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Abstract: Particle Filter is a tool, which has been used more 
frequently over the years. Calculations with using Particle Filter 
methods are very versatile (in comparison to the Kalman Filter), 
which can be used in high complex and nonlinear problems. 
Example of such a problem is the power system, where Particle 
Filter is used to state estimation of network parameters based on 
measurements. Paper presents theoretical basis regarding Par-
ticle Filter and power system state estimation. Results of experi-
ment have shown that Particle Filter usually gives better outcome 
comparing to the Weighted Least Squares method. In extension 
Multi Probability Density Function Particle Filter is proposed, 
which improves obtained results so that they are always better 
than Weighted Least Squares method.

Keywords: particle filter, state observer, state estimation, power 
system, weighted least squares

1.	 Introduction

Particle Filter has been used for about 20 years. It was 
caused by high computational requirements, especially in 
high-dimensional objects. In relation to this, PF usefulness 
grows with the development of technology and computa-
tional power. In addition, advantage of PF is its easiness 
to implement parallel computing, which in recent years is 
becoming more and more popular [15]. Good implementa-
tion with the use of FPGA systems allows to reduce com-
putation time even by few magnitude orders [13].

PF, on the contrary of Kalman Filter, can be used to 
linear and nonlinear objects, but in practice it is used only 
to high nonlinear problems. 

In the following article, nonlinear, multidimensional 
object – power system was chosen. This is one of a few 
attempts that can be found in literature to use PF in such 
as complex problem – in given task, there are 14 state 
variables and even more input signals. 

Second chapter introduces particle filter operation 
principle. Third chapter is devoted to state estimation of 
power system. Fourth chapter describes proposed power 
network and explains how the object was modelled. Simu-

lation results are shown in fifth chapter. In the sixth chap-
ter Multi PDF PF is proposed and simulation results 
are shown.

2.	 Particle Filter

PF principle of operations is based on Bayesian estima-
tion and is one of the possible implementations of Recur-
sive Bayesian Filter [3]
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where prior probability density function (PDF) is given by

	
	(2)

In (1–2) assumed that x(k) represents state vector in time 
step k, y(k) is the measurement vector in time step k, and

	 ( ) ( ) ( ) ( ){ }1 2k , , , k= KY y y y 	 (3)

The uniqueness of this implementation is caused by repre-
sent posterior density by set of particles, where each has 
values xi(k) and weight qi(k). Set of all particles {xi(k),qi(k)} 
i = 1, ..., N gives information about PDF p(x(k)|Y(k))

	 	 (4)

Based on strong law of large numbers, it can be writ-
ten that

	 	 (5)
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Each iteration in PF algorithm consists of two parts: 
prediction and update (respectively (2) and (1)). Trans-
ition density p(x(k)|x(k – 1)) and likelihood p(y(k)|x(k)) 
are given with the knowledge of the system.

PF algorithm was proposed in 1993 by Gordon, Salmond 
and Smith [8] and it was named Bootstrap Filter. It is one 
of SIR (Sequential Importance Resampling) algorithms 
varieties, which is very simple to implement. Bootstrap 
Filter operation principle is shown below.

Algorithm (Bootstrap Filter)
1.	 Initialization. Draw N particles from initial density 

xi(0) ~ p(x(0)). Set initial particle weights qi(0) = 
1/N 

and initial time step k = 1.
2.	Prediction. Draw particles from importance density 

xi(k) ~ p(x(k)|xi(k – 1)).
3.	Update. Compute weights values of all particles using 

expression q*i(k) = p(y(k)|xi(k)).
4.	Normalization. Normalize weights so that the sum is 

equal 1.
5.	Resampling. Draw new particles set based on poste-

rior PDF.
6.	 Iteration end. Compute state estimation using (4). 

Time step update k = k + 1. Go to step 2.

Information about PF were presented very briefly. Addi-
tional knowledge and more accurate description can be 
found in literature. A very extensive publication is [5], but 
it is recommended only for the experienced particle filter 
designers. If one would like to learn basics, it is suggested 
to read [2, 10 or 14]. Position [16] is also recommended 
because of rich illustrations and wide description of the 
use PF in robotics.

3.	 Power system state estimation

There exist lots of power systems worldwide. Each of them 
supplies electrical energy to thousands or millions of people 
and each of them requires estimation of its internal state. 
Thanks to the information of power distributor it is possi-
ble to calculate power flow in network, protect it of any 
possible failures (N – 1 rule – system is able to withstand 
the loss of any single component [12]) and find optimal 
power flow (OPF) in order to minimize losses and costs of 
energy production [9, 18].

Estimation goal is to obtain state vector x based on 
measurements y, which are (generally) nonlinearly depen-
dent on the state
	 y = h(x)+n	 (6)

In equation (6) h(x) means a true values vector of measu-
red parameters, y is a measurement vector, and n is 
a measurement noise vector. State vector in power system 
is a set of nodal voltage magnitudes and angles

 
	 	 (7)

where B is a number of all network buses (nodes).

Buses are linked by lines with a certain admittance
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where Rij and Xij are resistance and reactance between i-th 
and j-th buses. Based on (8), the admittance matrix of size 
B × B is created according to
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Based on Euler’s formula, the following notation can 
be assumed 

	 	 (11)

	 ( )ij µ= ⋅ 	 (12)

Usually measured values are the powers (nodal and 
flow) and voltages (magnitude). In the calculations it is 
possible to take into account the currents, but in prac-
tice it was never used on a wide scale [11]. The relation-
ship between all types of measurements and state vector 
(admittance values are given together with the network 
topology) is given by [1]:
–– real and reactive power injection at bus i
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–– real and reactive power flow from bus i to bus j

	 ( )
( ) ( )

δ
2

ij ij

i ij ij i j ij i j ij

P , P

U Y cos U U Y cos

= =U 	 (15)

	

	

( ) ( )
( )

δ 2

2

2
ij

i j ij i j ij i
y

µ

δ δ µ
′

U
	 (16)

In expression (16) y’ij/2 there is the half total line charging 
susceptance [19]. A special case is the voltage measure, 
which is linearly dependent on the state vector (one of 
a state variable is measured directly).

One may notice the difference of phase angles in each 
equation. It is required to choose the reference angle, that 
will be constant δr = 0. By doing that state vector dimen-
sion is decreased by 1.
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3.1.	Weighted least squares estimation 
method

In order to estimate the state vector, weighted least squ-
ares (WLS) method was used. It assumes the knowledge 
about initial state x(0). Goal of this method (like in PF) is 
a selection of state x, so sum of squares between measured 
value and calculated one based on x was as low as possi-
ble. Formally it can be written as

	 ( ) ( )[ ] ( )[ ]( )Tmin J min 	 (17)

where h(x) is the value vector calculated from state vari-
ables and W is weight matrix, which possesses the ele-
ments only on diagonal
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where σi
2 is noise variance i-th measure, m is a number of 

all measurements in network.
Iteration equation to calculate state variables is given 

by expression
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where H is Jacobi matrix, therefore it is a partial deriva-
tives matrix
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Formula derivation (19) is available in [1, 7 and 11].

4.	 Simulated system

In simulation, the 7-node network was used, proposed 
in [17], which is presented in fig. 1. Parameters of the 
network were shown in table 1, and initial state of the 
system in table 2. On fig. 1. were marked the places from 
which the measures were taken. One can see that the bus 
5 does not have any measurements, but overall the state 
vector can be estimated correctly.

In case of PF, the system was written in a form 
of equations:
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where k – 1 means the previous time step, u is the control 
vector, whereas v, p and n are noises – respectively sys-
tem, control and measurement (all of them are Gaussian).

The modelled system has 13 state variables (assump-
tion was made that first node is reference, so angle δ1 

is not included into state variables), 
13 input signals and 32 output signals 
(because measurement occurs in 32 places 
in the system).

There is a need to explain what control 
and noise control is. Particle filter has 
possibility to observe state of the system 
not only from its outputs but also from 
using input signals. In relation to this, 
assumption can be made that one knows 
certain control signal, which modifies 
values of state variables from previous 
time step. This control signal can be 
realized by preliminary assessment, what 
value can be. For simplicity assumed that 
this information is available, but also that 
it has high control noise (error) of appro-
ximately 20 %.

In case of WLS calculation was 
conducted according to formula (19). 

The measurement noise standard 
deviation was set to σn = 0.01 for all kind 
of measures (calculations were made in 
relative units). System noise standard 

Fig. 1.	 Power system network with marked measurements points. In the circles 
there are buses numbers. Double circle inform that this is a generator, 
single circles means loads nodes. In the grey circles there are bus power 
injections and voltage magnitudes measurements. Letters in grey rectan-
gles represent measured line power flows

Rys. 1.	Sieć elektroenergetyczna z zaznaczonymi miejscami pomiaru. W okrę-
gach zapisano numery węzłów. Podwójny okrąg informuje, że jest to ge-
nerator, a pojedynczy, że jest to odbiór. W szarych kołach są zaznaczo-
ne pomiary mocy węzłowych oraz napięć węzłowych. Litery w szarych 
prostokątach informują o pomiarze mocy przepływowych
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deviation was set to σvU = 0.0005 for voltage magnitude 
and σvδ = 0.0002 for voltage angles. Control noise stan-
dard deviation was set to σp = 0.001 for voltage magni-
tude and angle.

5.	 Simulation results

Power system from chapter 4 was used in simulations. 
Every simulation was conducted on the same data so that 
the comparison of algorithms could be possible. Each simu-
lation consisted of 100 time steps. In the first time step 
the assumptions were made that the correct state of the 
system is well known, and the estimation begins from the 
second time step. PF implementation use a relatively small 
number of particles – 500 (some studies are using up to 10 
times more particles [4, 6]).

Simulation results are shown in table 3. For WLS 
method, calculations were made only once (result is depen-
dent only on measurement values), while for PF calcula-
tions, the simulations were made multiple times, each time 
a different random generator seed was used. 

Results from table 3. regard the mean square errors 
(MSE) particular state variable in comparison to real 
values. Comparison factor D was defined in form

	 ( )
13 23

1
10i

i
D MSE

=

= ⋅∑ 	 (22)

Based on the results, one can state that the proposed 
approach with using PF is usually better than WLS. Few 
more simulations were performed with PF estimator and 

Tab. 3.	 State variables mean square errors for WLS method and 
few cases for PF method

Tab. 3.	 Średnie kwadraty błędów zmiennych stanu dla metody 
WLS i kilku przykładów metody PF

WLS PF

MSE1 [·103] 1.3698 0.9160 1.1415 2.2406 0.4788

MSE2 [·103] 1.4266 0.9617 1.2746 2.5152 0.3827

MSE3 [·103] 1.4570 0.7700 1.1688 2.4141 0.5030

MSE4 [·103] 2.7357 1.4754 2.4768 3.6361 1.5286

MSE5 [·103] 2.4636 1.5588 1.4469 4.1565 1.9055

MSE6 [·103] 1.6126 1.4196 1.6230 2.8377 0.3849

MSE7 [·103] 2.3258 1.7501 2.1074 2.6905 0.7610

MSE8 [·103] 0.0756 0.0750 0.0794 0.0576 0.0715

MSE9 [·103] 0.2667 0.1849 0.3381 0.1615 0.1508

MSE10 [·103] 1.2264 0.6167 0.5928 1.3581 0.3391

MSE11 [·103] 2.0179 1.3918 1.0928 0.7290 0.5500

MSE12 [·103] 0.2502 0.1975 0.2163 0.2673 0.1781

MSE13 [·103] 4.3421 1.8099 2.4802 2.4597 2.6429

D 52.1666 17.7135 27.4613 71.4915 14.7852

Tab. 2.	 Network initial state – voltage magnitudes and angles with 
calculated bus power injections in nodes

Tab. 2.	 Stan początkowy sieci – wartości napięć oraz kąty wraz 
z policzonymi mocami węzłowymi

Bus i Type
Ui 

(pu)
δi 

(pu)
Pi 

(pu)
Qi

(pu)

1 Gen. 1.0800 0 0.3497 0.2949

2 Gen. 1.0609 0.0254 0.2380 0.2140

3 Gen. 1.0577 0.0826 1.6840 0.1000

4 Load 0.9364 -0.0941 -0.5650 -0.1630

5 Load 0.9556 -0.0561 -0.2760 -0.1390

6 Load 0.9768 -0.0594 -0.7480 -0.1970

7 Load 0.9557 -0.0626 -0.5150 -0.1380

Tab. 1.	 Parameters of the network
Tab. 1.	 Parametry sieci

Line
Rij

(pu)
Xij

(pu)
y’ij/2
(pu)

From bus To bus

1 2 0.1 0.17 0.015

1 6 0.18 0.22 0.02

2 3 0.11 0.12 0.025

2 6 0.12 0.25 0.03

3 4 0.12 0.42 0.02

3 5 0.14 0.39 0.02

3 7 0.16 0.32 0.025

4 5 0.08 0.30 0.015

5 6 0.16 0.44 0.01

6 7 0.09 0.23 0.01
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it was calculated that the mean value D from PF is around 
26.5, so it is significantly superior to WLS method (which 
is around 52.2).

6.	 Multi PDF Particle Filter

Based on results presented in tab. 3 one can see that one of 
few PF simulation result is not satisfactory. This problem 
can be solve by parallel running of several particle filters 
and averaging estimation results. But this approach would 
involve a more time for computations – three particle filters 
will worked 3 times longer on the standard CPU.

Therefore decided to check how 3 independent particle 
filters with N/3 particles would worked.

6.1. Principle of operation
Assumption has been made that posterior PDF of every PF 
are completely independent and affect only for estimation 
result by calculating average value from these 3 estimated 
state vectors. Based on (4) can be written

	
( ) ( )( )
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+ +
=

x Y
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where pa(x(k)|Y(k)) is a posterior of a-th PF.
Every of these partial particle filters has 166 particles, 

so computational time is similar to one PF composed of 
500 particles.

All other elements, including power system, rema-
ined unchanged.

6.2. Results
100 simulations with different seed were performed, both 
Multi PDF PF method and standard PF with 500 particles. 
Results of simulations are shown in tab. 4. The same results 
are presented in fig. 2 (all values refer to the factor D, de-
scribed in (22)).

Based on obtained results one can see that the use of 
Multi PDF PF provides almost 2-fold improvement in 

performance. Maximum performance has been reduced 
(from 79 to 50.5), which was the main aim of the propo-
sed method, but also the minimum value has improved. By 
reducing the maximum value also much smaller variance 
of the results were achieved.

7.	 Summary

In the article, a new approach is presented in order to 
state variable estimation in the power system with using 
the particle filter. Based on performed simulations it can 
be concluded that this new approach offers better results 
than standard WLS algorithm.

In the future studies, the presented algorithm will be 
expanded by preliminary state estimation. There will be 
also the implementation of more complex algorithms. It is 
planned to develop more the estimation subject because 
of the algorithm’s susceptibility to gross errors, the lack 
of some the measurements and the loss of observability.
	 In extension new approach was presented – Multi 
PDF Particle Filter. Simulation results shown that this 
approach is better than basic PF.
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Wykorzystanie filtru cząsteczkowego do  
estymacji wektora stanu w sieci  

elektroenergetycznej

Streszczenie: Filtr cząsteczkowy jest narzędziem, które z roku 
na rok jest coraz chętniej wykorzystywane. Dużą zaletą obli-
czeń wykorzystujących metody filtru cząsteczkowego jest ich 
duża uniwersalność – w przeciwieństwie do filtru Kalmana mogą 
być stosowane nawet w bardzo skomplikowanych i silnie nieli-

niowych obiektach. Przykładem takiego układu jest sieć elek-
troenergetyczna, a problem, który został rozwiązany przy wyko-
rzystaniu metody filtru cząsteczkowego to estymacja stanu 
sieci na podstawie pomiarów. W artykule przedstawiono pod-
stawy teoretyczne dotyczące filtrów cząsteczkowych oraz esty-
macji stanu w sieci elektroenergetycznej. Przedstawiono także 
wyniki symulacji porównujących wyniki estymacji wykorzystują-
cych zarówno standardową metodę, jak i metodę filtru cząstecz-
kowego. W wyniku przeprowadzonego doświadczenia stwier-
dzono, że zaproponowana metoda estymacji stanu w układzie 
jest na ogół lepsza od standardowej metody WLS (ważonych 
najmniejszych kwadratów). W rozszerzeniu zaproponowano filtr 
cząsteczkowy złożony z kilku funkcji gęstości prawdopodobień-
stwa, który polepsza estymację wektora stanu. Dzięki zasto-
sowaniu algorytmu otrzymywane wyniki są zawsze lepsze od 
metody ważonych najmniejszych kwadratów.

Słowa kluczowe: filtr cząsteczkowy, obserwator stanu, esty-
macja stanu, sieć elektroenergetyczna
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