World Academy of Science, Engineering and Technology 64 2012

Parallel Cryptanalysis Ciphertexts Encrypted by
Rotor Machines

Aleksandra Wszeborowska and F.ukasz Swierczewski

Abstract — this paper describes the theoretical possibilities
of breaking messages encrypted by electro-mechanical rotor
machines with the use of parallel algorithms optimized with
the capacities of supercomputers in mind. Rotor machines had
been used by the military and civil organizations until the
1980s, and their most famous representative is German
Enigma.

Keywords — Cryptography, parallel cryptanalysis, parallel

programming, rotor machines
Famous Enigma owes its fame to its enormous complexity
and constant attempts to break it made by the Allies
during the Second World War. Germans were perfecting their
solution all the time, making the construction more and more
complicated by means of adding a plug-in switch and further
rotors. In the time, when real computers did not exist, a
number of possibilities which it was necessary to analyze was
so large that breaking a text encrypted by the machine was
practically impossible.

In this paper, we are not going to present a possibility of
breaking a message encrypted by the original versions of
Enigma, but only, in general, rotor machines built of 6 rings,
which are based upon those used in the German machine.

Algorithms were implemented with the use of the
environment of the C language and the MPI libraries, and also
OpenMP, so as to make it possible to observe substantial
acceleration on computers provided with a large number of
computational units (CPUs) working parallelly. During the
compilation, Intel C Compiler (version: 12.x.x) was used; it
constructed a possibly effective code, activated on the
processors of the Intel company.

I. INTRODUCTION

II. ProBLEM FORMULATION

The idea behind the functioning of rotor machines is mainly
based upon rotors, which dynamically change their location in
the course of encrypting. It is thanks to the change of their
states that an information flow path is always different, and,
for example, letter 'A' will be receiving different forms at the
outlet. Rotor machines are, in a matter of fact, solutions in
which a poly-alphabetic cipher was used in combination with
so-called Caesar’s shift. The size of the shift is determined by
the state of the rotors, which changes after encrypting every

* Aleksandra Wszeborowska is with the Computer Science and Automation
Institute, College of Computer Science and Business Administration in
Lomza (e-mail: olcia90.prv@wp.pl).

Lukasz Swierczewski is with the Computer Science and Automation
Institute, College of Computer Science and Business Administration in
Lomza (e-mail: Iswierczewski@pwsip.edu.pl).

615

single letter. Moreover, the text, entering the inlet, passes
through a set of rotors, reaches the reversal rotor (called the
reflector), and then travels back through all the rotors. If we
assume that our alphabet consists of 26 letters, the number of
the possible encryptions of a text on 6 rotors equals 265, i.e.
308915776.

»

Output:

rp

Input:
“G"
I/ O Panel

ABC H I K

> o —>

<+ 0 ¢+—=

Rotor 1

BCDEFGHI

1 v
FGDEIH

h./

#
D E

J K

B KL3J |

Rotor 2
FGHI
v !

FGABCEIDK

ABCDEFGHI
&

ABC J K

L

Reflector

JKL |

.
LIEGCHDFIBHA |

Fig. 1 Course of encrypting a letter on a simplified machine,
consisting of two rotors and a reflector

v v
ABCDEFGHIIJKL ’

Rotor 1

CBAFGDEIHKL?I)
v v

Fig. 2 Using Caesar’s shift (value: 1) on a single rotor

Being in possession of the encrypted text, and knowing the
construction of a machine in detail, we will only need the
initial state of the rotors, which had been determined by the
operator prior to encrypting, to decrypt the message. It is
possible to conduct the effective parallel analysis of all
possible settings and look for candidates which might be the
solutions upon the basis of the statistics of a given language,
or expressions defined in a dictionary.

World Academy of Science, Engineering and Technology 64 2012

ITII. SEQUENTIAL ALGORITHM

The sequential version of the algorithm is comparatively
straightforward. Commencing from the moment when all the
settings of rings equal 0, we attempt to decrypt the text. After
decrypting at every configuration of the machine, we analyze
the text which we have received in linguistic terms — of the
frequency of the occurrence of certain letters in the alphabet.
In the research, we used English texts, therefore, linguistic
statistics also had to be appropriate for the English language.
Moreover, the text was searched in terms of the occurrence of
correct words defined by the dictionary. In the course of the
research, we used a list of the most commonly occurring
words published by Project Gutenberg on 16™ April, 2006.
The entire analysis of the text was conducted in accordance
with Fig. 3.

The generated text was assigned a score, which determined
the valence of a given candidate as the one which could be
correct. The higher the score, the closer the received text to
the theoretical ideal. The score may be defined with the use of
the following formula:

26
G- Ifi= 1)~

i=1

T

100

T

1) score = 2w —
(1) score w + 50

[1.73 — IC|
where:

w — a number of words which were found in the text upon the
basis of the dictionary

n — a number of characters, determining the length of the text
fi — the frequency of the occurrence of a certain letter of
alphabet in a natural text

fi — the frequency of the occurrence of a certain letter of
alphabet in the examined text

IC — the Index of Coincidence of the text

TABLE I
STATISTICS OF THE FREQUENCY OF THE OCCURRENCE OF THE INITIAL LETTERS OF ALPHABET
FOR THE ENGLISH LANGUAGE

C D E
2.782% | 4.253% | 12.702%

A
8.167%

B
1.492%

F
2.228%

G
2.015%

START
ANALYSIS |

Y

Analysis of the frequency of letters
in the text

Y

Calculation of the index of
coincidence of text

Y

Analysis based on the dictionary

X
STOP

ANALYSIS)

Fig. 3 Course of the analysis of text

The results are recorded in the table of structures:
result_table[], the type of which was defined as follows:

616

struct candidat_text {
char text[501];
double score;
int rotors_config[6];

}

In the text[] table, a decrypted text which is a candidate is
located. The field: score determines the result received during
linguistic analysis, and in the table: rotors_config[], the setting
of the rotors at which the message was decrypted were
recorded.

The table: result_table[] stores only such a number of the
best solutions as was determined in advance. After concluding
the analysis, the program records proposed solutions in a file
on a hard disk. Those results already require being analyzed
by a man because there is no entirely safe method, making it
possible to find the correct solution without taking a risk of
removing it from the set of candidates.

START |

Y

Read cipher_text[]

A |
Set rotors
configuration to |
0,..0 |

Y
If rotors

configuration <
- 25, y

Decrypt the text from the | NO
settings of rotors_config(].

YES

Save result to
candidat_text[]

Set another
configuration of rotors
in
rotors_configuration(]

Y
Calculate the
score for

‘candidat text]] |

Y

If score is NO

2 eligible for the
~ result_tV
Add
¥ candidat_text[]
to result_table(]

YES

Write result_table[]

i
v

STOP _)

Fig. 4 Block diagram of the sequential algorithm, breaking the text
encrypted by a rotor machine

World Academy of Science, Engineering and Technology 64 2012

The encrypted quotation: “Hope is the pillar that holds up
the world” at the following initial settings of the rotors: 14, 8,
1, 9,9, 0, has the following form:

TSTXDWXRQETVQVIGUOSFXGPMXKHZHKWTIG

Part of the received result after the cryptanalysis looks as
follows:

026.765929 22 12 19 23 24 21
INOMEMNFHVMJAMRWENTOOKBIGORLVUKIJOF
126.761781 23122419198
HNORZCDOIINSONAMSIANDKKITOKCINRURK
224.870784 20258817
ANORWRSZBSFDDGOTHEMEAHEEWLPASSOGCF
324.84870519168878
AJKFANOTBYNKDGOTHEMPDWESIAORIRGMYR
424.8458781481990
HOPEISTHEPILLARTHATHOLDSUPTHEWORLD
524.833928 208717 2221
ANORMRSZBYXDDGOTHYMEKHESWLXAQAOKCF

Every result occupies two verses. The first number in the
first verse determines the number of a solution (numbered
from zero), next — the score, and subsequent digits determine
the settings of the rotors at which decrypting occurred. In the
second verse, there is a text decrypted at given settings.

As it can be seen, the correct solution is located only as far
as on the fourth position, and the result is 24.845878. The
encrypting was performed with the initial setting of rotors
equal to: 14, 8, 1, 9, 9, 0. The analyzed text is composed of
only 34 characters, therefore, it is difficult to receive a good
result here. In case of longer cipher-texts, one may single out
the correct candidate in a much better manner. The working
time of the sequential algorithm analyzing this example on the
processor Intel Core 2 Quad CPU Q8200 amounted to 315
minutes and 20 seconds.

IV. PARALLEL ALGORITHM

A parallel algorithm is the extension of the sequential
version. Parallelization occurs here at the level of crypt-
analysis which is performed parallelly on several
computational units (CPUs).

The algorithm was implemented in two different manners.
In the first one, the OpenMP library was used. Parallelization
consists in the division of the analyzed settings of rotors of the
machine into separate processors. The simplest solution for
computers with shared memory has, however, one critical
section, which might be a significant limitation in case of
calculations on a larger number of processors. In this section,
the possible addition of a new text being the candidate for the
correct variant to be recorded in the result_table[] located in
the memory common for all threads. The threads may not
modify this table parallelly; at a given moment, only one of
them may perform a determined part of the code.

617

#pragma omp critical
{
add_to_result_table(result_table, size_result_table,
rotors_value, score, open_tekst);

if(size_result_table < MAX_RESULT_TABLE)
size_result_table++;

START

Y
MPI / OpenMP API ‘
| |
h 4 Y h 4
D 9] 0
S 3 3
n) o (m)
4 & &
Parallel ’ & s &
cryptanalysis — = =
o @ o
Q Q o
o o Q
— N 3
| ;
) \ 4 ¥
--- Barrier ---
— —'__,___._.-]-—-—'d_'_'—_ —
h 4
-
S
m
5]
Synchronization h
and analysis of =
results =
a
Q
Q
[
Y

STOP

Fig. 5 Scheme of performing a parallel program

Another considered possibility is entire parallellization with
the use of MPI. In this case, the data are processed in a
completely independent manner, and synchronization occurs
only at the moment of concluding the analysis by all the
processes. It is at that stage that the best solutions calculated
by separate processors are collected, and the table of the final
results is collated. This stage lasts for a very short time
because small quantities of information are sent between the
processes; the table of structure is of a candidate_text type,
one field of which covers 533 bytes. This concept is presented
in Fig. 5. This solution may well be implemented with the use
of OpenMP, too.

World Academy of Science, Engineering and Technology 64 2012

V.REsuLTS

The prologue of Act I of the drama Romeo and Juliet by
William Shakespeare in the English language version was
subjected to the analysis. It consists of exactly 500 characters.
Dictionaries of various sizes were used, thanks to which it was
possible to conduct faster, but less precise, cryptanalysis, or a
slower, but taking under consideration more of the words
available in the dictionary, one. For very small dictionaries,
the received results may be comparatively weak. However,
taking under consideration more than 700 words may not
bring additional benefits, either, and only additionally increase
the calculation-related outlays. A good compromise is
choosing a dictionary consisting of 300 to 600 most popular
words, which can be observed in Fig. 6. The analysis of the
dictionary constitutes an additional linear burden on the entire
algorithm — it is presented in Fig. 7.

180
160
140

120

Text score

100

80/

60
100

200 300 400 500 600 700

Dictionary size (number of words)
[First text candidat [l Second text candidat
Fig. 6 Increase in the difference in the score of the first (correct) text,

and, subsequently, in the score of (erroneous) one received thanks to
using a dictionary of a defined size

80
70
60

50

Time (in hours)

40
30

20

100 200 300 400 500

Dictionary size (number of words)

600 700

M Execution time on the Intel Core 2 Quad CPU Q8200
Fig. 7 Increase in time of performing program on a single core of

processor Intel Core 2 Quad Q8200 after using a dictionary of a
defined size

The implementation of the algorithm with the use of
OpenMP is very simple and, for less demanding applications,
it may prove to be completely sufficient. The acceleration in
the order of 3.5 is received here for newer processors having
four cores — Core i7. In case of a larger number of cores, a
dominating problem may be the size of the cache memory,
which, in most cases, may cause slowing down the work of a

618

parallel algorithm, due to competition of the processors in
terms of access to data. On a machine consisting of four 10-
core processors Intel Xeon E7- 4860, it was possible to
receive the acceleration of 28.62 (dictionary = 500 words) and
38,34 (dictionary = 100 words), which seems to be a good
result. The received results were presented in Fig. 8 and in

Table II.

Intel Xeon CPU X5650

Intel Core i7 CPU 950

Intel Core 2 Quad CPU Q8200

M Single CPU core

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

Time (in minutes)

B All CPU cores

Fig. 8 Visualization of the increase in efficiency received on single
multi-core processors (with the use of OpenMP)

TABLE II
DETAILED RESULTS FOR A SOLUTION BASED UPON OPENMP
Time (in
CPU name Frequency Cores Speedup minutes)
Ciphertext = 500 chars, Dictionary = 500 words
Intel Core 2 Quad

Q8200 2,33 GHz 1 1 3737
4 2,98 1250
Intel Core i7 950 3,07 GHz 1 1 2831
4 3,42 826
Intel Xeon X5650 2,67 GHz 1 1 3060
6 4,93 620
Intel Xeon E7- 4860 | 2,27 GHz 1 1 4380

40
(4x CPU) 28,62 153

Ciphertext = 500 chars, Dictionary = 100 words
Intel Core 2 Quad

Q8200 2,33 GHz 1 1 1505
4 2,78 541
Intel Core i7 950 3,07 GHz 1 1 1224
4 3,52 347
Intel Xeon X5650 2,67 GHz 1 1 1360
6 3,87 351
Intel Xeon E7- 4860 | 2,27 GHz 1 1 1879

40

(4x CPU) 38,34 49

World Academy of Science, Engineering and Technology 64 2012

Thanks to a solution based upon MPI, we can receive
nearly ideal acceleration. Of course, even in spite of using the
same processors and quick communication interface between
them, it will never be perfect. The acceleration presented in
Fig. 9 shows, however, that in this case we do not encounter
limitations which, at certain moments, are a significant burden
upon parallel programming.

Speedap
1000

800
600
400

200

0 200 400 600 800 1000
Number of processors

==|deal Speedap == Real Speedap

Fig. 9 Acceleration received thanks to using the MPI library and also
processors Intel Xeon X5650

VI. CoNcLusioN

Today, it is possible to attempt to break the safeguards
received by electro-mechanical machines used only as
recently as 30 years ago. However, one should remember that
the classical six-rotor machine presented in the paper is
simplified in comparison to, for example, Enigma. The
applied solutions may, however, very easily be transferred
onto more complicated rotor machines.

An interesting possibility may be that of using graphic
processors (nVidia CUDA, AMD FireStream, OpenCL),
which, in some cases, make it possible to receive much better
results.

ACKNOWLEDGMENT

This research was
Infrastructure.

The work has been prepared using the supercomputer
resources provided by the Faculty of Mathematics, Physics
and Computer Science of the Maria Curie-Sklodowska
University in Lublin.

supported in part by PL-Grid

REFERENCES

[1] F. L. Bauer, "An error in the history of rotor encryption devices",
Cryptologia 23(3), July 1999, p. 206

[2] K. de Leeuw, "The Dutch invention of the rotor machine, 1915 - 1923."
Cryptologia 27(1), January 2003, pp. 73-94.

[31 H. Beker, F. Piper, "Cipher Systems: The
Communications", Wiley-Interscience, 1982, pp. 397.

[4] R. Lewand, "Cryptological Mathematics", The
Association of America, 2000, pp. 36.

Protection of

Mathematical

619

[5]
[6]

W. F. Friedman, The index of coincidence and its applications in
cryptology. Department of Ciphers. Publ 22, 1922

W. F. Friedman, L. D. Callimahos, Military Cryptanalytics, Part I —
Volume 2, 1956

