
Data model for analysis of scholarly documents

in the MapReduce paradigm

Adam Kawa, Lukasz Bolikowski, Artur Czeczko, Piotr Jan Dendek, and
Dominika Tkaczyk

Interdisciplinary Centre for Mathematical and Computational Modelling,
University of Warsaw

{a.kawa, l.bolikowski, a.czeczko, p.dendek, d.tkaczyk}@icm.edu.pl

Abstract. At CEON ICM UW we are in possession of a large collec-
tion of scholarly documents that we store and process using MapReduce
paradigm. One of the main challenges is to design a simple, but effective
data model that fits various data access patterns and allows us to perform
diverse analysis efficiently. In this paper, we will describe the organiza-
tion of our data and explain how this data is accessed and processed by
open-source tools from Apache Hadoop Ecosystem.

Keywords: large-scale analysis, MapReduce paradigm, data modelling

1 Introduction

At CEON ICM UW1 (Centre for Open Science in Interdisciplinary Centre
for Mathematical and Computational Modelling, University of Warsaw) we are
in possession of a vast collections of scholarly documents to store and analyze.
Currently, there are about 10 million of full texts (PDF or plain text) and 17
million of document metadata records that together occupy several terabytes
of disk space. The data grows at the rate of approximately 100 thousand of
document metadata records and PDF files (i.e., about 50 GB) a month.

XML-based BWMeta format [6] is used to describe the document metadata
records. It contains information like title, subtitle, abstract, keywords, references,
contributors and their affiliations, publishing venue and so on.

We are using this data as input for algorithms to analyze and discover vari-
ous relationships between documents, contributors, references and other entities.
Some of the algorithms are relatively simple such as searching documents with
given title or finding scientific teams, but some of them are quite complex tasks,
based on state-of-the art machine learning and network analysis methods such
as author name disambiguation, classification code assignment or finding most
influential papers in given domains.

Our current approach suffers from performance/scalability issues since the
data was usually located on a several separate machines, but processed by a
single machine. Although we can easily add more machines to store more data,

1 http://ceon.pl/en

it will not solve our performance problems as our computations are not fully
distributed. Therefore, we made a decision to move from a single-machine pro-
cessing to a multi-machine configuration.

2 Problem definition

The research problem can be stated as designing a scalable and efficient stor-
age scheme for RDF triples.However, rather than designing one-fit-all storage
scheme for RDF triples, we are interested in a solution that is better adapted
to our data and data access pattern. As an additional restriction, the solu-
tion should be implementable utilizing open-source tools from Apache Hadoop
Ecosystem.

We investigated various frameworks for scalable, distributed and efficient
storage and processing of a large amounts of data. Apache Hadoop2 and related
projects like Apache HBase3, Apache Hive4 and Apache Pig5 attracted us the
most since they are commonly used, open-source solutions that provide reliable
and cost-effective way to persist and process big data.

We focused on designing a simple, but still handy data model that copes with
storing terabytes of detailed information about scholarly documents. Various re-
quirements regarding data access were imposed on the model, mainly in terms of
flexibility (possibility to add, update and delete records, and enhance their con-
tent by implicit information discovered by our algorithms), latency requirements
(from batch offline processing to random, realtime read and write requests) and
client interface (accessed by programmers and analysts with diverse language
preferences and expertise).

We observed that our data can be represented in a flexible way as a collection
of triples, each representing a statement of the form subject-predicate-object,
which denotes that a resource (subject) has an attribute (predicate) with some
value (object). In other words, such a collection of triples describes a directed,
labeled graph, where nodes represent subjects and objects, and edges represent
predicates which connect subject nodes to object nodes.

The concept of triples is used by the Resource Description Framework (RDF)6

to describe information about Web resources (documents, files, images, services
etc.) and model various relationships between them (see Fig. 1 for an example).
The RDF data model is extremely flexible since it allows anyone to make any
statements about any resource using the subject-predicate-object. In a similar
way, we can describe any relationship that explicitly exists in our data, or may
be discovered later by our machine learning algorithms.

2 http://hadoop.apache.org
3 http://hbase.apache.org
4 http://hive.apache.org
5 http://pig.apache.org
6 http://www.w3.org/RDF

Fig. 1: An example RDF graph data for scholarly documents (some predicate names
are omitted for clarity)

3 Related work

During recent years, significant efforts have been made to develop scalable,
high-performance and low-cost distributed systems for storing and querying large
collections of triples (called triplestores) [1, 12]. Some of them were focused on
taking advantage of open-source projects such as Apache Hadoop, Apache HBase
and Apache Pig to attain this goal [9, 10, 7].

Rohloff and Schantz [9] authors introduce a concept of scalable triple-store
built on Hadoop and HDFS7 and processed by MapReduce paradigm (see [2] for
a description of this paradigm). The paper and resulting system (called SHARD)
has aroused significant interest as it leverages Hadoop to scale sub-graph pattern
matching (which is quite difficult task) using technique which is 2–3 times more
efficient than the naive way of using Hadoop for this task8. The system persists
RDF triples in ”flat” text files in HDFS (each line stores all triples associated
with a different subject). The disadvantage of this approach is that data cannot
be modified randomly; moreover, this solution is less efficient for queries that
require the inspection of only a small number of triples [9].

One-table-per-property approach that uses a concept of vertical-partitioning
of RDF data in column-oriented stores was presented in [1]. Here, separate two-
column tables are constructed for each property (predicate), where the first col-
umn contains the subjects that define that property and the second column con-
tains the object related to those subjects. This approach has several advantages
such as support for multi-valued attributes, reduced IO costs and a potential use

7 http://hadoop.apache.org/hdfs/
8 http://dbmsmusings.blogspot.com/2011/07/hadoops-tremendous-inefficiency-
on.html

of linear merge joins, however it suffers from performance drawbacks on queries
that are not bound by a predicate value [12].

Weiss et al. [12] address above-mentioned performance problems by enhanc-
ing the idea of vertical partitioning and creating a six indices structure for stor-
ing RDF triples. The six indices (pso, pos, spo, sop, ops and osp) cover all the
six possible ordering of three elements in a triple. This format allows for quick
lookups and partial scans of data at the price of an increase of storage space and
complication of the update operation. Since data is stored with multiple indices,
all first-step pairwise joins are fast (linear) merge-joins.

Papailiou et al. [8] adopt the idea of [12], but reduce the number of indices to
three. Here, all triples are persisted in HBase using three ”flat-wide” tables (sp o,
po s and os p). The authors argue that the six-index approach can have better
performance only for certain queries that contain filters on variables, while for
all other queries, three indices suffice for optimal performance. The paper also
presents several different join strategies which take the query selectivity and the
inherent features of the MapReduce and HBase into account to minimize the
processing time.

Performance of six different HBase storage schemas on a subset of queries
from SP2Bench9 is evaluated and discussed in [7]. The hybrid storage schema
(consisting of three ”flat-wide” tables each indexed by subjects, predicates and
objects plus set of two tables for every unique predicate, each indexed by subjects
and objects) achieved the best performance results.

The default way of querying RDF data stored in Hadoop is execution of
MapReduce algorithms. Since developing such algorithms is still considered chal-
lenging, especially for non-technical analysts, some researchers investigated alter-
native methods for querying RDF data on a Hadoop cluster exploiting high-level
languages. One of the approaches is to utilize Apache Pig framework. The pa-
per [10] introduces PigSPARQL, a system that translates SPARQL10 (a query
language for RDF) queries to Pig Latin programs and executes them on Hadoop
cluster. The input RDF data resides in HDFS. In accordance with the vertical
partitioning idea, RDF triples with the same predicate are stored in HDFS files
in the same folder and each predicate has its own folder.

A very impressive performance results of querying RDF data are presented
in [5]. The paper describes optimization techniques like RDF graph partitioning
scheme to exploit the spatial locality inherent in graph pattern matching. In
this approach, a higher replication rate is set for the data on the border of any
particular partition. The authors claim their optimizations result in a 1000 fold
improvement in efficiency based on experiments done using Lehigh University
Benchmark (LUBM)11. However, it might be argued12 that the idea of a higher
replication factor would be inappropriate for graph applications that modify the

9 http://dbis.informatik.uni-freiburg.de/forschung/projekte/SP2B/
10 http://www.w3.org/TR/rdf-sparql-query/
11 http://swat.cse.lehigh.edu/projects/lubm
12 http://muratbuffalo.blogspot.com/2011/12/scalable-sparql-querying-of-large-

rdf.html

RDF graph data, because it would be very hard to maintain consistency among
the replicas of the boundary vertices as they change.

On the basis of papers mentioned above, we can state that the greatest chal-
lenge for processing big collections of triples is a large number of join operations.
While joins are expensive, they cannot be avoided in practice (at least for more
complex queries). Some systems aim at reducing the number of joins by either
storing related data co-located in the same row (in HBase) [11, 8, 7] or line (in
HDFS) [9], while other systems optimize the join executions by using specialized
join techniques like multi join, merge join or skewed joins [12, 10, 8]. Optimiza-
tions like property tables [13, 14] and materialized paths are also proposed [1].

4 Data Storage

Similarly to [11, 8, 7], we have selected Apache HBase as a main tool for our
storage layer. There are several reasons for that:

• Flexible data model. Simple, yet flexible data model provided by HBase
gives us a control over data layout and format. Namely, we can dynamically
add new columns (e.g. containing detailed information about triples such
as certainty of relationship, data source, or inferring algorithm) or delete
existing ones. There is a possibility to store multiple versions of data in a
particular cell distinguished by a timestamp. Additionally, HBase does not
require a fixed definition of data types during database creation.

• Random read and write. HBase provides random and realtime read-
write access to the data allowing us to easily add, update and delete triples.
HBase seems to be more suitable for semi-structured RDF data than HDFS
where files cannot be modified randomly and the whole file must be read
sequentially to find subset of required records.

• Many clients available. HBase can be accessed through interactive clients
like native Java API, REST or Apache Thrift13 as well as through batch
clients like MapReduce, Pig and Hive. The integration with batch clients,
especially MapReduce and Pig, seems to be crucial for us since it gives
the possibility to run distributed computation asynchronously in the back-
ground, scanning and processing large amounts of data in parallel.
As mentioned earlier, our data is analyzed by many researchers (including
non-technical ones) with various language preferences. Availability of many
clients will allow anyone to choose preferable way and language to access the
data (e.g. Java, Python, HiveQL or Pig Latin).

• Automatically sorted records. HBase stores the data sorted lexicograph-
ically by a row key. When storing huge amounts of data, this feature becomes
really important since data can be looked-up and scanned quickly. If joins
are required (what is often the case), they can be possibly done using simple
and fast (linear) merge join [1, 12].

13 http://thrift.apache.org

5 Storage schema

Following recommendations in [4], we have organized our data in ”tall-narrow”
layout (many rows, few columns). The main problem with ”flat-wide” (few rows,
many columns) layout is worse load balancing since a single row is never split
across HBase regions. Moreover if a row has an unlimited number of columns, it
may outgrow the maximum region size and work against the region split facility
[4]. Such a situation seems to be possible in our case as we deal with tens of
billions of triples. Moreover storing really wide rows with millions of columns
(e.g. a given publisher may be in relation with tens of millions of documents
and authors, or a predicate type related to hundreds of millions of entities like
documents, authors, references, keywords etc.) also reduces performance due to
unoptimal load balancing (as mentioned above) and row-level locking mecha-
nism14.

Fig. 2: Predicate Indexed Layout - HBase Storage Schema

Our HBase storage schema layout is presented in Fig. 2. We adopted the
ideas of [1, 12, 7] with some changes to make it more suitable for our use cases.
The schema consists of two ”tall-narrow” tables pso and pos, each indexed
by predicate-subject-object and predicate-object-subject respectively. For a given
triple, its subject, predicate and object values are concatenated and stored en-
tirely in a row key and one row is added to each of two tables. Each table consists
of a one column family called m (metadata). Columns dynamically added to this
column family contain additional information about triples (this way we can de-
scribe statements about statements).

The proposed scheme requires that data is stored twice (HBase has no native
support for secondary indexes [4]). Tables pso and pos can be used to efficiently
retrieve triples with known predicate, predicate-subject and predicate-object val-
ues. However retrieval of triples based on subject or object values (where predi-
cate is unknown) may be less efficient since it requires a scan of multiple parts
of an appropriate table (pso and pos, respectively). To remedy this problem,
we could create four additional tables with remaining indices (spo, sop, ops,

14 http://www.quora.com/Is-there-a-limit-to-the-number-of-columns-in-an-HBase-row

osp). Although such a solution, may provide significant performance improve-
ment for many interesting queries [12], currently the majority of our queries is
predicate-bound (similarly to queries in commonly used benchmarks e.g. LUMB,
SP2Bench). Moreover our set of predicates is relatively small and most of the
queries require only few predicates at the same time (so that only several partial
scans are needed).

Basically, we favour simpler approach (what results in lower redundancy,
smaller lower storage requirements and easier update operations) and potentially
add new tables with required indices if they appear to be really necessary in the
future.

The advantages of this layout can be outlined as:

• Support of multi-valued properties. Multi-valued properties (such as
a document with multiple titles in different languages) and many-to-many
relationships (such as the document and authorship relationship where a
document can have multiple authors and an author can write multiple docu-
ment) are easy to handle in this approach [1]. Actually, there is no difference
between single-valued and multi-valued properties. If a subject has more
than one object value for a particular property, then each distinct value is
stored in a successive row in the table [1].

• Support of reified statements (statements about statements). As
mentioned, new columns qualifiers can be dynamically added to column fam-
ily m and contain additional information about triples such as certainty, data
source or inferring algorithm.

• First-step (predicate-bound) pairwise joins as fast merge-joins. For
a given predicate, all triples are sorted by subject (pso table) and object (pos
table). As a result, every pairwise join (with specified predicate) performed
during the first step of query processing is a fast, linear-time merge join [12].

• Reduced redundancy. Although data is stored twice, the redundancy is
still significantly smaller than in storage schemas presented in [11, 8] as well
as in 5 out of 6 schemas from [7].
We can potentially optimize the consumed storage space by directly adopting
the idea of vertically partitioned layout [1, 7] and splitting pso and pos tables
into multiple separate tables. This way, for every unique predicate, two tables
are created (each respectively indexed by subjects and objects). The storage
savings are gained by moving a predicate name to the name of the table and
completely eliminating the storage of a predicate as a part of row keys [7].

• Reduced complexity of update operation. Similarly, although update
operation requires modification in two HBase tables, it is still simpler than
approaches presented in [11, 8, 7].
Since HBase does not provide native support for cross-row atomicity (e.g.
in the form of transactions), the consistency of pso and pos tables cannot
be guaranteed. This can be partially overcome by recreating one table from
another, if any inconsistency is discovered. One MapReduce, highly efficient
bulk import job15 could be easily implemented for this task.

15 http://hbase.apache.org/book.html#arch.bulk.load

Despite advantages mentioned above, this HBase schema layout has a disad-
vantages that seriously affect query performance.

• Increased number of joins. As triples are stored in ”tall-narrow” tables, a
larger number of join operations is required to process data. In comparison,
”flat-wide” tables approaches entirely remove the need for joins to answer
queries about the same subject (or object); however, they still require joins
to answer RDF path queries.
This performance drawback can be alleviated using specialized join tech-
niques such as multi join (when multiple sets are joined by the join key),
merge join (when sets are sorted by the join key), replicated join (when one
set is very large, while other sets are small enough to fit into memory) and
skewed join (when a large number of records for some values of the join key
is expected).

6 Optimizations

This simple, but extensible data model allows us to improve the queries
performance when more use cases are defined and a deeper knowledge about our
data access is gained. Following optimizations can be proposed:

• Adding new indices. As mentioned, introducing new indices will improve
performance for queries which are not bound by the predicate [12].

• Property tables Property tables was proposed by researchers developing
the Jena Semantic Web toolkit, Jena2 [14, 13]. By definition, a property table
contains clusters of properties that tend to be defined together. One example
are type, title, issue date defined as properties for scholarly documents. Such
properties can be stored together in the same row for a quick access.
In fact, this idea is already exploited by us for the storage of reified state-
ments (statements about statements). We take a step forward with this ap-
proach and dynamically add new columns qualifiers to a new column family
p (property) that contains useful properties related to a particular subject
in a triple. Rows with the predicate type can be simply selected to hold
these additional column qualifiers (Fig. 3). Note that some properties may
be appropriate to only one or two types, while being totally inappropriate
for others. This increases the sparsity of the table, however HBase deals with
this issue very efficiently as NULLs are not stored on disk.
While property tables can significantly improve performance by reducing the
number of self-joins, they introduce several problems:

• Complexity. Property clustering (based on explicit or implicit knowl-
edge about data and data access) must be carefully done to create rows
that are not too wide, while still being wide enough to answer most
queries directly [1].

• Redundancy. While a particular predicate, subject, object is always
stored in row keys, it might be also additionally stored in column qualifier
or cell (i.e. time-versioned value identified by column and row names).

Fig. 3: Graphical presentation of table pos exploiting the idea of a property table

• Increased storage. In HBase, each cell is stored in a ”fully qualified”
way (with its row key, column family, column qualifier, timestamp etc.)
on disk. Adding new cells causes that a row key (consisting of predicate,
subject, object) is repeated and stored multiple times on disk, thus in-
creasing the storage space. This is another reason, why a special care
should be taken not to make a row too wide.

• Materialized path expressions. The concept of materialized path ex-
pressions was presented in [1] and discussed in [12]. Path expressions are
expressions that match specific paths through a RDF graph16 (see Fig. 4).
Querying path expressions is a common operation on RDF data, but can be
quite expensive due to the fact that it requires subject-object joins. Basi-
cally, a path of length n requires n− 1 subject-object joins. Since our data
schema contains pso and pos indices, the first of joins in a path is a linear
merge-join, while the rest n − 2 are sort-merge joins, i.e. each one requires
one sorting operation [12].

The idea of precalculation and materialization of the most commonly used
path expressions in advance may significantly improve performance of queries.
For example, we analyze various statistics about contributor cooperation e.g.
finding hubs (i.e. people that collaborate with many other people), finding
international scientific teams (i.e. people of different nationalities who col-
laborate with each other very often), calculating the Erdos number17 for
each person and so on. Generally speaking, the above-mentioned algorithms
take pairs of collaborating people as input data. Precalculation and mate-
rialization of triples in form of predicate-subject-object, where predicate is
contributorPair, subject is a document and object is a pair of people con-
tributing to this document, would improve performance of these algorithms
(see Fig. 5).

16 http://www.openrdf.org/doc/sesame/users/ch06.html#d0e1170
17 http://en.wikipedia.org/wiki/Erd%C5%91s number

Fig. 4: Graphical presentation of an exemplary expression path query to find title and
emails of contributors for each given document

Fig. 5: Graphical presentation of an expression path query to find all pairs of people
who contributed to each given document

Basically, we can think about materialized paths as an output of our algo-
rithms (some of them very simple) that we want to store together with the
input data in the same HBase tables. For these triples, a special prefix (e.g.
mp) can be added to row keys to distinguish them from input triples.

All of described optimizations contribute to the improvement of the perfor-
mance at the price of increased storage requirements and increased complication
of update operations. In general, when new data is added or changed, properties
tables and materialized paths must be recalculated. We do realize that opti-
mizations above do not solve the problem of large number of joins in a general
fashion. They are also not fully automated; however, in many cases the necessary
calculations can be computed by regularly scheduled MapReduce jobs.

7 Processing

This section describes how our data residing in HBase tables is accessed by
open-source tools from Apache Hadoop Ecosystem. We take advantage of multi-
ple existing clients to meet our various demands like latency requirements (batch
offline processing and random, realtime access) and programming preferences
(object-oriented, scripting, and declarative languages).

7.1 Pig

Pig is an Apache open source project that provides an engine for executing
data flows in parallel on Hadoop. In includes a high-level language (called Pig
Latin) for expressing data analysis programs. Pig Latin supports many opera-
tors for the traditional data operations (such as join, union, sort, filter). It also
allows developing UDFs (user-defined functions) for reading, processing, and
writing data [3]. Pig Latin programs are automatically translated into a series
of MapReduce jobs.

Loading data from and storing to HBase. Pig is integrated with HBase,
so that Pig Latin programs can read data from and write data to HBase tables
using HBaseStorage18. All these reads and writes are bulk operations.

When loading from HBase, a table name, start and stop row keys, column
families, and column qualifiers (even specified only by a prefix) can be selected.
This gives a possibility to efficiently read only the data that is needed for to
perform the computation.

Listing 1.1: Loading data from HBase in Pig

dcraw = LOAD ’ hbase : // bwta l l p so ’
USING org . apache . p ig . backend . hadoop . hbase . HBaseStorage (
’m: bc ’ ,

18 http://pig.apache.org/docs/r0.10.0/api/org/apache/pig/backend/hadoop/hbase/HBaseStorage.html

’−loadKey true −gte c on t r i bu t o r − l t e c on t r i bu t o r \ u f f f f
−caching 10000 ’)

AS (key : chararray , blank : chararray) ;

d c s p l i t = FOREACH dcraw
GENERATE FLATTEN(STRSPLIT(key , ’ ’ , 3))
AS (p : chararray , cdoc : chararray , cauth : chararray) ;

dc = FOREACH d c s p l i t GENERATE cdoc , cauth ;

Loading multiple parts of a HBase table using separate LOAD operations is
translated to one MapReduce job (consisting of a map phase). In the next step,
separate relations (such a dc) can be later joined or unioned and become an
input to other Pig operators.

Joining data. Processing our data with Pig is very convenient since it supports
multiple specialized join implementation (such as multi join, merge join, merge-
sparse join, replicated join, skewed join)19. Having data sorted both by subject
and object (for a given predicate), we are able to perform first step subject-
subject joins and subject-object joins using simple and fast merge join operation.

Currently, Pig does not allow programmer to use any UDF in the foreach
statement between the load of the sorted input and the merge join statement20.
Unfortunately, since our subject, object, and predicate are concatenated in a
row key, we need to use one UDF (i.e. STRSPLIT21) to split a row key into
three separate parts (i.e. into a tuple with three fields containing subject, ob-
ject and predicate which needs to be flattened by FLATTEN operation22). As
a workaround, we can extend our data model to store additional three column
qualifiers for storing subject, predicate and object values, so that STRSPLIT op-
eration can be avoided. Alternatively, we can load sorted input data from HBase,
split and flatten each row key into three separate parts and then store them in
HDFS. After loading this (stored) data from HDFS, a merge join operation can
be executed. The first approach requires more storage space and increases data
redundancy, however is much faster in comparison to the second one. So far,
have we decided to use the first approach until this issue is resolved by us or
Apache Pig community (PIG-267323).

Extending Pig functionality. The list of operators and functions provided by
Pig can be easily extended by user by developing his own UDFs [3]. The UDFs
can be written in Java or Python.

The integration with Python is even deeper since Pig Latin can be embed-
ded in Python scripts. Thus, Python’s control flow constructs like ”if” and ”for”

19 http://pig.apache.org/docs/r0.10.0/perf.html#specialized-joins
20 http://pig.apache.org/docs/r0.10.0/perf.html#merge-joins
21 http://pig.apache.org/docs/r0.10.0/api/org/apache/pig/builtin/STRSPLIT.html
22 http://pig.apache.org/docs/r0.7.0/piglatin ref2.html#Flatten+Operator
23 https://issues.apache.org/jira/browse/PIG-2673

(which are not natively supported by Pig) may be used to either repeat process-
ing a certain number of times, or to branch based on the results of an operator.
Since many machine learning algorithms require repeating a calculation until a
certain error value is within an acceptable bound, this feature seems to be very
useful [3].

7.2 MapReduce

Using HBase as a storage layer gives also us a possibility to process data
by implementing Java MapReduce jobs that read data from and write data to
HBase tables. We can implement such jobs if we want to obtain an increased
performance or exploit legacy Java code. According to PigMix2 benchmark24,
Pig Latins programs are slower by a factor of 1.37–1.76 when compared with
native MapReduce programs with regard to operations like “order by”, “outer
join”, and “group by” (where the key accounts for a large portion of the record).

The greatest current limitation of running Java MapReduce jobs over HBase
tables is lack of support for using multiple tables and scanners as input to the
mapper in MapReduce jobs (HBASE-399625). However, most of our algorithms
require input records from multiple parts of two HBase tables. We alleviate
this problem by preparing input data for MapReduce jobs in Pig (using LOAD,
UNION and JOIN operations) and then running MapReduce jobs directly from
Pig scripts with the mapreduce command [3]. This way we can avoid the burden
of implementing complex (like join) or even not supported yet (like multiple
tables and scanners as input) operations in Java MapReduce, but still have a
possibility to incorporate processing using the MapReduce paradigm in our big
data analysis.

7.3 Interactive clients

While offline, complex analysis are performed by batch processing clients,
there are some use cases where we need interactive access to relatively small
subset of our data. One of such examples is a web-based client that may search
for entities with attributes matching a certain query and navigate amongst in-
terconnected entities by sending client API calls on demand (such as get and
scan).

HBase is a good fit for such use cases, as it is designed to perform random,
realtime read and write requests to big data. Interactive clients include, e.g.
native Java API, REST or Apache Thrift.

7.4 Other clients: Hive

Hive is a data warehouse system for Hadoop that supports easy data summa-
rization, ad-hoc queries, and analysis of large datasets26. It provides a SQL-like

24 https://cwiki.apache.org/confluence/display/PIG/PigMix
25 https://issues.apache.org/jira/browse/HBASE-3996
26 http://hive.apache.org

language called HiveQL to query the data, thus makes Hadoop accessible to an-
alysts who already know SQL. Hive is integrated with HBase, so that HiveQL
statements can access HBase tables for both read (SELECT) and write (IN-
SERT)27. Similarly to Pig and MapReduce, all these reads and writes are bulk
operations.

The main advantage of using Hive over HBase is possibility to use JOIN and
UNION statements. This way more complex analysis on data from HBase can
be performed similarly as in SQL. As many of our researches already know SQL,
this approach can be widely used for a rapid development of ad-hoc queries.

8 Configuration

Our Hadoop cluster consists of a four ”fat” worker nodes and a virtual ma-
chine on separate physical machine in the role of NameNode, JobTracker and
HBase master. Each worker node has four AMD Opteron 6174 processors (48
cores in total), 192 GB of RAM, four 600 GB disks which work in RAID 5 ar-
ray with an access to 7TB LUN of NetApp disk storage over FC. The master
has 8-core CPU, 32 GB of RAM and 64 GB storage. Each worker node runs 50
mappers and 30 reducers, each consuming 1GB of RAM (may be increased for
memory-consuming applications). We are using Cloudera’s Distribution includ-
ing Apache Hadoop (CDH)28, mainly CDH3u3 which includes Hadoop 0.20.2,
and HBase 0.90.4 by default. We decided to update to Hive (from 0.7.1 to 0.9.0)
and Pig (from 0.8.1. to 0.10.0) to benefit from newly implemented features.

9 Conclusions

We have described how our data is stored and processed using open-source
tools from Apache Hadoop Ecosystem. The main goal was to provide a simple,
but handy data model that can be conveniently accessed using various client
interfaces. Our initial work proves that Apache Hadoop and its related projects
are good framework for persisting and processing of millions of scholarly docu-
ments that together occupy several terabytes of data. We see clear benefits of
using Apache Hadoop for this task when compared with our previous, not fully
distributed approach because now the data is stored in a reliable way (replicated
in HDFS) and processed in parallel using MapReduce paradigm.

10 Plans for future

Deep examination and specification of our future algorithms may contribute
to selection of the most suitable indices for storing and querying triples or pre-
calculation of the most common materialized paths.

27 https://cwiki.apache.org/confluence/display/Hive/HBaseIntegration
28 http://www.cloudera.com/hadoop

We intend to investigate other HBase storage schema layouts, mainly com-
posed of ”flat-wide” tables, where the number of columns can be limited to a
certain number (or its approximate value) in some way. Such an approach would
allow us to reduce number of rows (and result in faster seeks) and joins (as data
is colocated in the same rows) and shorten row key size (to save storage space,
as the row key is stored with each KeyValue pair)29, while the rows will still
have predictable size and do not work against the Hadoop region split facility.

We will also focus on implementation of required features (or more efficient
workarounds), that currently are not fully supported by modules responsible
for an integration of HBase with MapReduce, Pig and Hive. Some effort has
been made by Hadoop community to solve these issues, however the work still
has not been finalized. We could contribute to implementation of following, still
incomplete patches:

• Support multiple tables and scanners as input to the mapper in MapReduce
jobs (HBASE-399630).

• Allow merge join operation to follow an UDF statement (PIG-267331).

11 Acknowledgements

This work is supported by the National Centre for Research and Develop-
ment (NCBiR) under Grant No. SP/I/1/77065/10 by the Strategic scientific
research and experimental development program: ”Interdisciplinary System for
Interactive Scientic and Scientic-Technical Information.”

References

1. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable semantic
web data management using vertical partitioning. VLDB pp. 411–422 (2007),
http://dl.acm.org/citation.cfm?id=1325900

2. Dean, J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters
pp. 1–13 (2008), http://dl.acm.org/citation.cfm?id=1327492

3. Gates, A.: Programming Pig. OReilly Media (2011)

4. George, L.: HBase: The Definitive Guide. OReilly Media (2011)

5. Huang, J., Abadi, D.J., Ren, K.: Scalable SPARQL Querying of Large RDF
Graphs. VLDB Endowment 4 (2011)

6. Jurkiewicz, J., Nowiski, A.: Detailed Presentation versus Ease of Search Towards
the Universal Format of Bibliographic Metadata (2011)

7. Khadilkar, V., Kantarcioglu, M., Thuraisingham, B., Castagna, P.: Jena-HBase:
A Distributed, Scalable and Efficient RDF Triple Store. Tech. rep. (2012),
http://www.utdallas.edu/ vvk072000/Research/Jena-HBase-Ext/tech-report.pdf

29 http://www.cloudera.com/resource/hbasecon-2012-lessons-learned-from-opentsdb
30 https://issues.apache.org/jira/browse/HBASE-3996
31 https://issues.apache.org/jira/browse/PIG-2673

8. Papailiou, N., Konstantinou, I., Tsoumakos, D., Koziris, N.: H2RDF: Adaptive
Query Processing on RDF Data in the Cloud. In: Proceedings of the 21th Interna-
tional Conference on World Wide Web (WWW demo track). pp. 397–400 (2012)

9. Rohloff, K., Schantz, R.: Clause-Iteration with MapReduce to Scal-
ably Query Data Graphs in the SHARD Graph-Store. In: Pro-
ceedings of the fourth international workshop on Data-intensive
distributed computing. pp. 35–44. ACM (2011), http://www.dist-
systems.bbn.com/people/krohloff/papers/2011/Rohloff Schantz DIDC 2011.pdf

10. Schätzle, A., Przyjaciel-Zablocki, M., Lausen, G.: PigSPARQL: Mapping
SPARQL to Pig Latin. In: 3th International Workshop on Semantic Web
Information Manage- ment (SWIM 2011), in conjunction with the 2011
ACM International Conference on Management of Data (SIGMOD 2011).
Athens (Greece). (2011), http://www.informatik.uni-freiburg.de/ schaetzl/paper-
s/PigSPARQL SWIM2011.pdf

11. Sun, J., Jin, Q.: Scalable RDF Store based on HBase. In: 3rd International Confer-
ence on Advanced Computer Theory and Engineering (ICACTE). pp. 633 –636
(2010)

12. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web
data management. Proceedings of the VLDB Endowment pp. 1008–1019 (2008),
http://dl.acm.org/citation.cfm?id=1453965

13. Wilkinson, K.: Jena Property Table Implementation. Tech. rep. (2006)
14. Wilkinson, K., Sayers, C., Kuno, H., Reynolds, D.: Efficient RDF Storage and

Retrieval in Jena2. Tech. rep. (2003)

