
Methodology for evaluating citation parsing and
matching

Mateusz Fedoryszak, Lukasz Bolikowski, Dominika Tkaczyk, and
Krzyś Wojciechowski

Interdisciplinary Centre for Mathematical and Computational Modelling,
Warsaw University

{m.fedoryszak, l.bolikowski, d.tkaczyk, k.wojciechowski}@icm.edu.pl

Abstract. Bibliographic references between scholarly publications con-
tain valuable information for researchers and developers involved with
digital repositories. They are indicators of topical similarity between
linked texts, impact of the referenced document, and improve navigation
in user interfaces of digital libraries. Consequently, several approaches
to extraction, parsing and resolving said references have been proposed
to date. In this paper we develop a methodology for evaluating parsing
and matching algorithms and choosing the most appropriate one for a
document collection at hand. We apply the methodology for evaluating
reference parsing and matching module of the YADDA2 software plat-
form.

Keywords: citation parsing, citation matching, evaluation, test set, YADDA2
software platform

1 Introduction and related work

This paper discusses methods of evaluating algorithms for matching scholarly
citations. Citation matching attempts to cluster bibliographic references to the
same document, and possibly link them with the referenced document (provided
that it is present in a collection). This can be seen as an instance of a broader
problem of record linkage in databases [5, 4]. Citation matching is a fundamental
step in creating a digital library of scholarly publications. Links between docu-
ments conveying the fact that document A references document B (represented
e.g. by the references term in the Dublin Core standard) are needed for a
number of reasons:

– more user-friendly interfaces – similarly to hypertext links, citation links
allow a user to navigate between documents [11].

– scientometrics – number of citations received by documents is an established
measure of impact of individual researchers, journals, institutes and counties.
For example, Impact Factor [7] and Hirsch Index [10] depend critically on
availability of a citation graph.

– link-based classification – bibliographic references provide an excellent con-
text for classifying documents or determining author identities [3, 14].

Historically, citation matching was performed manually [6]. Hitchcock et al.
[11] demonstrated a proof-of-concept system that performed autonomous linking
within Cognitive Science Open Journal. Citeseer was one of the first large-scale
systems [8] that autonomously indexed scholarly citations. Pasula et al. [16]
proposed a probabilistic model for citation matching.

Citation matching is sometimes divided into two phases: segmentation and
entity resolution. Segmentation, or citation parsing, aims to deconstruct a bibli-
ographic reference into functional pieces such as author names, title, year of pub-
lication, etc. Entity resolution clusters records representing the same document.
However, several authors depart from such a division, most notably Wellner et
al. [20], Poon and Domingos [17], Liao and Zhang [13], or Goutorbe [9].

Introduction of autonomous citation matching solutions created a need for
their evaluation. Lawrence et al. [12] created a training set by hand and evaluated
performance of their citation matching approaches by calculating the percent-
age of fully correct groups of citations. Their set is often referred to as “CiteSeer
set.” McCallum et al. [15] demonstrated how to employ machine learning tech-
niques in automating construction of digital libraries. They created a number
of training data sets1, including one for evaluating citation matching. This set
is often referred to as “Cora set.” Most other authors train and evaluate their
algorithms on one or both of these sets.

Our paper proposes a different take on evaluating performance of citation
matching algorithms. In particular, we propose a method of autonomous gen-
eration of training and test sets and a wider range of metrics for evaluation of
citation matching solutions.

2 Methodology

In this section we shall present a method of evaluating a citation matcher. We
shall demonstrate how we create a test set and then propose a set of metrics
used to measure matcher correctness.

We define citation matching problem in a slightly different way than usual:
we assume we have a set of citations and a set of documents’ metadata in a
database. We want to assign to each citation a database record or information
that the store does not contain the appropriate document.

2.1 Test set preparation

To generate the test set we have used the metadata of 1400 randomly selected
publications from the Spanish Digital Mathematics Library (DML-E) aggregated
in the European Digital Mathematics Library (EuDML, [18]). The library con-
tains mathematical publications written in either English or Spanish, of which
the oldest date back to late 50’s of the previous century. The metadata was
available as XML files in NLM format, each describing one publication.

1 See: http://people.cs.umass.edu/~mccallum/data.html

We have divided our document set into 3 subsets containing 1000, 200 and
200 documents respectively. We have used metadata of documents in 1st and
2nd subset to generate citations and put those from subsets 1st and 3rd into the
database (see Fig. 1).

We wanted to generate many citation strings using various popular biblio-
graphical styles. The easiest way to achieve that was to use BibTEX. We only
needed to create a database file with the metadata of all the documents we
wanted to create citations for and supply bibliographical styles 2. BibTEX gener-
ated files containing LATEX bibliography. From these files we extracted citation
strings and converted them to plain text by removing all the LATEXcommands.
Each style constitutes one test set, metrics described in the following section are
defined per a set.

Finally, we asked the matcher under evaluation to match citations to the
database records.

2nd 3rd

NLMs

DB recordscitations

200

entities

200

entities

1st
1000

entities

Fig. 1. Test set generation

2.2 Metrics

We have designed a set of metrics which we used in our experiments. They can
be divided into several groups according to the aspect of the matching they deal
with. In the following paragraphs we shall present these groups and define the
metrics they contain.

Grouping correctness metric As we have mentioned, citation matching task
is often defined as finding among the set of citations those that refer to the same

2 We have used abbrv, acm, alpha, apalike, ieeetr, jpc, pccp, plain, ppcf and
revcompchem

paper. Such a formulation of the problem appears, among others, in the classic
paper by Lawrence et al. [12]. Let there S be the set of correct citation groups
and R the set of groups returned by a matcher. Grouping correctness is then
defined as

G =
|S ∩R|
|S|

To make our results comparable with this approach, we shall define a similar
metric in our evaluation framework. We can assume we have two types of group
elements: citations and database records.

Reference group set S, representing the correct clustering that we hope to
reconstruct, will consist of (see Fig. 2):

– 1000 2-element groups each containing a citation and an appropriate record,
– 200 1-element groups each containing a citation only,
– 200 1-element groups each containing a database record only.

Citation #0002

Citation #1000

Citation #0001 DB record #0001

DB record #0002

DB record #1000

Citation #1001

Citation #1002

Citation #1200

DB record #1201

DB record #1202

DB record #1400

.

.

. .
.
. .

.

.

Fig. 2. Groups in the test set

As for result set, it will be defined as follows. Let there P be the set of
(citation,database record) pairs returned by a matcher. Two elements x and y
are in the same group if (x, y) ∈ P ∨ (y, x) ∈ P . Result set R is a set of such
groups.

Now we can introduce grouping correctness metric into our framework in
an analogous way.

References-based metrics We can also look at matching task as finding
(citation,database record) pairs. Let there C be the set of such pairs that exist
in test set and P be the answers of an algorithm such that their database records
are not empty. We can now define the following metrics:

– reference precision Pr = |C∩P |
|P |

– reference recall Rr = |C∩P |
|C|

– reference F-measure Fr = 2 PrPr

Pr+Pr

Nonexistent record metrics There is a number of citations that do not have
a corresponding record in the database. The metrics defined in this section are
to cover them. M is the set of citations that do not have a database record and
N is the set of citations for which an algorithm did not match any record. We
define:

– nonexistent precision P⊥ = |M∩N |
|N |

– nonexistent recall R⊥ = |M∩N |
|M |

– nonexistent F-measure F⊥ = 2 P⊥P⊥
P⊥+P⊥

Miscellaneous metrics Let E be the set of all correct (citation,database record)
pairs where citation is not empty and P the set of pairs returned by a matcher
We define accuracy as

Acc =
|E ∩ P |
|E|

3 Evaluated bibliographic reference matcher

In order to demonstrate the methodology described in Section 2, we will apply it
to evaluate our in-house citation matcher implemented in the YADDA2 platform.
In this section we shall briefly describe our matcher, while the next section
(Section 4) shall be devoted to presentation of its results.

Bibliographic reference matcher often has to deal with a collection of docu-
ments containing bibliographic references. References can exist in different forms,
from raw text strings to hierarchical structures with tagged metadata informa-
tion. Our requirements for bibliographic reference matcher include:

– identifying all pairs reference — referenced document in the collection,
– finding all documents referenced by a new document added to the collection,
– finding all documents referencing a new document added to the collection.

The whole implementation of bibliographic references matcher we have eval-
uated consists of three parts:

– bibliographic references parser used to extract valuable metadata informa-
tion from bibliographic reference strings,

– metadata store that indexes and allows to search the metadata information
of both the documents and the references from the collection,

– the bibliographic reference matcher being able to identify documents refer-
enced by a given document and documents referencing a given document,
based on comparing various metadata information of documents and refer-
ences.

Figure 3 shows the process of matching references in the collection. First all
reference strings are parsed and reference metadata is extracted. In the second
step the metadata of both the documents and the references included in the
collection is added to the metadata store and indexed. After this the matcher
is ready to match references with documents by comparing various metadata
fragments found in the metadata store.

METADATA
STORE

<DOC>

<DOC>

<REF>
<REF>

<REF>

<ref>

 Author, Title,

 Journal, ...

</ref>

REFERENCES
PARSING

THE COLLECTION

Fig. 3. The process of references matching

3.1 Bibliographic reference parser

One should not assume that the references in the collection are in the form of
parsed structures with tagged metadata information. In many cases the matcher
has to deal with references in the form of raw text strings. As a result the matcher
requires a method for extracting metadata information from reference strings.

The goal of parsing the bibliographic reference strings is to identify fragments
of the strings containing meaningful pieces of metadata information. The infor-
mation our parser extracts include: author, title, journal, volume, issue, pages,
publisher, location and year. Extracted metadata information fragments are in-
dexed in the next step, which allows us to match them with the metadata of the
documents in the collection.

The implementation of bibliographic reference parser is based on a Hidden
Markov Model. First the reference string is tokenized into substrings contain-
ing only letters and digits or a single character of another type. In our model
HMM sequence is composed of reference’s tokens, labels of tokens are treated
as unknown states and vectors of features computed for every token are visi-
ble observations. The Viterbi algorithm is used to determine the most probable
sequence of token labels based on initial, transition and emission probability
obtained from a training set. More details of the parser implementation can be
found in [19].

The citation sample we have used to train the parser contained 100 references,
each in 10 different bibliographic styles (described by BibTeX styles abbrv, acm,
alpha, apalike, ieeetr, jpc, pccp, plain, ppcf and revcompchem), 1,000 refer-
ences in total. The citations were generated in a similar way we did it in test set
building. The metadata information extracted from the bibliographic references
has been used in further matching steps.

3.2 Metadata store

The metadata store indexes the metadata information of both the documents
from the collection and bibliographic references contained by them. The reference
matcher uses the metadata store to search for documents and references based
on various metadata information.

The implementation of the metadata store can be based on any software
able to index and search data. Our first implementation used Apache Solr search
platform [1], for reference matching evaluation we used PostgreSQL database [2].

3.3 Bibliographic reference matching

Bibliographic reference matcher is based on comparing various metadata infor-
mation of documents and references. The matcher allows to:

– find the document referenced by a given bibliographic reference,
– identify all the documents referencing a given document, that is the docu-

ments containing references that reference a given document.

In both cases the matching process consists of several matching steps exe-
cuted in a certain order. The result of each step is a set of matched objects.
If the matcher tries to find the document referenced by a given bibliographic
reference, the first matched object is returned and the whole process exits. If the
matcher attempts to identify all the references referencing a given document, all
steps are executed and the results are combined into one set of matched objects.

Each matching step consists of two phases:

1. selecting candidates from the metadata store according to a specific criterion,
2. evaluating the candidates by comparing corresponding metadata informa-

tion.

In our evaluation process we have used two matching steps.
During the first step the candidates have been selected based on the following

metadata information: authors’ surnames, year of publication and hash of journal
name. Then the candidates have been evaluated by comparing: authors’ full
name, journal name, volume, issue and year of publication.

During the second step the candidates have been selected based on only
authors’ surnames and year of publication. Then the candidates have been eval-
uated by comparing: authors’ full name, journal name, volume, issue, year of
publication and title.

Comparing various metadata information is not a trivial task due to differ-
ent formats, abbreviations, typos, etc. In our implementation we use different
methods of comparing for different metadata information. For example author
full name, volume, issue and year of publication are considered equal if the cor-
responding strings are identical. Journal names are considered equal if one string
is a subsequence of the other. In the case of title we make use of Levenshtein
distance: two titles are equal if one of them is a subsequence of the other or if
both are long and Levenshtein distance between them is less than a small fixed
number.

4 Results

We have followed described evaluation path for our in-house citation matcher.
Numerical values achieved are presented in Table 1.

Table 1. Matcher evaluation. Each column shows numerical values of metrics defined
in Section 2.2. Each row represents a single test set generated using one bibliographic
style.

Style Acc Pr Rr Fr P⊥ R⊥ F⊥ G

alpha 0.70 0.98 0.64 0.78 0.36 0.98 0.52 0.74
abbrv 0.87 0.98 0.85 0.91 0.57 0.98 0.72 0.88
ieeetr 0.87 0.99 0.85 0.91 0.57 0.98 0.72 0.89
plain 0.41 0.99 0.29 0.45 0.22 0.99 0.36 0.49
apalike 0.71 1.00 0.65 0.79 0.36 1.00 0.53 0.75
acm 0.87 0.99 0.84 0.91 0.57 0.98 0.72 0.88
jpc 0.94 0.99 0.93 0.96 0.77 0.98 0.86 0.95
pccp 0.94 0.99 0.93 0.96 0.76 0.98 0.85 0.95
ppcf 0.71 1.00 0.66 0.79 0.37 1.00 0.54 0.76
revcompchem 0.93 0.98 0.92 0.95 0.73 0.98 0.83 0.94

Average 0.79 0.99 0.75 0.84 0.53 0.98 0.67 0.82

Accuracy, being the most basic metric, can be treated as a single-valued
benchmark of the overall performance. It tells us that in general our matcher
does fairly well. From references-based metrics we conclude that if our algorithm
matches a citation to the database record it almost always does that correctly,
but there are many more entities that should have been linked (i.e. high precision
Pr, relatively low recall Rr). Similar information can be drawn from nonexistent
record metrics: almost all citations that have no database record are correctly
classified as such (high recall R⊥), but some citations identified as not having a
corresponding database record in fact do have one (low precision P⊥).

5 Conclusions

We have presented a methodology for evaluating a reference matcher. We have
shown how a test set can be automatically built using existing publication meta-
data and BibTEX, removing the need for a laborious construction by hand. We
have also proposed some metrics which should be used to generate numerical val-
ues reflecting algorithm performance. Finally, we have described and evaluated
our in-house matcher using presented methodology.

However, one can point out some weaknesses of proposed test set creation
method: generated citations are very consistent in terms of formatting and con-
tain no punctuation errors. Moreover, we use the same metadata for citation
generation and matching. That means that we do not deal with some match-
ing issues, e.g. different ways of abbreviating journal names. This issues can be
at least partially addressed by introducing some arbitrary errors. To simulate
them we could substitute a number of random characters in a citation string for
different ones.

Nevertheless this small flaw should not make us forget about obvious advan-
tages of a proposed method, among them the huge scalability as we are able to
create unlimited number of citations using arbitrarily many bibliographic styles.

6 Acknowledgements

This work is supported by the National Centre for Research and Development
(NCBiR) under Grant No. SP/I/1/77065/10 by the Strategic scientific research
and experimental development program: ”Interdisciplinary System for Interac-
tive Scientific and Scientific-Technical Information.”

References

1. Apache Solr, http://lucene.apache.org/solr/
2. PostgreSQL, http://www.postgresql.org/
3. Bolelli, L., Ertekin, S., Giles, C.L.: LNAI 4213 - Clustering Scientific Literature

Using Sparse Citation Graph Analysis. Information Sciences pp. 30–41 (2006)
4. Christen, P.: A survey of indexing techniques for scalable record linkage and dedu-

plication. IEEE Transactions on Knowledge and Data Engineering (2011)
5. Elmagarmid, A., Ipeirotis, P., Verykios, V.: Duplicate Record Detection: A Survey.

IEEE Transactions on Knowledge and Data Engineering 19(1), 1–16 (Jan 2007)
6. Garfield, E.: Citation Indexing: Its Theory and Application in Science, Technology,

and Humanities. John Wiley & Sons, New York (1979)
7. Garfield, E.: The history and meaning of the journal impact factor. Journal of the

American Medical Association 295(1), 90–93 (2006)
8. Giles, C., Bollacker, K., Lawrence, S.: CiteSeer: An automatic citation indexing

system. In: Proceedings of the third ACM conference on Digital libraries. pp. 89–
98. ACM (1998)

9. Goutorbe, C.: Document Interlinking in a Digital Math Library. In: Towards a
Digital Mathematics Library. pp. 85–94 (2009)

10. Hirsch, J.E.: An index to quantify an individual’s scientific research output. Pro-
ceedings of the National Academy of Sciences of the United States of America
102(46) (2005)

11. Hitchcock, S.M., Carr, L.A., Harris, S.W., Hey, J.M.N., Hall, W.: Citation Linking:
Improving Access to Online Journals. Proceedings of Digital Libraries 97 pp. 115–
122 (1997)

12. Lawrence, S., Giles, C.L., Bollacker, K.D.: Autonomous citation matching. In: Et-
zioni, O., Müller, J.P., Bradshaw, J.M. (eds.) Proceedings of the third annual
conference on Autonomous Agents AGENTS 99. vol. 1, pp. 392–393. ACM, ACM
Press (1999)

13. Liao, Z., Zhang, Z.: A Generalized Joint Inference Approach for. In: Lecture Notes
in Artificial Intelligence 5360, pp. 601–607 (2008)

14. Macskassy, S.A., Provost, F.: Classification in Networked Data : A Toolkit and a
Univariate Case Study. Journal of Machine Learning Research 8, 935–983 (2007)

15. McCallum, A., Nigam, K., Rennie, J.: Automating the construction of internet
portals with machine learning. Information Retrieval pp. 127–163 (2000)

16. Pasula, H., Marthi, B., Milch, B., Russell, S., Shpitser, I.: Identity uncertainty and
citation matching. In: Proceedings of NIPS 2002. MIT Press (2002)

17. Poon, H., Domingos, P.: Joint Inference in Information Extraction. In: Artificial
Intelligence. vol. 22, pp. 913–918. AAAI Press (2007)

18. Sylwestrzak, W., Borbinha, J., Bouche, T., Nowiski, A., Sojka, P.: EuDMLTowards
the European Digital Mathematics Library. In: Towards a Digital Mathematics
Library. pp. 11–26 (2010), http://www.eudml.eu/

19. Tkaczyk, D., Bolikowski, L., Czeczko, A., Rusek, K.: A modular metadata extrac-
tion system for born-digital articles. In: 10th IAPR International Workshop on
Document Analysis Systems. pp. 11–16 (2012)

20. Wellner, B., McCallum, A., Peng, F., Hay, M.: An integrated, conditional model
of information extraction and coreference with application to citation matching.
Proc. UAI pp. 593–601 (2004)

