li,lk and lj ,lk can be written as inequalities:

sim(li, lj) > sim(li, lk) (20)

sim(li, lj) > sim(lj , lk) (21)

In worst case number of conditions is bounded by O(n3) where n = |L| -
number of elements. That makes this method useful only if n is small (no bigger
than ∼ 1000).

Though its shortcomings, the approach has big advantage: can be interpreted
as a simple thought experiment. Having n elements, we take three of them and
show to an expert. He selects two the most similar or says that he does not know.
If he knows, we check in our similarity matrix if the similarity conditions are
held. The procedure is repeated for each tuple of size three. In the end, we have



fraction of situations when we guessed correctly. Situations when the expert did
not know do not count. For random similarity matrix result should be about
50%. For ideal data about 100%.

In our case, expert answers are read directly from MSC tree. The longer
common pre�x two elements have, the more similar should be. For example:
30A01 and 30A02 are the more similar than 30A01 and 30B01. Situations when
elements have common pre�x of equal length is treated as experts' answer: `do
not know`.

5 Experiments

To perform various kinds of experiments e�ciently we designed modular frame-
work. Sample con�guration of the framework is shown in the �gure 5. The data
in most of components is processed in a stream. According to di�erent input and
output data type we have components of following types:

� document in/document out: documents' �ltering, n-grams construction
� document in/vector out: term counts per document generation
� vector in/data model out: LW ×GW/LSA models construction
� vector and model in/vector out: LW ×GW/LSA vectors calculation
� vector in/similarity matrix out: Tversky/Cosine-like similarity calculation
� similarity matrix in/structure out: hierarchical/k-medoids clustering
� two structures in/similarity index value out: similarity indexes calculation

Fig. 5. Sample con�guration of the experiment.

In di�erent experiments some of the components were removed or replaced
with another. For example TF × IDF can be replaced with WF × ENT or



the component that calculates bigrams can be removed. The table 2 presents
considered con�gurations of the framework.

Table 2. Possible con�gurations of the experiment.

Representation Similarity Aggregation Clustering Linkage
(section 3) (section 3) (section 3.1) (section 5.6) (section 5.6)

Words
Words-TFIDF
Words-WFENT
Words-TFIDF-LSA
Words-WFENT-LSA

Bigrams
Bigrams-TFIDF
Bigrams-WFENT
Bigrams-TFIDF-LSA
Bigrams-WFENT-LSA

Tversky
(simtv)

Cosine-like
(simcos)

average
(avg)

single (max)

weighted
average
(avg-xYY)

hierarchical

3-level
hierarchical

3-level
k-medoids

average-
linkage
(avg)

single-linkage
(single)

complete-
linkage
(complete)

In brackets numbers of connected sections are given.
In further text `Words` is default and omitted.

Each column in the table represents single step in reconstruction process.
First column describes possible representation in which documents could be
prepared. Second - possible similarity measures. For bigrams and words we used
Tversky measure (equation 8). In other cases Cosine-like measure was applied
(equation 9). The third column shows possible similarity aggregation methods
(for details see section 3.1). The last two columns are related to process of
clustering of MSC leaves (section 5.6).

As it can be easily seen, most of the processing steps work on documents.
Only in the last part (clustering/reconstruction of the tree, similarity index
calculation) MSC-related data was considered.

5.1 Preprocessing

Every document in the corpus was preprocessed. Whole interpunction, brackets,
numbers etc. were replaced with spaces. Then letters were changed to lower case.
Also single letters and common words (stopwords from the list 6) were removed.
In the next step, words were stemmed using Porter algorithm [14] (believed to
be the best stemming algorithm [6]).

6 http://www.text�xer.com/resources/common-english-words.txt



5.2 Similarity Matrices Evaluation

Using the method described in section 4 we evaluated several variants of simi-
larity matrices for MSC leaves.

We considered documents representations listed in the table 2. To calculate
similarity between two documents we used techniques from section 3 (either
Tversky for Words/Bigrams or Cosine-like in other cases). In the end, we used
one of the strategies from section 3.1 to obtain MSC-leaves' similarity matrix.

An evaluation of di�erent similarity matrices is shown in �gures 6 and 7.
The results of di�erent variants of weighting strategies in aggregation (section
3.1) were consistent so we decided to show an average value of them (denoted
as Avg-xYY)

Fig. 6. Evaluation results for di�erent MSC similarity matrices.

An analysis of the �gures 6 and 7 showed that the best results (above 94%
ful�lled conditions) were obtained for documents represented as bigrams with
WF-ENT weighting scheme and LSA applied. Overall conclusions for the above
�gures are following:

� bigrams overcome representation as a bag of single words
� TF-IDF performs worse than WF-ENT
� single-linkage strategy used for aggregation of similarity is the weakest one:
averaging gives better results

� considering both primary and secondary codes improves results
� optimal number of dimensions in LSA depends on weighting scheme and it
is hard to �nd any rule for its selection

5.3 Extracted Topics

In tables 3, 4, 5, 6 LSA topics for di�erent con�gurations (weighting schemes)
are shown. Top ten topics is listed for every con�guration. For every topic terms



Fig. 7. Evaluation results for di�erent MSC similarity matrices (LSA representations).



with highest weights are shown. Terms are sorted with weights so the leftmost
are the most important.

The results show several problems in our data. First of them are TEX-tags
(e.g. sb, sp, ¡l) that occurred in some documents. Another is that, some docu-
ments contain parts in other than English languages (e.g. French, German).

It can be easily seen that WF × ENT scheme managed much better than
TF × IDF . In the table 3 we see that TEX-tags were �ltered out from the most
important terms in the most in�uential topics. Also non-english words occur only
in 4-th topic. Even better situation is shown in the table 4. Both: non-english
words and TEX-tags were almost totally �ltered out from top ten topics. It is
important to remember that these `bad terms` were not completely removed.
They were just pushed down to less important topics or given lower weights.

Table 3. Top ten LSA topics for WF × ENT weighting scheme.

1 -0.105*problem + -0.103*equat + -0.094*function + -0.093*gener + ...
2 0.987*obituari + 0.080*public + 0.076*jan + 0.064*reiterman + ...
3 0.197*equat + 0.196*solut + 0.151*problem + 0.141*nonlinear + ...
4 0.185*une + 0.183*de + 0.181*un + 0.173*la + 0.168*sur + ...
5 0.190*algorithm + 0.157*numer + 0.145*method + 0.144*comput + ...
6 0.293*process + 0.226*random + 0.192*brownian + 0.167*stochast + ...
7 -0.200*manifold + 0.137*number + 0.131*integ + 0.124*bound + ...
8 0.162*word + -0.156*�eld + 0.155*algorithm + 0.154*languag + ...
9 -0.200*schrödinger + -0.190*word + -0.170*languag + 0.139*error + ...
10 0.164*solut + -0.153*asymptot + 0.151*equat + -0.146*schrödinger + ...

Table 4. Top ten LSA topics for WF × ENT weighting scheme on bigrams.

1 0.670*list-public + 0.179*public-item + 0.013*comput-scientist + ...
2 0.759*public-item + -0.517*obituari + 0.349*list-public + ...
3 -0.984*order-determin + -0.048*physic-requir + -0.028*expect-uniqu + ...
4 0.482*di�erenti-ideal + 0.461*modul-�eld + 0.137*ring-modul + ...
5 -0.123*di�erenti-ideal + -0.112*modul-�eld + 0.110*math-zbl + ...
6 0.966*show-impli + 0.072*de�n-notion + 0.038*theorem-survey + ...
7 0.653*preview-zbl + 0.653*see-preview + 0.255*extens-doubl + ...
8 0.531*applic-constitut + 0.456*inequ-base + 0.445*base-tetrahedra + ...
9 0.323*applic-constitut + 0.279*inequ-base + 0.259*base-tetrahedra + ...
10 -0.829*ring-proof + -0.471*present-formal + -0.065*eingeführt-und + ...



Table 5. Top ten LSA topics for TF × IDF weighting scheme.

1 -0.471*sb + -0.264*sp + -0.148*omega + -0.123*¡l + -0.114*group + ...
2 0.705*sb + 0.281*sp + -0.125*equat + -0.105*solut + ...
3 0.508*de + 0.216*la + 0.199*le + 0.182*group + 0.179*est + ...
4 0.328*group + -0.290*de + -0.177*solut + -0.174*omega + ...
5 0.595*omega + -0.271*sb + 0.160*¡l + 0.150*text + 0.146*partial + ...
6 0.355*process + 0.257*brownian + 0.234*random + 0.187*measur + ...
7 -0.650*¡l + 0.377*group + -0.206*categori + 0.133*subgroup + ...
8 0.487*¡l + -0.273*manifold + -0.230*surfac + 0.175*categori + ...
9 -0.387*group + 0.242*curv + 0.168*number + 0.159*alpha + -0.153*lie + ...
10 -0.406*omega + 0.235*alpha + 0.199*lambda + 0.193*equat + ...

Table 6. Top ten LSA topics for TF × IDF weighting scheme on bigrams.

1 -0.581*sb-sb + -0.369*sp-sb + -0.281*sb-sp + -0.143*bbfr-sp + ...
2 0.421*�nit-element + 0.256*error-estim + -0.245*sb-sb + ...
3 0.387*�nit-element + 0.327*sb-sb + 0.226*element-method + ...
4 -0.496*navier-stoke + -0.424*stoke-equat + 0.262*�nit-element + ...
5 -0.516*brownian-motion + -0.269*local-time + -0.234*random-walk + ...
6 0.370*navier-stoke + 0.322*stoke-equat + -0.257*bbfr-sp + 0.210*sb-sb + ...
7 0.263*de-la + 0.140*dan-le + 0.128*bbfr-sp + 0.117*sur-le + ...
8 -0.494*sb-sb + 0.277*sp-sb + 0.219*sb-sp + 0.218*¡l-sb + ...
9 0.535*random-walk + -0.288*di�erenti-equat + -0.254*brownian-motion + ...
10 -0.595*¡l-sb + 0.278*lie-algebra + 0.242*lie-group + ...

5.4 Linkage and Similarity Aggregation

Figure 8 shows comparison of di�erent linkage (single/complete/average) and
aggregation similarity (see section 3.1) strategies. The results only for 3-level
hierarchical clustering (section 5.6) are shown but for other con�gurations are
similar. Because results for di�erent variants of weighted average aggregation
method (section 3.1) were almost the same we decided to show an average of
them (denoted as avg − xY Y ).

An analysis of the �gure 8 leads to the following conclusions:

� the weakest aggregation methods is single

� an information about secondary codes, in most cases, improves results

� complete-linkage is the worst strategy for clustering

� for single-linkage results are similar for di�erent representations (apart from
the best one: Bigrams-WFENT-LSA)



Results for 3-level hierarchical clustering are shown.
Avg − xY Y stands for an average of avg − e0.5, avg − s0.5, avg − e0.75, avg − s0.75.
For LSA di�erent number of topics were considered and the best (the one with the

highest Hf-ARI value) was chosen for every con�guration.

Fig. 8. Comparison of di�erent linkage and similarity aggregation strategies against
documents' representations.



5.5 Representations and Similarity

Results in the �gure 8 can be interpreted as a comparison of di�erent represen-
tations against aggregation and linkage strategies. Such analysis of �gure 8 leads
to following conclusions:

� Bigrams-WFENT-LSA is the best representation among considered
� the use of LSA improves results (it is especially apparent for complete-
linkage)

For single-linkage it is hard to derive any consistent rules. Di�erent representa-
tions lead to di�erent results. For average-linkage we can assume that bigrams
and more advanced representations generally give better results but there are
some exceptions.

5.6 Clustering Method

In our experiments we considered two typical clustering approaches. First was
hierarchical clustering. Second was k-medoids.

In hierarchical clustering we tested two strategies: either we compared MSC
hierarchy to the binary tree (no modi�cation in clustering results) or we com-
pared MSC hierarchy to the tree reduced to just three levels (3-level hierarchical).
Reduction was obtained by testing possible splits (number of nodes at M and
H level; we tested values di�ering by 10) and selecting one with the highest
Hf-ARI. Obtained value can be interpreted as an approximation of the upper
bound for the clustering method.

For k-medoids clustering we used similar strategy. We tested possible values
of k on two levels: M and H. Results of clustering from M level were used to
compute input similarity matrix for clustering on H level. To aggregate similar-
ity we tested three linkage method: single/complete/average. Because k-medoids
method is non-deterministic the Hf-ARI value was averaged for 5 runs of clus-
tering. It is worth mentioning here that di�erences between results in each run
were very small and could not in�uence our conclusions.

Figure 9 presents Hf-ARI values for di�erent clustering methods in di�erent
con�gurations. Three, described previously, clustering methods were considered.
It is clear that the best result are obtained for hierarchical clustering with re-
ducing to three levels (3-level hierarchical). For k-medoids and pure hierarchical
clustering (binary tree) results are much worse. In some situations k-medoids
obtains higher Hf-ARI value what shows that this measure strongly prefers hi-
erarchies with the same numbers of levels.

5.7 Number of LSA Topics

In our experiments we tested LSA representation of documents. For LSA we
tested di�erent weighting schemes and di�erent numbers of topics (25, 50, 100,
150, 200, 250, 300, 350, 400, 450, 500). Table 7 presents what were the best values
for di�erent con�gurations. The column number four presents what weighting



Fig. 9. Comparison of clustering methods.



scheme was used and whether bigrams were used or not. In �fth column the
best found Hf-ARI value is shown. The last column presents number of topics
assigned to the highest Hf-ARI value.

Table 7. The best number of topics for LSA representation in di�erent con�gurations.

Aggregation Linkage Clustering Representation Hf-ARI Num topics
avg-e0.5 avg 3-level hierarchical Bigrams-TFIDF-LSA 0.671 500
avg-e0.5 avg 3-level hierarchical Bigrams-WFENT-LSA 0.680 300
avg-e0.5 avg 3-level hierarchical TFIDF-LSA 0.664 350
avg-e0.5 avg 3-level hierarchical WFENT-LSA 0.669 150

avg-e0.5 avg 3-level kmedoids Bigrams-TFIDF-LSA 0.576 150
avg-e0.5 avg 3-level kmedoids Bigrams-WFENT-LSA 0.575 25
avg-e0.5 avg 3-level kmedoids TFIDF-LSA 0.586 25
avg-e0.5 avg 3-level kmedoids WFENT-LSA 0.587 200

single single 3-level hierarchical Bigrams-TFIDF-LSA 0.614 300
single single 3-level hierarchical Bigrams-WFENT-LSA 0.613 50
single single 3-level hierarchical TFIDF-LSA 0.600 25
single single 3-level hierarchical WFENT-LSA 0.649 25

single single 3-level kmedoids Bigrams-TFIDF-LSA 0.551 25
single single 3-level kmedoids TFIDF-LSA 0.537 25
single single 3-level kmedoids WFENT-LSA 0.550 25

single single hierarchical Bigrams-WFENT-LSA 0.548 100

Generally, we can not give any simple advice for choice of number of topics.
The best value strongly depends on representation and clustering algorithm what
is consistent with observation from section 5.2. Anyway, some dependencies can
be observed.

For 3-level kmedoids clustering low number of topics is preferred (especially
for aggregation=single and linkage=single). For most con�gurations 25 topics
was selected. For 3-level hierarchical clustering situation is more complicated.
For aggregation=avg-e0.5 and linkage=avg high numbers were chosen. For ag-
gregation=single and linkage=single low values are preferred.

5.8 The Best Hierarchy

In our experiments we tested over 2000 con�gurations (di�erent representations,
weighting schemes, similarity methods, clustering methods, number of LSA top-
ics). Table 8 presents top 10 experiments' con�gurations with the highest Hf-ARI
values.

First column stands for similarity aggregation method (section 3.1). Second
describes linkage type in clustering. Three typical methods were considered:
average, single and complete linkage. All the best results were obtained for 3-level



Table 8. Con�gurations with the highest Hf-ARI value.

Leaves Linkage Representation Clusters Hf-ARI

avg-e0.5 avg Bigrams-WFENT-LSA300 290 / 40 0.680
avg-s0.5 avg Bigrams-WFENT 320 / 40 0.677
avg-s0.75 avg WFENT-LSA150 250 / 40 0.677
avg avg Bigrams-WFENT-LSA400 300 / 40 0.676
avg-s0.75 single Bigrams-WFENT-LSA500 220 / 30 0.676
avg avg Bigrams-WFENT-LSA350 280 / 40 0.675
avg-s0.5 single Bigrams-WFENT-LSA250 320 / 30 0.675
avg-e0.5 avg Bigrams-WFENT 310 / 30 0.674
avg-e0.5 avg Bigrams-WFENT-LSA200 210 / 40 0.674
avg-e0.5 single Bigrams-WFENT-LSA350 200 / 30 0.674
All the results were obtained for 3-level hierarchical clustering.
Hf-ARI for comparing MSC tree to itself is equal to 0.759.

hierarchical clustering (for details see section 5.6). In the third column document
representations are shown. For LSA we tested di�erent weighting schemes and
number of topics between 25 and 500. To calculate similarity we used either
Tversky (for words and bigrams) or Cosine-like method (in other cases). The
fourth column stands for number of nodes (clusters) at di�erent levels of obtained
hierarchy. First number stands for number of nodes at M level and second at H
level.

The best obtained hierarchy is for bigrams with WF ×ENT weighting and
LSA applied with avg − e0.5 similarity aggregation method. This result is con-
sistent with the best result obtained in the section 5.2 what suggest that both
measurements give similar results.

In the table 9 fragments of the best obtained tree are shown. In the second
column identi�ed problems are described. Simpli�ed visualisation of the tree in
comparison to the original MSC tree is shown in the �gure 10.

Original hierarchy Reconstructed hierarchy

Fig. 10. Simpli�ed visualisations of trees.



Table 9. Problems in the best obtained tree.

Tree fragments Problems

...((62G05) (62G07) (62G10) (62M05))... some leaves are merged too
late

...((20F36) (20D10 20D30 20E15 20F05
20K20)))...

some leaves are merged too
fast

...((17B37) (22E40) (32M05) (32M15)
(37D40) (43A80) (43A85) (53C15)
(53C20) (53C21) ... (53C50) (53C55)
(53D50) (58E20) (58J20) (58J35) (58J50)
(58J60) (49Q05 53A10) (17B10 17B20
17B35 22E30 22E45 22E46 22E47))...

big groups of leaves of di�er-
ent kind are merged

... ((60K25 90B22))... small clusters out of totally
di�erent codes are created

... ((91B14)) ((91B28)) ... leaves that should be merged
are left separated

...(65M15 65M60 65N15 65N25 65N30
65N55 74S05 76M10)...

single leaves are glued to
groups of di�erent type

5.9 Interesting Results

We reviewed our best hierarchy. We checked all clusters of size 2 and 3 at M
level. From such clusters we extracted those pairs of MSC leaves that were in
the same cluster but had no common pre�x (e.g. 60K25 and 90B22). The list of
extracted pairs is shown in the table 10.

An analysis of the table 10 leads to interesting conclusions. Our reconstruc-
tion process glued leaves that were strongly linked despite the fact that they were
in di�erent branches of the hierarchy. For example 60K25 (`Queueing theory`)
was merged with 90B22 (`Queues and service`). It is clear that this two leaves
must be very similar but the �rst was placed in 60 (`Probability theory and
stochastic processes`) and the second in 90 (`Operations research, mathematical
programming`).

Very similar analysis is shown in the table 11. We considered all pairs of MSC
leaves and extracted those that were in the same cluster but had no common
pre�x. In the next step, we casted leaves to the highest level of the hierarchy
(extracted pre�xes of length 2) and counted pairs.

An analysis of the table 11 reveals similar conclusions. Some of the groups of
leaves are placed in the same cluster even though they are in di�erent branches.
For example `Numerical analysis` very often co-occurred with `Fluid mechan-
ics`. This is connected to the fact that numerical methods are widely used in
applications of �uid mechanics.



Table 10. `Wrong` pairs in clusters of size 2 and 3.

Leaf Explanation Leaf Explanation

60K25 Queueing theory 90B22 Queues and service
35P25 Scattering theory for PDE 47A40 Scattering theory
49Q05 Minimal surfaces 53A10 Minimal surfaces, surfaces with

prescribed mean curvature
32S65 Singularities of holomorphic

vector �elds and foliations
37F75 Holomorphic foliations and vec-

tor �elds
34C25 Periodic solutions 37J45 Periodic, homoclinic and hete-

roclinic orbits; ...
11F70 Minimal surfaces, surfaces with

prescribed mean curvature
22E50 Representations of Lie and lin-

ear algebraic groups over local
�elds

35Q30 Stokes and Navier-Stokes equa-
tions

76D05 Navier-Stokes equations

35Q30 Stokes and Navier-Stokes equa-
tions

76N10 Existence, uniqueness, and reg-
ularity theory

6 Summary and Conclusions

In this paper we studied the problem of recreating the hierarchy of codes of a
subject classi�cation system. Our goal was to �nd a method of constructing,
based on metadata of mathematical publications, a tree that would be as close
to the original MSC 2000 tree as possible.

In order for the goal to be meaningful, we �rst had to decide what it means
that two given trees are similar and to quantify that similarity. To this end we
studied and developed novel methods of assessing tree similarity. After a series
of experiments we have chosen Hf-ARI measure (cf. Section 2) as it had the best
properties among all the evaluated candidates.

Next, we have selected a method of quantifying document similarity and de-
vised optimization in computing similarity matrices. Finally, we have performed
a series of experiments aimed at calibrating our solution. Each experimental
result was accompanied by analysis and conclusions (cf. Section 5).

6.1 Future Work

During our research we have identi�ed several problems occurring in reconstruc-
tion process e.g. some leaves are glued too early whereas other too late. The
problems decrease quality of obtained results. We believe that their in�uence
can be reduced by modi�cations in representation and clustering algorithms.
Incorporating new features (e.g. link-based) can also help.

Another direction of our works would be to examine more deeply correlation
between nodes in MSC hierarchy. This research could lead to the proposal of a



Table 11. The most often `wrong` pairs.

Count MSC
leaf

Description MSC
leaf

Description

24 17* Nonassociative rings and
algebras

22* Topological groups, Lie
groups For transforma-
tion groups

12 65* Numerical analysis 74* Mechanics of deformable
solids

12 65* Numerical analysis 76* Fluid mechanics For gen-
eral continuum mechan-
ics

4 35* Partial di�erential equa-
tions

76* Fluid mechanics For gen-
eral continuum mechan-
ics

2 90* Operations research,
mathematical program-
ming

60* Probability theory and
stochastic processes For
additional applications

2 76* Fluid mechanics For gen-
eral continuum mechan-
ics

74* Mechanics of deformable
solids

2 37* Dynamical systems and
ergodic theory

32* Several complex vari-
ables and analytic spaces
For in�nite-dimensional
holomorphy

2 34* Ordinary di�erential
equations

37* Dynamical systems and
ergodic theory

2 22* Topological groups, Lie
groups For transforma-
tion groups

11* Number theory

2 35* Partial di�erential equa-
tions

47* Operator theory

2 49* Calculus of variations
and optimal control; op-
timization

53* Di�erential geometry
For di�erential topology

modi�ed structure. The structure could be more e�cient in some applications
such as automatic classi�cation.
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