Supplementary Information: Collective Interactions Among Organometallics Are

Exotic Bonds Hidden on Lab Shelves Cina Foroutan-Nejad et al.

Shahin Sowlati-Hashjin,¹ Vojtech Sadek,^{2,3} SeyedAbdolreza Sadjadi,⁴ Mikko Karttunen,^{5,6,7} Angel Martin-Pendas,⁸* Cina Foroutan-Nejad⁹*

1. Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada. 2. CEITEC – Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.

3. Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czechia.

4. Department of Physics, Faculty of Science, Laboratory for Space Research, The University of Hong Kong, Hong Kong SAR, China.

5. Department of Chemistry, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6A 3K7.

6. Department of Physics and Astronomy, The University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada.

7. Centre for Advanced Materials and Biomaterials Research, The University of Western Ontario, 1151 Richmond Street, London, Ontario, Canada N6K 3K7.

8. Departamento de Química Física y Analítica, University of Oviedo, 33006 Oviedo, Spain.
10. Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224
Warsaw, Poland.

Corresponding author's emails:

AMP: <u>ampendas@uniovi.es</u> CFN: <u>cforoutan-nejad@icho.edu.pl</u> **Supplementary Table 1**. The dissociation energies defined as the energy differences between relaxed fragments and complexes, D_0 , deformation, E_{Def} , and promotion energies, E_{Pro} , in kcal.mol⁻¹. All energies are computed for dissociation of the complexes to a neutral AX₃ and an anionic AX₃ at DFT level. Lower dissociation energies for dissociation to a neutral AX₃ in all cases suggest that in gas-phase the species tend to follow this reaction path. Furthermore, negative promotion energies in anionic dissociation suggests instability of the chosen fragment compared to those in neutral pathway. On the other hand, lower deformation energies for the anionic dissociation prove that the AX₃ species are closer to an anionic form in their complexes.

Dissociation		Anionic A	X3		Neutral A	AX ₃
Molecules	\mathbf{D}_0	E _{Def}	EPro	\mathbf{D}_0	E _{Def}	EPro
LiBH ₃ -	-35.1	0.4	41.3	-22.3	3.2	51.3
NaBH ₃ -	-34.9	0.3	12.4	-18.0	2.0	27.5
KBH ₃ -	-33.0	0.2	3.9	-15.8	0.3	20.9
MgBH ₃	-193.6	0.2	-83.8	-8.5	0.7	100.8
CaBH ₃	-161.5	0.1	-36.7	-11.7	0.5	112.8
LiAlH ₃ -	-30.6	0.2	83.3	-28.3	12.6	73.2
NaAlH ₃ -	-29.6	0.6	21.8	-23.2	9.7	19.0
KAlH ₃ ⁻	-26.4	1.3	4.4	-19.7	6.9	5.5
MgAlH ₃	-180.4	4.3	-145.7	-5.8	0.4	32.8
CaAlH ₃	-146.2	4.0	-95.5	-6.8	0.7	47.3
<i>i</i> -CaAlH ₃ ^{<i>a,b,d</i>}	-155.0	22.1	53.8	-15.6	75.5	139.8
LiCF ₃	-152.3	3.5	10.5	-61.7	14.8	89.7
NaCF ₃	-132.6	3.2	-0.1	-48.6	15.4	71.7
BeCF ₃ ⁺	-440.6	26.1	-98.8	-52.1	0.5	315.4
MgCF ₃ ^{+c}	-344.9	23.3	-157.6	-30.5	1.0	179.1
<i>i</i> -LiCF ₃ ^{<i>b,c,d</i>}	-153.4	2.8	16.9	-62.8	52.0	58.3
<i>i</i> -NaCF ₃ ^{b,c,d}	-134.0	1.2	18.7	-50.0	44.4	59.4
<i>i</i> -KCF ₃ ^{<i>b,d</i>}	-118.7	0.7	27.5	-54.5	41.9	50.6
<i>i</i> -MgCF ₃ ^{+ b,d}	-332.5	5.6	21.3	-18.1	62.8	278.5
i-CaCF ₃ ^{+ b,d}	-282.7	8.4	17.6	-44.8	70.1	193.7
i-SrCF ₃ ^{+ b,d}	-263.6	4.6	31.9	-44.5	59.4	196.2
$MgC(CN)_3^{+b}$	-285.5	49.0	27.1	-33.5	50.6	277.4
$CaC(CN)_{3}^{+b}$	-243.9	29.2	5.9	-68.4	27.9	182.6
$SrC(CN)_{3}^{+b}$	-227.9	24.0	14.4	-71.2	23.0	172.1
LiCH ₃	-181.8	0.2	10.3	-50.3	9.7	132.3
NaCH ₃	-160.6	0.4	-18.4	-35.7	7.7	99.2
KCH ₃	-135.8	0.2	-1.2	-30.7	9.1	95.1
BeCH ₃ ⁺	-514.2	0.7	-57.3	-84.7	5.8	367.1
MgCH ₃ ⁺	-406.4	1.4	-175.6	-51.2	3.8	177.3
CaCH ₃ ⁺	-328.4	0.2	-62.6	-49.6	8.9	207.5
SrCH ₃ ⁺	-307.5	0.2	-52.1	-47.5	9.3	198.8
$LiC(Ph)_3$	-135.9	4.1	30.1	-45.3	4.8	120.0
NaC(Ph) ₃	-116.6	2.7	27.5	-32.6	4.1	110.1
$KC(Ph)_3$ M= $C(Ph)^+$	-105.9	1.8	31.9	-41.0	5.4 7.7	94.0
$MgC(Pn)_3$	-357.1	9.5	-181.9	-42.7	/./	134.2
$CaC(Ph)_3^+$	-307.2	8.0	1.1	-09.3	8.1	238.9
$SFC(PII)_3$	-285.0	5.9	8./ 12.0	-00.4	0.1	125.8
$LIC(CH_3)_3^3$ No $C(CH_3)_5^3$	-107.0	0.9	13.0	-33.0	11.5	155.8
$NaC(CH_3)_3$	-147.5	0.9	-1/./	-20.5	9.8	100.5
$\mathbf{M}_{\mathbf{C}}(\mathbf{CH}_{3})_{3}$	-125.2	0.0	2.0	-10.1	11.1	99.5
$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^$	-405.0	2.6	-230.3	-40.0	13.2	200.8
$CaC(CH_3)_3$	-310.4	2.0 5.6	-00.1	-33.1	7.4 7.7	137.0
$i - \ln C(CH_3)_3$ $i - N_9 C(CH_2)_2^{b,d}$	-100.7	5.0	-2.8	-21.3 _17	67	127.9
<i>i</i> -MC(CH ₂) ₂ ^{b,d}	-131.5	0.9	-2.0	-4.7	5.4	124.1
<i>i</i> -Re((CH3)3 <i>i</i> -Re((CH-)_+c,d	-520.8	-1.1	-267	-0.4	33	400.2
	-320.0	27.1	-359.8	-09.5	9.5	15.0
$i-CaC(CH_2)_2^{+c,d}$	-320.1	13.8	-69.9	_39.4	63	218 3
<i>i</i> -SrC(CH ₂) ₂ ^{+ e,d}	-298.9	15.1	-57.0	-36.9	5.5	214.5

^a. Data are obtained from the BS-DFT calculation.

^b. The metal forms a multicenter bond within the context of QTAIM.

^c. The global minimum of the molecule.

^d. i- represents inverted structures.

^e. The global minimum of the molecule has a C_S point group, 1.6 kcal.mol⁻¹ lower in energy; therefore, it is not discussed here.

Supplementary Table 2. The magnitudes of $V_{XC}(A, B)$ and $V_C(A, B)$ sorted from the most to the least stabilizing for M–A bonds in group **1** and **2** molecules as well as for specified bonds in our test set. To assess the bond type, *i.e.*, covalency-ionicity, the $V_{XC}(A, B)$ values are used. From N₂ ($V_{xc} = -586.4 \text{ kcal.mol}^{-1}$) to SeSe bond in H₂Se₂ ($V_{xc} = -94.4 \text{ kcal.mol}^{-1}$) is chosen as the domain of covalent bonds. The conventionally pure ionic bonds from LiF/KCl with $V_{XC} = -31.0 \text{ kcal.mol}^{-1}$ to virtually zero is marked by a blue line. Besides, the border between the stabilizing and destabilizing V_C(A, B) values are marked by a black line. The red, blue, and black lines are shown in **Figure 1** as well.

V _{XC} (A,B)	Bond	V _{XC} (A,B)	Bond	$V_{C}(A,B)$	Bond	V _C (A,B)	Bond
-586.4	N_2	-47.2	CaCl ₂	-851.0	СО	-27.1	i-LiC(CH ₃) ₃
-499.0	NO^+	-45.8	$CaC(CH_3)_3^+$	-699.1	BeO	-22.7	$KC(Ph)_3$
-481.4	CC^{a}	-44.8	BeF_2	-669.0	CN ⁻	-16.4	i-KC(CH ₃) ₃
-448.8	NO	-42.1	Na ₂ O	-637.7	BF_3	-15.2	SeH ^a
-427.3	O_2	-42.1	MgF_2	-490.5	NB^d	-9.6	i-NaC(CH ₃) ₃
-374.1	CN⁻	-41.6	MgCl ₂	-476.9	BeCH ₃ ⁺	-0.9	KAlH ₃ ⁻
-368.6	NO ⁻	-41.4	BeCl ₂	-399.2	BeF ₂	1.1	i-MgC(CH ₃) ₃ ⁺
-330.4	CC^{b}	-40.1	NaCH ₃	-396.9	BCl ₃	1.4	H_2S
-296.2	CO	-39.1	NaAlH ₃ ⁻	-368.9	\mathbf{BH}^{d}	3.5	NaAlH ₃ ⁻
-226.8	F_2	-38.76	NaC(CH ₃) ₃	-355.4	BeCl ₂	6.9	SH^{a}
-224.9	OO ^a	-38.1	KF	-341.1	MgO	7.0	SeSe ^a
-219.9	NN^{b}	-36.6	Li ₂ O	-340.9	CaO	13.8	KBH_3^-
-195.0	Cl_2	-35.3	KCH_3	-310.5	PH_3	15.7	CCc
-189.6	CCc	-33.6	$MgBH_3$	-310.1	MgF_2	19.3	$NaBH_3^-$
-179.9	CH ^b	-32.8	$SrC(Ph)_{3}^{+}$	-306.7	NO^+	20.8	CH ^c
-179.9	CH ^a	-32.2	$KC(CH_3)_3$	-254.9	MgCl ₂	20.8	SS ^a
-179.1	H_2S	-31.2	LiF	-242.5	CaF ₂	21.3	Br_2
-177.3	SH^{a}	-31.0	KC1	-216.2	H_2O	22.0	H_2Se
-177.1	CH ^c	-29.8	$CaC(Ph)_{3}^{+}$	-205.4	K ₂ O	22.6	NO ⁻
-172.5	SS^{a}	-28.3	NaCl	-201.3	CaCH ₃ ⁺	23.6	LiAlH ₃ ⁻
-166.5	NH_3	-27.8	NaCF ₃	-198.3	CaCl ₂	23.6	CH^{b}
-165.2	Br_2	-25.5	i-BeC(CH ₃) ₃ ⁺	-196.6	$MgCH_3^+$	23.9	H_2
-165.2	NH^b	-25.2	LiCH ₃	-183.5	$SrCH_3^+$	26.3	CH ^a
-164.9	H_2	-25.0	CaAlH ₃	-174.5	LiF	28.9	Cl_2
-161.0	SeH ^a	-24.8	LiC(CH ₃) ₃	-153.6	$CaC(CH_3)_3^+$	29.4	$SrC(CN)_3^+$
-156.6	NH^d	-24.6	$CaBH_3$	-148.9	NH_4^+	37.1	F_2
-154.3	CaO	-24.3	LiCl	-146.1	LiCl	39.5	$CaC(CN)_{3}^{+}$
-152.9	H_2Se	-24.1	KAlH ₃ ⁻	-141.8	LiCH ₃	41.5	MgAlH ₃
-138.43	$\mathrm{NH_{4}^{+}}$	-21.3	LiCF ₃	-134.0	OH^a	41.9	LiBH ₃ ⁻
-130.86	PH_3	-20.8	$LiBH_3^-$	-132.8	KF	42.1	CC^{b}
-124.3	H_2O	-18.7	$NaBH_3^-$	-130.6	i-BeC(CH ₃) ₃	43.4	OO^{a}
-119.0	OH ^a	-18.6	KCF ₃	-130.2	$MgC(CH_3)_3^+$	63.0	$MgC(CN)_{3}^{+}$
-110.4	MgO	-17.9	MgAlH ₃	-125.9	$LiC(CH_3)_3$	67.1	NN⁰
-99.81	BeO	-14.1	<i>i</i> -LiC(CH ₃) ₃	-120.9	$MgC(Ph)_{3}^{+}$	71.6	CaAlH ₃
-94.4	SeSe ^a	-13.7	KBH_3^-	-116.7	NaCl	80.2	CC ^a
-89.4	BCl ₃	-13.7	<i>i</i> -KC(CH ₃) ₃	-114.8	NH^d	84.1	LiCF ₃
-89.1	BH^d	-11.3	CaAlH ₃	-104.7	KC1	93.8	NaCF ₃
-78.9	$MgCH_{3}^{+}$	-10.8	$KC(Ph)_3$	-86.3	NaCH ₃	98.8	O_2
-72.2	$MgC(CH_3)_3^+$	-10.69	$LiC(Ph)_3$	-81.8	NH_3	100.5	KCF ₃
-71.9	SrCH ₃ ⁺	-10.55	$SrC(CN)_3^+$	-77.8	KCH_3	114.3	MgBH ₃
-71.5	$CaC(CH_3)_3^+$	-10.14	$CaC(CN)_{3}^{+}$	-77.8	Li ₂ O	133.9	N_2
-71.1	CaCH ₃ ⁺	-9.3	<i>i</i> -NaC(CH ₃) ₃	-74.3	i-SrC(CH ₃) ₃ ⁺	149.3	BeCF ₃ ⁺
-68.5	BeCH ₃ ⁺	-8.8	NaC(Ph) ₃	-68.3	$CaC(CH_3)_{3^+}$	157.8	CaBH ₃
-63.3	BF ₃	-7.1	<i>i</i> -MgC(CH ₃) ₃ ⁺	-67.6	NO	168	i-KCF ₃
-62.9	$MgCF_3^+$	-2.6	$MgC(CN)_{3}^{+}$	-65.8	$NaC(CH_3)_3$	188.8	i-NaCF ₃
-61.6	$BeCF_3^{+}$	-2.5	i-MgCF ₃ ⁺	-65.4	$CaC(Ph)_{3}^{\top}$	223.2	<i>i</i> -LiCF ₃
-56.3	MgC(Ph) ₃ [⊤]	-2.1	i-CaCF ₃ ⁺	-64.5	SrC(Ph) ₃ [⊤]	163.7	MgCF3 ⁺
-56.2	NB"	-1.8	1-STCF3	-58.8	$KC(CH_3)_3$	239.5	CaAlH ₃
-54.0	CaF_2	-0.9	<i>i</i> -inacF ₃	-58.4	INA ₂ U	358.5 251 1	i-SICF ₃
-33.1	i-SIC(CH ₃) ₃	-0.9	I-KUF3	-49.0	LIC(PII)3	551.1 402.1	i -CaCF ₃ i MaCE \pm
-47.5		0.0	I-LICF3	-49.1	Nn NaC(Dh)	405.1	i-wiger3
-+0.3	LIAIA			-29.0			

^a in H_2X_2 (X = O, S, Se)

^b in H₄X₂ (X = C, N)

 $^{c} in \ C_{2}H_{6}$

d in NH3BH3

Supplementary Table 3. Atomic charges of M and A in MAX₃ systems, Q(M) and Q(A), the interatomic exchange-correlation and Coulombic energy components of IQA interaction energy between metal and Al, B, or central C atoms in the studied systems, $V_{XC}(M, A)$ and $V_C(M, A)$, and those of the metals with the substituents on the central atom, $V_{XC}(M, X)$ and $V_C(M, X)$, in kcal.mol⁻¹. All data are computed at CASSCF level.

	-				-						
Molecules	Angle	Q(M)	Q(A)	V _{XC} (M,A)	$V_{XC}(M,T)$	$V_{C}(M,A)$	$V_{C}(M,T)$	V _{Int} (M,A)	V _{Int} (M,T)	ICI _{xc}	ICIC
LiBH3 ^{- a}	7.61	-0.007	1.561	-16.7	-29.9	44.2	-39.4	27.4	-69.3	0.559	-1.122
NaBH ₃ ^{- a}	5.38	-0.161	1.756	-12.4	-29.8	27.4	-13.2	15.0	-42.9	0.417	-2.081
KBH ₃ ^{-a}	3.52	-0.685	2.046	-3.8	-23.5	-46.1	11.1	-49.9	-12.4	0.160	-4.161
MgBH ₃	3.13	0.450	1.891	-20.7	-53.1	151.3	-33.9	130.6	-87.1	0.390	-4.458
CaBH ₃ ^a	2.40	0.596	1.842	-17.2	-46.6	171.2	-55.9	154.0	-102.6	0.368	-3.061
NaAlH ₃ ^{- a}	13.51	-0.103	1.687	-25.1	-30.9	9.4	-12.2	-15.7	-43.2	0.811	-0.768
KAlH ₃ ^{- a}	12.21	-0.140	1.764	-19.8	-26.2	10.1	-7.1	-9.7	-33.3	0.755	-1.428

Supplementary Table 4. Atomic charges of M and A in MAX₃ systems, Q(M) and Q(A), the interatomic exchange-correlation and Coulombic energy components of IQA interaction energy between metal and Al, B, or central C atoms in the studied systems, $V_{XC}(M, A)$ and $V_C(M, A)$, and those of the metals with the substituents on the central atom, $V_{XC}(M, X)$ and $V_C(M, X)$, in kcal.mol⁻¹. All data are computed at CCSD level.

LiBH $_3^{-a}$ 7.61-0.0411.548-22.7-40.037.5-31.814.8-71.80.569-1.178NaBH $_3^{-a}$ 5.38-0.2311.767-14.2-36.914.1-4.4-0.1-41.30.384-3.214KBH $_3^{-a}$ 3.52-0.3531.862-10.0-32.8-2.52.8-12.5-30.00.305-0.882MgBH $_3$ 3.130.4151.844-21.6-55.0137.3-28.7115.7-83.80.393-4.782CaBH $_3^{-a}$ 2.400.4991.843-16.4-49.2151.2-37.7134.8-86.90.334-4.011NaAlH $_3^{-a}$ 13.51-0.1691.732-30.9-40.51.1-1.1-29.7-41.60.762-1.506KAUH $_{-a}^{-a}$ 12.21-0.2211.811-23.5-33.7-2.81.8-26.3-31.80.697-1.506	Molecules	Angle	Q(M)	Q(A)	$V_{XC}(M,A)$	$V_{XC}(M,T)$	$V_{C}(M,A)$	$V_{C}(M,T)$	V _{Int} (M,A)	V _{Int} (M,T)	ICI _{xc}	ICIC
NaBH ₃ ^{-a} 5.38 -0.231 1.767 -14.2 -36.9 14.1 -4.4 -0.1 -41.3 0.384 -3.214 KBH ₃ ^{-a} 3.52 -0.353 1.862 -10.0 -32.8 -2.5 2.8 -12.5 -30.0 0.305 -0.882 MgBH ₃ 3.13 0.415 1.844 -21.6 -55.0 137.3 -28.7 115.7 -83.8 0.393 -4.782 CaBH ₃ ^{-a} 2.40 0.499 1.843 -16.4 -49.2 151.2 -37.7 134.8 -86.9 0.334 -4.011 NaAlH ₃ ^{-a} 13.51 -0.169 1.732 -30.9 -40.5 1.1 -1.1 -29.7 -41.6 0.762 -1.062 KAlH ₂ ^{-a} 12.21 -0.221 1.81 -23.5 -33.7 -28 1.8 -26.3 -31.8 0.697 -1.526	LiBH ₃ ^{-a}	7.61	-0.041	1.548	-22.7	-40.0	37.5	-31.8	14.8	-71.8	0.569	-1.178
KBH ₃ ^{-a} 3.52 -0.353 1.862 -10.0 -32.8 -2.5 2.8 -12.5 -30.0 0.305 -0.882 MgBH ₃ 3.13 0.415 1.844 -21.6 -55.0 137.3 -28.7 115.7 -83.8 0.393 -4.782 CaBH ₃ ^a 2.40 0.499 1.843 -16.4 -49.2 151.2 -37.7 134.8 -86.9 0.334 -4.011 NaAlH ₃ ^{-a} 13.51 -0.169 1.732 -30.9 -40.5 1.1 -1.1 -29.7 -41.6 0.762 -1.006 KAIH ₋ ^{-a} 12.21 a0.221 1.811 -23.5 a33.7 a2.8 1.8 a26.3 a31.8 0.697 a1.526	NaBH ₃ ^{- a}	5.38	-0.231	1.767	-14.2	-36.9	14.1	-4.4	-0.1	-41.3	0.384	-3.214
MgBH ₃ 3.13 0.415 1.844 -21.6 -55.0 137.3 -28.7 115.7 -83.8 0.393 -4.782 CaBH ₃ ^a 2.40 0.499 1.843 -16.4 -49.2 151.2 -37.7 134.8 -86.9 0.334 -4.011 NaAlH ₃ ^{-a} 13.51 -0.169 1.732 -30.9 -40.5 1.1 -1.1 -29.7 -41.6 0.762 -1.006 KAlH ₂ ^{-a} 12.21 -0.221 1.811 -23.5 -33.7 -2.8 1.8 -26.3 -31.8 0.697 -15.26	KBH ₃ ^{- a}	3.52	-0.353	1.862	-10.0	-32.8	-2.5	2.8	-12.5	-30.0	0.305	-0.882
CaBH ₃ a 2.40 0.499 1.843 -16.4 -49.2 151.2 -37.7 134.8 -86.9 0.334 -4.011 NaAlH ₃ $^{-a}$ 13.51 -0.169 1.732 -30.9 -40.5 1.1 -1.1 -29.7 -41.6 0.762 -1.006 KAUH ₂ $^{-a}$ 12.21 -0.221 1.811 -23.5 -33.7 -2.8 1.8 -26.3 -31.8 0.697 -1.526	MgBH ₃	3.13	0.415	1.844	-21.6	-55.0	137.3	-28.7	115.7	-83.8	0.393	-4.782
NaAlH ₃ ^{-a} 13.51 -0.169 1.732 -30.9 -40.5 1.1 -1.1 -29.7 -41.6 0.762 -1.006 KAlH ₃ ^{-a} 12.21 -0.221 1.811 -23.5 -33.7 -2.8 1.8 -26.3 -31.8 0.697 -1.526	CaBH ₃ ^a	2.40	0.499	1.843	-16.4	-49.2	151.2	-37.7	134.8	-86.9	0.334	-4.011
KAIH $-\frac{a}{2}$ 12 21 -0.221 1 811 -23.5 -33.7 -2.8 1.8 -26.3 -31.8 0.697 -1.526	NaAlH ₃ ^{- a}	13.51	-0.169	1.732	-30.9	-40.5	1.1	-1.1	-29.7	-41.6	0.762	-1.006
KAIII 12.21 0.221 1.011 25.5 55.7 2.0 1.0 20.5 51.0 0.077 1.520	KAlH ₃ ^{- a}	12.21	-0.221	1.811	-23.5	-33.7	-2.8	1.8	-26.3	-31.8	0.697	-1.526

Supplementary Table 5. Atomic charges of M and A in MAX₃ systems, Q(M) and Q(A), the interatomic exchange-correlation and Coulombic energy components of IQA interaction energy between metal and Al, B, or central C atoms in the studied systems, $V_{XC}(M, A)$ and $V_C(M, A)$, and those of the metals with the substituents on the central atom, $V_{XC}(M, X)$ and $V_C(M, X)$, in kcal.mol⁻¹. All data are computed at DFT-CCSD level.

-										
Molecules	Q(M)	Q(A)	V _{XC} (M,A)	$V_{XC}(M,T)$	$V_{C}(M,A)$	$V_{C}(M,T)$	$V_{Int}(M,A)$	$V_{Int}(M,T)$	ICI _{xc}	ICI _C
LiBH3 ^{-a}	0.007	1.243	-36.8	-55.6	28.4	-39.1	-8.4	-94.7	0.662	-0.726
NaBH ₃ ^{- a}	-0.301	1.565	-24.5	-49.5	-5.3	3.2	-29.7	-46.3	0.494	-1.656
KBH ₃ ^{- a}	-0.467	1.717	-12.9	-35.9	-24.9	9.6	-37.8	-26.3	0.358	-2.594
MgBH ₃	0.395	1.664	-28.4	-60.8	112.0	-26.6	83.7	-87.4	0.466	-4.211
CaBH ₃ ^a	0.497	1.641	-24.0	-55.9	128.5	-42.2	104.5	-98.1	0.429	-3.045
NaAlH ₃ ^{- a}	-0.236	1.673	-39.3	-51.0	12.3	5.8	-51.6	-45.3	0.771	2.121
KAlH ₃ ^{- a}	-0.300	1.756	-29.8	-41.6	-18.5	8.1	-48.4	-33.5	0.716	-2.284

Supplementary Table 6. Fuzzy atom partitioning: atomic charges of M and A in MAX₃ systems, Q(M) and Q(A), the interatomic exchange-correlation and Coulombic energy components of IQA interaction energy between metal and Al, B, or central C atoms in the studied systems, $V_{XC}(M, A)$ and $V_C(M, A)$, and those of the metals with the substituents on the central atom, $V_{XC}(M, X)$ and $V_C(M, X)$, in kcal.mol⁻¹.

Molecules	Q(M)	Q(A)	V _{XC} (M,A)	V _C (M,A)	V _{Int} (M,A)	$V_{XC}(M,T)$	$V_{C}(M,T)$	V _{Int} (M,T)	ICI _{XC}	ICIc
LiBH ₃ -	-0.291	1.462	-49.0	-10.7	-59.8	-99.3	4.6	-94.7	0.494	-2.322
NaBH ₃ -	-0.432	1.590	-51.1	-44.8	-95.9	-111.0	11.5	-99.4	0.460	-3.881
KBH ₃ -	-0.408	1.655	-37.2	-36.8	-74.0	-90.5	9.3	-81.2	0.411	-3.951
MgBH ₃	0.230	1.584	-94.2	49.1	-45.0	-190.6	-9.9	-200.5	0.494	-4.944
CaBH ₃	0.332	1.613	-74.1	71.8	-2.3	-181.8	-16.7	-198.6	0.408	-4.292
LiAlH ₃ ⁻	0.021	1.071	-114.7	3.8	-110.8	-135.0	-22.8	-157.8	0.849	-0.168
NaAlH ₃ ⁻	-0.241	1.330	-98.8	-24.6	-123.4	-122.2	-1.0	-123.2	0.808	25.471
KAlH ₃ ⁻	-0.277	1.432	-67.3	-25.4	-92.7	-86.7	-2.3	-89.1	0.776	10.868
MgAlH ₃	-0.018	1.781	-62.5	-33.7	-96.2	-135.2	-11.3	-146.5	0.462	2.984
CaAlH ₃	0.263	1.632	-75.5	30.6	-44.9	-121.4	-11.7	-133.1	0.622	-2.619
i-CaAlH ₃ ^{a,b,d}	1.087	1.334	-21.3	228.9	207.6	-178.2	-208.4	-386.6	0.120	-1.098
LiCF ₃	0.718	1.435	-59.1	97.7	38.7	-71.9	-82.2	-154.2	0.821	-1.189
NaCF ₃	0.657	1.600	-75.2	81.2	6.0	-94.1	-65.2	-159.3	0.799	-1.246
BeCF ₃ ⁺	1.306	1.466	-103.7	191.5	87.8	-129.2	-125.9	-255.2	0.802	-1.520
MgCF ₃ ^c	1.180	1.763	-102.4	204.1	101.7	-137.9	-60.0	-197.9	0.743	-3.400
<i>i</i> -LiCF ₃ ^{b,c,d}	0.870	1.826	-0.8	280.0	279.2	-64.7	-126.7	-191.4	0.013	-2.209
i-NaCF3 ^{b,c,d}	0.902	1.847	-1.1	243.3	242.2	-88.4	-127.2	-215.6	0.012	-1.913
<i>i</i> -KCF ₃ ^{b,d}	0.979	1.838	-0.9	233.8	232.8	-102.4	-140.6	-243.1	0.009	-1.663
i-MgCF3 ^{+ b,d}	1.740	1.748	-2.6	495.7	493.1	-150.3	-285.4	-435.7	0.017	-1.737
i-CaCF3 ^{+ b,d}	1.807	1.739	-2.2	451.4	449.2	-185.3	-276.4	-461.6	0.012	-1.634
<i>i</i> -SrCF ₃ ^{+ b,d}	3.356	1.731	-0.6	859.4	858.9	-471.9	-2613.7	-3085.6	0.001	-0.329
$MgC(CN)_3^{+b}$	1.199	0.584	-24.6	72.8	48.2	-247.6	-119.3	-366.9	0.099	-0.610
CaC(CN)3 ^{+b}	1.041	0.447	-12.6	61.5	48.9	-265.3	-3.1	-268.4	0.048	-19.992
SrC(CN)3 ^{+b}	2.317	0.434	-7.0	132.1	125.1	-188.5	-653.0	-841.5	0.037	-0.202
LiCH ₃	0.721	-0.291	-61.5	-75.6	-137.1	-68.1	-107.5	-175.6	0.903	0.703
NaCH ₃	0.619	-0.173	-83.7	-52.1	-135.9	-93.4	-78.4	-171.8	0.896	0.665
KCH ₃	0.733	-0.163	-82.5	-52.9	-135.4	-91.6	-90.3	-181.8	0.901	0.587
BeCH ₃ ⁺	1.430	-0.562	-116.0	-274.2	-390.2	-127.0	-236.3	-363.3	0.914	1.160
MgCH ₃ ⁺	1.267	-0.327	-121.7	-143.6	-265.3	-134.3	-127.1	-261.4	0.906	1.130
CaCH ₃ ⁺	1.500	-0.283	-135.4	-141.1	-276.6	-150.1	-170.3	-320.4	0.902	0.829
SrCH ₃ ⁺	1.863	-0.435	-106.0	-273.3	-379.3	-116.4	-375.7	-492.1	0.911	0.728
LiC(Ph) ₃	-0.700	-0.378	-54.7	35.9	-18.8	-428.6	-184.2	-612.8	0.128	-0.195
NaC(Ph) ₃	-0.447	-0.192	-46.8	11.3	-35.5	-365.2	-106.8	-471.9	0.128	-0.106
KC(Ph) ₃	-0.190	-0.102	-43.1	1.7	-41.4	-301.5	-51.0	-352.5	0.143	-0.033
$MgC(Ph)_{3}^{+}$	0.472	-0.522	-97.3	-78.8	-176.1	-225.8	-20.5	-246.3	0.431	3.841
$CaC(Ph)_{3}^{+}$	-0.400	-0.198	-87.1	2.1	-85.0	-584.2	-212.1	-796.3	0.149	-0.010
$SrC(Ph)_{3}^{+}$	3.190	-0.589	-149.5	-803.3	-952.9	-431.2	-2227.1	-2658.2	0.347	0.361
$LiC(CH_3)_3^c$	0.629	-0.477	-64.8	-85.4	-150.2	-81.7	-81.1	-162.8	0.793	1.053
$NaC(CH_3)_3^c$	0.488	-0.297	-84.0	-51.5	-135.5	-108.6	-52.5	-161.0	0.773	0.982
$\mathrm{KC}(\mathrm{CH}_3)_3^c$	0.640	-0.211	-79.5	-49.5	-129.0	-101.5	-65.6	-167.1	0.783	0.755
$BeC(CH_3)_3^+$	1.170	-0.696	-112.8	-252.9	-365.6	-137.3	-157.0	-294.4	0.821	1.611
$MgC(CH_3)_3^+$	0.893	-0.536	-109.7	-126.7	-236.4	-150.0	-49.6	-199.7	0.731	2.553
$CaC(CH_3)_3^+$	1.241	-0.405	-140.0	-138.4	-278.4	-190.5	-103.2	-293.8	0.735	1.341
i-LiC(CH ₃) ₃ ^{<i>a</i>}	-0.414	-0.306	-68.6	17.0	-51.6	-352.4	-94.3	-446.7	0.195	-0.180
<i>i</i> -NaC(CH ₃) ₃ ^{<i>b</i>,<i>a</i>}	0.597	-0.128	-19.8	-13.5	-33.3	-105.6	-55.2	-160.9	0.187	0.244
ι -KC(CH ₃) ₃ ^{v,u}	0.664	-0.089	-28.0	-10.8	-38.8	-123.6	-60.5	-184.1	0.227	0.178
ι -BeC(CH ₃) ₃ ^{+c,a}	0.037	-0.235	-86.6	-24.1	-110.7	-470.4	1.2	-469.3	0.184	-20.836
ι -MgC(CH ₃) ₃ ^{+ν,d}	0.353	-0.036	-7.1	-0.7	-/./	-53.1	13.6	-39.5	0.133	-0.049
i-CaC(CH ₃) ₃ ^{+c,u}	0.592	-0.180	-104.3	-30.7	-135.0	-337.8	-2.5	-340.3	0.309	12.155
<i>i</i> -SrC(CH ₃) ₃ ^{+ c, a}	3.417	-0.735	-190.6	-1151.3	-1341.9	-531.0	-2839.6	-33/0.5	0.359	0.405

^a. Data are obtained from the BS-DFT calculation.

^b. The metal forms a multicenter bond within the context of QTAIM.

^c. The global minimum of the molecule.

^d. i- represents inverted structures.

^e. The global minimum of the molecule has a C_S point group, 1.6 kcal.mol⁻¹ lower in energy; therefore, it is not discussed here.

Supplementary Figure 1. Examples of HOMOs for systems with (a) 2e-2c bonds between M and C, (b) and (c) 2e-multicenter MOs, and (d) nonbonding MOs between M and AX_3 fragments.

Supplementary Figure 2. The H basin is shown with white lines that encompass a large portion of the bonding MO between boron and sodium in NaBH₃⁻ complex.

Supplementary Figure 3. Valence real space AdNDP orbitals in NaBH₃⁻. The Lewis structure is well described by three B–H (a, only one non-equivalent orbital shown), and one B–Na (b) 2c-2e contributions. The domain overlap of the latter in each of the H basins is 0.12.