Author disambiguation in the YADDA2 software
platform

Piotr Jan Dendek, Mariusz Wojewddzki, and Lukasz Bolikowski

Interdisciplinary Centre for Mathematical and Computational Modelling,
University of Warsaw
{p.dendek, m.wojewodzki, 1.bolikowski}@icm.edu.pl

Abstract. SYNAT platform powered by the YADDA2 architecture has
been extended with the Author Disambiguation Framework and the
Query Framework. The former framework clusters occurrences of con-
tributor names into identities of authors, the latter answers queries about
authors and documents written by them. This paper presents an outline
of the disambiguation algorithms, implementation of the query frame-
work, integration into the platform and performance evaluation of the
solution.

1 Introduction

1.1 Record deduplication

A common challenge among databases is a record deduplication, which is
the term describing the situation when a real-world object is described by many
separate records. “Record deduplication” itself is known in different communi-
ties as “record linkage” [1], “data cleaning” [2], “data scrubbing” [3], “mirror
detection”[4], “instance matching” [5], etc. This issue may occur as a result of
multiple formats used for representing an attribute, for example in the case of an
address or a person name. The problem is particularly acute when information
is gathered over a long period of time. Even when there is only one standard
of representing a record, some misspelling or diacritics handling issues may oc-
cur. Another concern is merging data from multiple heterogeneous sources, when
normalization levels and record definitions may not match. Last but not least,
there are cases of automatic data acquisition (e.g. from the Internet), which is
an instance of combining information from many origins. Those concerns are
especially problematic when coping with big datasets.

The challenge of the accurate record linkage had been addressed many times
over the last five decades. Elmagarmid et al. [6] et al. coherently enumerate all
mainstream approaches to the record linkage. Authors focus on specific aspects
of the problem, which are:

1. Data preparation, covering a parsing and a standardization procedures. [7—
11]

2. Attribute matching techniques, as approximate string matching, token based
and phonetic based. [12-15]

3. Duplicate detection, covering supervised and unsupervised machine learning
techniques as well as hand-crafted ones. [16-19]

4. Problem decomposition approaches as blocking, k-nearest neighbour, clus-
tering. [20-22]

1.2 Author disambiguation

Author disambiguation is an instance of the record linkage problem, where
instances to match are authors, typically represented by first names, a surname,
an affiliation and metadata of co-authored articles. It is clear that none of the
mentioned attributes can single-handedly solve the entire problem. There are
attributes that determine identity with a high degree of certainty, but they are
frequently not present, e.g. an e-mail address appears only in 10% of articles
[23].

In author disambiguation all typical object deduplication obstacles arise, be-
ginning from many standards for writing a name (“J.Smith”, “John Smith”,
“J.Smith Jr.”, “Smith, J.”), misspellings (“J.Smiht”, “J.Smth”), an attribute
value change over time (“Eleonore Smith”, “Eleonore Smith-Black”), diacritic
handling (“José Gongalves”, “Jose Goncalves”,“Jos? Gon?alves”), translitera-
tions (e.g. translating “Angela Johnson” to Japanese equivalent “ 72 2 x
5.2 32/ 2 7 and back to English result is “anjira jyonson”) [24] and extrac-
tion artifacts (“Smith Machine”). As Torvik and Smalheiser [25] investigated,
about 1,3% authors whose e-mail addresses match have different surnames, most
likely due to inconsistencies enumerated here.

The other attributes also need further consideration, e.g. some errors may oc-
cur in an e-mail address, like “jsmith@@institution.org” or “jsmith”institution.org”,
hence requiring a rectification step.

Many researchers explored specifically the subject of the author disambigua-
tion. Han et al.[26] compared Naive Bayes and Support Vector Machines (SVM)
classifiers for this task, whereas in [27], they examined efficiency of k-Way Spec-
tral Clustering. Concurrently, Dai and Storkey [28] applied hierarchical Dirich-
let process and nonparametric latent Dirichlet allocation models, whereas Levin
and Heuser [29] included in their solution enhancements derived from the genetic
programming.

Typically, authors tried to conduct pairwise comparisons on a set of records
with the same value of a major feature (e.g. surname) to determine whether
two candidate author items are the same. In contrast to performing analysis in
respect of all given features, Qian et al. [23] proposed to perform initial cluster-
ing with a limited number of features to obtain High Precision Clusters in the
first step and then merge clusters into High Recall Clusters in the second step.
They also proposed to introduce a human judgement clustering in the final step.
When utilizing user feedback, it is crucial to distinguish between experts and
regular person, especially preventing acts of vandalism, considered as sending
false information.

Culotta et al. [30] proposed to pre-assess each contributor block to determine
the likelihood of duplicates. For example, if all authors are affiliated to a few

institutions or e-mail addresses then the cluster of candidate items is more likely
to have duplicates than the one that contains contributions associated with a
high number of e-mails and institutions. Authors claim that the usage of so
called first-order features over sets of records may eventually reduce error rate
that outperforms a regular binary classification by up to 60%. Tan et al. [31]
decided to extend an available set of information by employing Internet search
engines and adopting as a feature home pages containing given article.

The rest of this paper is organized as follows. Section 2 describes both the
SYNAT project and the YADDA?2 architecture. Section 3 presents the Author
Disambiguation Framework (ADF) developed for purposes of YADDA2 [32] and
the results of further examination [33]. Section 4 shows adaptation of the ADF
to SYNAT platform with an emphasis on its presentation layer — the Query
Framework (QF). Section 5 contains evaluation of the ADF and the QF. Finally,
Section 6 concludes the paper and proposes further improvements.

2 SYNAT and YADDA2

SYNAT project aims to build an “Interdisciplinary System for Interactive
Scientific and Scientific Technical Information.” It is a strategic project commis-
sioned by the Polish National Centre for Research and Development. The system
is based on the YADDA2 architecture [34], presented in Figure 1, developed at
ICM UW.

cmp Yaddsz Gomponent Model
Application
User Interface Business Logic
b B
Service Registry { ‘ Communication Infrastructure
(L ~ [
T i~
O OO QO
[e \
Service Container Service Container
Storage Service Index Service User Directory Data Enrichment
Service Service

Fig. 1: Component model of the YADDA?2 framework.

YADDA2 is an open, loosely-coupled, service-oriented and modular frame-
work that facilitates development of digital repository applications. The frame-
work contains a number of reusable modules that provide, among others: storage,
relational and full-text indexing, process management, authorization/authenti-
cation and asynchronous communication. The above are so-called base services,
providing general functionalities which are independent of the type of content be-
ing processed. On top of them, there is a number of more specialized compotents
that implement a business logic layer.

The Author Disambiguation Framework, as well as the Query Framework
described later in this paper, are good examples of such specialized components.

3 YADDAZ2 author disambiguation framework

3.1 Vocabulary

In our previous papers [32,33] we have established the vocabulary for ADF
description, which, after further adjustments, can be described as follows. A
contributor entity reflects the fact that a person was a co-author of a docu-
ment. When data about a contributor is extracted from document medatada,
it may be treated as a one-to-one binding between a person and a document.
For each document, the number of corresponding contributor instances is equal
to the number of co-authors. Occasionally, we may also reuse the concept of a
document to represent a different tangible outcome that can be attributed to
a person or persons, for example, a log of user actions in an Internet service.
Having a set of contributors, the goal is to cluster them into groups containing
publications written by one person.

To do so in the efficient way, we perform a coarse-grained grouping into
blocks of contributors according to a hash function. Typically, a hash function
yields a result which is a function of surname, like a diacritics removal and lower-
casing. Depending on authors’ surnames, a more sophisticated hash function, e.g.
Soundex or Double Metaphone phonetic transformations, may be chosen. This
division step corresponds to the “map” phase of the MapReduce paradigm.

Consequently, the “reduce” stage is performed, in which crude features
are calculated. A crude feature is an integer representing a number of common
values, e.g. identical key words. Afterwards, we obtain a feature by scaling a
crude feature into the [0,1] range, which is multiplied by a feature weight yielding
an atomic affinity. A sum of atomic affinities is called a total affinity and
constitutes the input data for a clustering algorithm.

As mentioned above, this approach is customizable with respect of a hash
function, a set of features with associated weights and a clustering function.
Finally, this solution is fully applicable in a MapReduce workflow.

3.2 Author Disambiguation Framework Flow

In [32] we presented the Author Disambiguation Framework flow, which is
briefly summarised in this section. The ADF flow consists of five steps:

1. Data import. Data is transferred to an ADF database.

2. Blocking. All contributors are split into relatively small, computationally less
expensive subsets.

3. Affinity calculation. Pairwise comparison against a set of crude features ac-
companied with their weights is performed in each block, eventually gener-
ating a total affinity.

4. Clustering. Contributors which are recognized as similar are inserted into
the same group.

5. Result persistence. A connection between a contributor and a cluster is stored
either in a database or in text files.

The framework may be initialized by passing two kinds of input data as presented
in Figure 2:

1. a document collection from which contributors are extracted,
2. a collection that contains information about contributors with information
associated to them and optionally contributors’ documents.

?

Import data

[If data source is
purely document [In other cases]
metadata]

Insert documents M Insert contributions

Create contributions Insert documents

|

Link contributors with documents

Fig. 2: The process of data import to the Author Disambiguation Framework. It may
either extract data about contributors or utilize pre-generated ones.

Calculations on blocks may be processed in parallel taking advantage of a mul-
ticore computer architecture.

4 Implementation

4.1 Author Disambiguation Framework Implementation

The ADF has been implemented purely in Java using two databases: bigdata®
and Sesame. In both of them the basic entity is a ordered triple, containing in-
formation about subject, predicate and object, t; = (s, p, o), where the first two

are Uniform Resource Identifier (URI) objects and the last one can either be
an URI or a literal (non-URI) object. ADF methods are implemented using Re-
source Description Framework Storage And Inference Layer (RDF SAIL) which
is a standard set of interfaces defining an API for RDF repositories. As the re-
sult, it can connect to standard triple stores such as the ones mentioned above.
bigdata® is capable of fitting about 12.7 billion triples in its hard drive jour-
nal file, whereas Sesame may accumulate 70 millions of triples in a memory’.
Due to the size of a database and its localization (a hard drive file vs. mem-
ory) the second mentioned triple store outperforms the other one in terms of a
communication time by about tree orders of magnitude.

Taking into account these facts, the ADF uses bigdata® to collect all im-
ported data, whereas for each block, the ADF creates a cache in Sesame memory
store where all data needed for calculating affinity are transferred. This partic-
ular approach proved to be the most fruitful, synergistic strategy in terms of
the performance. Eventually, resulting person objects may be written back to a
bigdata® or to CSV files.

4.2 Query Framework Implementation

Data structures Query Framework (QF), similarly to ADF, is written entirely
in Java, but it takes advantage of the Neo4j database?. Neodj, as the example
of a NoSQL database has been the subject of detailed comparison [35] with the
traditional, relational approach.

The reason for choosing Neo4j was its flexibility in a model construction as
well as its high efficiency. A few specialized data structures have been applied
to obtain a better performance. For instance, to increase a search performance,
identifiers and attributes of stored objects are indexed with full-text indexes
embedded into Neo4j.

The structure of data is built as follows. The top element is a root, which
due to Neo4j restrictions always exists in a database, even if not inserted explic-
itly. A root is bound by a root relation with a person, which, as a reflection
of a real-world author, should point by an identity relation to all contribu-
tor instances corresponding to that person. A contributor stores information
about publications or activities associated with a person object. In case when a
data source is solely documents metadata, contributor-document is a one-to-one
relation. On the contrary, when a data source is derived from any other origin,
contributor-document is a one-to-many relation (one-to-zero also applies).

The database structure is presented in Figure 3.

During import, the QF takes metadata (containing information about con-
tributors and optionally documents) and information about persons from the
ADF. Finally, the QF constructs its internal structures described in the follow-
ing section.

! See: http://www.w3.org/wiki/LargeTripleStores
% See: http://neodj.org/

! root - contributor

1.x0
is an instance of
1| contains 1..*| publishes
root relation identity relation reference relation
is contained by | * has been published by |, *
- person represented by i document
o 7|

1

Fig. 3: Classes appearing in the Query Framework’s Neo4j database. The top instance
is singular root object, which always exists in the Neo4j store. Person objects are
created as a reflection of the Author Disambiguation Framework results. Contributors
are instances of persons. Documents are publications written by given contributor and
transitively by a person.

Model creation Currently, data are imported from files generated in the pro-
cess of disambiguation. In order to add to the service the information about a
person:

1. The system checks if the person already exists to omit duplicates, which

may occur whenever a next import extends only a few blocks of previously

digested data.

Person is created and linked to the root.

3. Contributors and documents are created and connected in the top-down
manner.

N

A contributor can exist without any document, as a result of employing another
data source which does not provide details about publications and activities.
The above description is reflected in the the activity diagram in Figure 4.

Model usage Queries directed to the service may be routed through a web-
site, or can be called directly by the appropriate method of the QF API. After
loading the QF database, a user can construct queries as follows:

— ”Find one person object” — used to construct queries that are aimed at
finding one person with all contributors that are in identity relation with it.
Input parameter is a person identity.

— ”Find one person object and related publications” — used to construct queries
that are designed to find one person and associated contributors together
with dependent documents. Input parameters are: person identity, order and
attribute criteria.

— ”Find many person objects” — used to construct queries that are aimed at
finding persons in a certain order with previously specified constraints. Input
parameters are: order and attribute criteria.

Activities mentioned above are also reflected in Figure 5.

?

Diasmbiguate contributors

v

Add persons and link them with the root

v

Add contributors and link them with persons

[

Add documents and link them with contributors

.

Fig.4: The Query Framework preparation. The first step is the disambiguation proce-
dure conducted by the Author Disambiguation Framework. Next, results of the ADF
are inserted to the QF and connected with the Neo4j root. Then, the regular metadata
are imported.

¢ Find person
e “-~___ «Include»

ﬁf T Find person and related publications,,,,‘fl,rl,c,hf‘!?)z,,? Search in database 4@
7
«Include» _--

Database

~ - <<systems>

Find persons and related publications

Fig. 5: Actions available in the Query Framework.

5 Evaluation

We conducted performance tests on a 4 cores machine (IntelCoreTM i5 CPU
U520@1.07GHz) with 4GB RAM under control of Ubuntu Linux OS, kernel
version 2.6.32-41-server. We focused on the BazTech bibliographic database?
containing document metadata with 257784 contributors.

5.1 Author Disambiguation Framework Performance

Let BlockSize denote a set of contributors sizes and the function BlockOcc(x)
returns a number of occurences of a block of size x The disambiguation time for

3 See: http://baztech.icm.edu.pl/

a block of size x can be closely approximated by the formula:
Tdisambiguation(x) = 0,0608099 - « + 0,0005811 - z? (1)

where the part 0,0005811 -2 is mainly the effect of performing pairwise compar-
ison, but also employing a single-link hierarchical clustering, which has O(N?)
computation complexity. It has to be mentioned that a clustering procedure is at
least one order of magnitude faster [36] then similarity computation, so choos-
ing another clustering method would not have a crucial impact on an overall
disambiguation time, which is given by the following equation:

Toverati(BlockSize) = Z BlockOcce(x) - Tyisambiguation () (2)
x€BlockSize

5.2 Query Framework Performance

To evaluate the QF we carried out two types of tests. The first one was a
data import of the BazTech metadata to the Neo4j database, which took about
2 hours. The second one covered three queries described in the Section 4.2.
The “Find one person object” query repeated 10000 times for a different person
finished in the total time of 3 seconds, whereas the query “Find one person object
and related publications” executed 10000 times for a different person took about
6 seconds. The time increased as a natural effect of retrieving more information,
located further from the root. The last query we examined, “Find 10000 person
objects”, was executed in 4 seconds. Described results are presented in the Table
1.

Table 1: Results of the Query Framework performance tests against provided query
types.

Query goal Number of repetitions|Overall time
Find one person object 10000 3s
Find one person object and related publications|10000 6s
Find 10000 person objects 1 4s

6 Conclusions

In this article we have presented the Author Disambiguation Framework
developed in the YADDAZ2 architecture and adopted for the SYNAT platform by
means of the Query Framework. We have described the details of disambiguation
as well as the method of adaptation and a presentation layer. We proposed the
time complexity of the disambiguation process accompanied with the Query
Framework performance tests.

Future work will include applying more sophisticated disambiguation tech-
niques, followed by the use of more efficient computing architectures. Ideally,
each framework should rely on the same database and data structures. Further-
more, we plan to extend the disambiguation procedure to cover activities other
then publishing. Another promising direction is the enhancement of disambigua-
tion results with a user feedback to fully utilize SYNAT platform capabilities.

Acknowledgment

This work is supported by the National Centre for Research and Develop-
ment (NCBiR) under Grant No. SP/I/1/77065/10 by the Strategic scientific
research and experimental development program: ”Interdisciplinary System for
Interactive Scientific and Scientific-Technical Information”.

References

1. I. P. Fellegi and A. B. Sunter, “A Theory for Record Linkage,” Journal of the
American Statistical Association, vol. 64, pp. 1183-1210, 1969.

2. K. Park, E. Becker, J. K. Vinjumur, Z. Le, and F. Makedon, “Human behav-
ioral detection and data cleaning in assisted living environment using wireless
sensor networks,” in Proceedings of the 2nd International Conference on PErvsive
Technologies Related to Assistive Environments - PETRA 09, (New York, New
York, USA), pp. 1-8, ACM Press, 2009.

3. J. J. Berman, “Concept-Match Medical Data Scrubbing,” Archives of Pathology
& Laboratory Medicine, vol. 127, no. 6, pp. 680-686, 2003.

4. J. Widom, “Research problems in data warehousing,” in Proceedings of the fourth
international conference on Information and knowledge management - CIKM 95,
(New York, New York, USA), pp. 25-30, ACM Press, 1995.

5. M. Aono and M. H. Seddiqui, “Scalability in ontology instance matching of
large semantic knowledge base,” in AIKED’10 Proceedings of the 9th WSEAS
international conference on Artificial intelligence, knowledge engineering and data
bases, pp. 378-383, 2010.

6. A. Elmagarmid, P. Ipeirotis, and V. Verykios, “Duplicate Record Detection: A
Survey,” IEEE Transactions on Knowledge and Data Engineering, vol. 19, pp. 1-
16, Jan. 2007.

7. V. Raman, “Potter’s wheel: An interactive data cleaning system,” International
conference on Very Large Data, 2001.

8. C. Sutton, K. Rohanimanesh, and A. McCallum, “Dynamic conditional random
fields,” in Twenty-first international conference on Machine learning - ICML ’04,
(New York, New York, USA), p. 99, ACM Press, 2004.

9. E. Agichtein and V. Ganti, “Mining reference tables for automatic text segmen-
tation,” in Proceedings of the 2004 ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD '04, (New York, New York, USA),
p- 20, ACM Press, 2004.

10. V. Borkar, K. Deshmukh, and S. Sarawagi, “Automatic segmentation of text
into structured records,” in Proceedings of the 2001 ACM SIGMOD international
conference on Management of data - SIGMOD ’01, (New York, New York, USA),
pp- 175-186, ACM Press, 2001.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

A. McCallum and D. Freitag, “Maximum entropy Markov models for informa-
tion extraction and segmentation,” Proceedings of the Seventeenth International
Conference on Machine Learning, 2000.

L. Philips, “The double metaphone search algorithm,” C/C++ Users Journal,
vol. 18, no. 6, pp. 38-43, 2000.

K. Kukich, “Technique for automatically correcting words in text,” ACM
Computing Surveys, vol. 24, pp. 377-439, Dec. 1992.

E. Ristad and P. Yianilos, “Learning string-edit distance,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 20, pp. 522-532, May 1998.

G. Navarro, “A guided tour to approximate string matching,” ACM Computing
Surveys, vol. 33, pp. 31-88, Mar. 2001.

S. Tejada, C. A. Knoblock, and S. Minton, “Learning object identification rules for
information integration,” Information Systems, vol. 26, pp. 607-633, Dec. 2001.
W. W. Cohen and J. Richman, “Learning to match and cluster large high-
dimensional data sets for data integration,” in Proceedings of the eighth ACM
SIGKDD international conference on Knowledge discovery and data mining - KDD
02, (New York, New York, USA), p. 475, ACM Press, 2002.

V. S. Verykios and G. V. Moustakides, “A generalized cost optimal decision
model for record matching,” in Proceedings of the 2004 international workshop
on Information quality in informational systems - IQIS '04, (New York, New York,
USA), p. 20, ACM Press, 2004.

V. Verykios, G. Moustakides, and M. Elfeky, “A Bayesian decision model for cost
optimal record matching,” The VLDB Journal The International Journal on Very
Large Data Bases, vol. 12, pp. 28-40, May 2003.

A. McCallum, K. Nigam, and L. H. Ungar, “Efficient clustering of high-dimensional
data sets with application to reference matching,” in Proceedings of the 6th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD ’00, (New York, New York, USA), pp. 169-178, ACM Press, 2000.

A. Monge and C. Elkan, “An Efficient Domain-Independent Algorithm for Detect-
ing Approximately Duplicate Database Records,” in Proc. Second ACM SIGMOD
Workshop Research Issues in Data Mining and Knowledge Discovery, pp. 2329,
1997.

M. A. Herndndez and S. J. Stolfo, “Real-world Data is Dirty: Data Cleansing and
The Merge/Purge Problem,” Data Mining and Knowledge Discovery, vol. 2, no. 1,
pp. 9-37, 1998.

Y. Qian, Y. Hu, J. Cui, Q. Zheng, and Z. Nie, “Combining Machine Learning and
Human Judgment in Author Disambiguation Framework,” in Proceedings of the
20th ACM International Conference on Information and Knowledge Management,
pp- 1241-1246, ACM Press, 2011.

K. Knight and J. Graehl, “Machine Transliteration,” Computational Linguistics,
vol. 24, no. 4, pp. 599-612, 1998.

V. I. Torvik and N. R. Smalheiser, “Author name disambiguation in MEDLINE,”
ACM Transactions on Knowledge Discovery from Data, vol. 3, pp. 1-29, July 2009.
H. Han, L. Giles, H. Zha, C. Li, and K. Tsioutsiouliklis, “Two supervised learning
approaches for name disambiguation in author citations,” Proceedings of the 2004
joint ACM/IEEE conference on Digital libraries - JCDL ’04, p. 296, 2004.

H. Han, H. Zha, and C. L. Giles, “Name disambiguation in author citations
using a K-way spectral clustering method,” in JCDL ’05: Proceedings of the
5th ACM/IEEE-CS joint conference on Digital libraries, (New York, NY, USA),
pp. 334-343, ACM, 2005.

28

29.

30.

31.

32.

33.

34.

35.

36.

. A. M. Dai and A. J. Storkey, “Author Disambiguation: A Nonparametric Topic
and Co-authorship Model,” in NIPS Workshop on Applications for Topic Models
Text and Beyond, pp. 1-4, 2009.

F. H. Levin and C. A. Heuser, “Using Genetic Programming to Evaluate the Im-
pact of Social Network Analysis in Author Name Disambiguation,” in Proceedings
of the 4th Alberto Mendelzon International Workshop on Foundations of Data
Management Buenos Aires Argentina May 1720 2010 (A. H. F. Laender and L. V. S.
Lakshmanan, eds.), vol. 619 of CEUR Workshop Proceedings, Citeseer, 2010.

A. Culotta, P. Kanani, R. Hall, M. Wick, and A. McCallum, “Author Disambigua-
tion using Error-driven Machine Learning with a Ranking Loss Function,” in Sixth
International Workshop on Information Integration on the Web, 2007.

Y. F. Tan, M. Y. Kan, and D. Lee, “Search engine driven author disambiguation,”
in Proceedings of the 6th ACM/TEEE-CS joint conference on Digital libraries -
JCDL ’06, (New York, New York, USA), p. 314, ACM Press, 2006.

L. Bolikowski and P. J. Dendek, “Towards a Flexible Author Name Disambiguation
Framework,” in Towards a Digital Mathematics Library (P. Sojka and T. Bouche,
eds.), pp. 27-37, Masaryk University Press, 2011.

P. J. Dendek, L. Bolikowski, M. Lukasik, L. Bolikowski, and M. Lukasik, “Evalu-
ation of Features for Author Name Disambiguation Using Linear Support Vector
Machines,” in Proceedings of the 10th TAPR International Workshop on Document
Analysis Systems, pp. 440—444, 2012.

W. Sylwestrzak, T. Rosiek, and L. Bolikowski, “YADDA2 — Assemble Your
Own Digital Library Application from Lego Bricks,” in Proceedings of the 2012
ACM/IEEE on Joint Conference on Digital Libraries, 2012.

C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins, “A comparison
of a graph database and a relational database,” in Proceedings of the 48th Annual
Southeast Regional Conference on - ACM SE ’10, (New York, New York, USA),
p- 1, ACM Press, 2010.

H. Manning, C., D., Raghavan P., Schiitze, “Introduction to Information Re-
trieval,” 2008.

