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Abstract. The paper is concerned with the modeling of reactive powder concrete (RPC) by 
using the method of numerical homogenization. More specifically, we use a two-scale model-
ing approach and the finite element method. The behaviour of a concrete model of RPC on 
the macro scale is described on the basis of the phenomena occurring in the microstructure of 
the material. The applied approach makes it possible to design an optimal composition of the 
reactive powder concrete and provides the possibility to take into account the phenomena oc-
curring in the microstructure as concerns the physical and mechanical properties of the ma-
terial. The method does not require any knowledge of the constitutive equations at the macro 
level, which are determined implicitly for each load increment by solving a boundary value 
problem for the numerical model of RPC on the micro level as a representative volume ele-
ment (RVE). Thus, to determine the constitutive equations on the macro scale it is necessary 
to know the geometry of the microstructure, the constitutive equations at the micro level and 
their parameters. In this contribution the material response of each material constituents 
(cement matrix, sand, crushed quartz) is assumed to be elastic. The microstructure of RPC 
concrete (RVE) is generated by a stochastic way. A computer program for two-scale homoge-
nization has been developed and numerical results for two test problems are presented. The 
aim of the first two-scale test was to check the program in the case of homogeneous material. 
The second example present the results obtained for another micro-scale problem. Further 
studies of the considered problem, including also laboratory experiments, are under way.    
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1 INTRODUCTION 
Reactive powder concrete (RPC) is currently one of the most modern building materials pro-
duced on the basis of cement. Reactive powder concrete belongs to the class of Ultra-High 
Performance Concrete (UHPC) with its ultra high-strength and high ductility comparable to 
steel [2]. Reactive powder concretes are also classified as cement matrix composites with ul-
trahigh resistance properties and often called the low-temperature ceramics. Thanks to ultra 
high-strength and ductility of RPC concretes, the weight and dimensions of cross-sections of 
structures built from it can be significantly reduced, with simultaneous the large freedom in 
providing the structure an architectural fit and crossing over significant spans (Fig. 1). 

 

 
Figure 1: Pedestrian and bicycle bridge in Sherbrooke (Canada), 1997 [8] 

 Reactive powder concrete thanks to its physical and mechanical properties finds a wide 
interest not only as the construction material, but also as a cladding one and even as a material 
for furniture. In order to optimally design the composition of RPC concrete and for the needs 
of the static strength analysis of buildings and other engineering constructions made of RPC, 
we have developed a two-scale model of reactive powder concrete (Fig. 3) by using the nu-
meric homogenization technique. In the method of two-scale numeric homogenization, the 
response of the medium on a macro-scale due to external loads is determined on the basis of 
structural analysis on a micro-scale. On the micro-scale level the distributions of micro-strains 
and micro-stresses are determined, which by the way of homogenization provide information 
about the macro-quantities. The whole micro-analysis is carried out on the so-called repre-
sentative volumetric element (RVE). This is a volume assigned to the material point that is 
representative for a small surrounding of this point. When the characteristic microscopic 
length is one order smaller than characteristic macroscopic length, we can take into considera-
tion only effects of the first order (Fig. 2). 

 
Figure 2: Assumption of high-resolution scales 
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In case of the RPC concrete, this condition is fulfilled. We may assume that the characteristic 
dimension on micro-scale is a fraction of ground quartz, 0.2 mm. While on the macro-scale 
this will be the dimension of the cross-section of a structural element, e.g. 0.2 x 0.2 m. 

 
Figure 3: Level analysis 

 

2 MICROSTRUCTURE OF RPC AND  REPRESENTATIVE VOLUME ELEMENT 
Reactive powder concrete (RPC) is manufactured by elimination of the shortcomings of the 
traditional concrete, and especially by minimizing porosity to the level of about 4% by: 

 using aggregates with granulation enabling the maximal packaging of components, 
 potentially maximal reduction of the water-cement ratio, with simultaneous 

application of super-plasticizers, 
 applying treatments of pressing in the initial period of cementitious binding. 

The improvement of physical and mechanical properties can also be obtained by 
modifying the microstructure of the adhesive matrix by using the right thermal treatment and 
through  using admixtures of very small grains, e.g., ground fine quartz and silica fume. 
Contrary to  traditional concrete, where the aggregate constitutes the reinforcing element but 
usually a chemically passive component, the micro-aggregate in RPC concrete exhibit the 
pozzolanic activity. The main characteristic features of the RPC microstructure are [7]: 

 very compact microstructure of the C-S-H phase, 
 very good adhesion of the C-S-H phase to mineral inclusions in the form of powder 

grains and quartz sand and steel fibers. 
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Figure 4: Representative volume element: a) microstructure of RPC, b) RVE, c) scheme of planting FE elements 

with RVE constituents 

In order to model the microstructure of RPC concrete with the composition given in Ta-
ble 1, as the first approximation we have applied a two-dimensional representative volume 
element. The RVE is modeled with the help of the finite element method. The RVE is a 
square and consists of 2500 finite elements, each of dimensions 0.2 x 0.2 mm; the side of 
RVE is 10 mm in length and consists of 50 finite elements. Because of the random character 
of the arrangement of concrete’s components, we have utilized a stochastic method to gener-
ate the RVE structure (Fig. 4b).   
 

Component Volume [kg/m3] Percentage [%] 
Cement 705 28,20  

Silica fume 230 9,20 
Crushed quartz 210 8,40 

Sand 1013 40,52 
Superplasticizer 17 0,68 

Steel fibers 140 5,60 
Water 185 7,40 

Table 1. Composition of RPC concrete  

Building the RVE structure consists in the random selection of an element (from the 
50x50 grid) and also the random assignment of the component (pores, crushed quartz, sand, 
cement matrix) to the selected position. The basic component length was assumed equal to 0.2 
mm. In the case of drawing the sand component, the process of arranging elements of the grid 
takes place according to the scheme presented in Fig. 4c, which is connected with the maxi-
mal size of the grain equal to 0.6 mm. The boundary locations correspond to the smaller 
grains of the same component. In order to generate a natural pseudo-random number  1+nγ   
from the range < 1, 4> for a component and the one from <1, 50 >  for the component’s posi-
tion, a generator defined by the following formula was applied  

 ])1(int[ 11 ++ ⋅+−+= nn Xxyxγ  (1) 

in which x is the left end of the range of drawing and y is the right end of the range of drawing  
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It is an affine generator of pseudo-random numbers from the < 0, 1 > range. The whole pro-
cedure of building the structure of the represented volume element is performed by our own  
computer program written in the FORTRAN 90 language, in which open access libraries 
[9,10] were used. The issue of approximation of the random microstructures is discussed in 
depth in [6].  

3 TWO-SCALE COMPUTATIONAL HOMOGENIZATION  

3.1 Homogenization 
The idea of two-scale computational homogenization is illustrated in Fig. 5.  
 

 

Figure 5: Idea of two-scale computational homogenization 

 
The problem of homogenization over the RVE of volume V  is to find a displacement 

field )(Xu  such that 0σ =][div  in V, while satisfying the boundary conditions on Γ  so that 
the Hill energy criterion is fulfilled:  

 〉⋅〈=⋅ εσεσ  (3) 

where the bar over a quantity says that it a macroscopic quantity and the notation is used: 

 ∫•=〈•〉
V

df
dV

V
1  (4) 

3.2 Finite element method in computational homogenization 
For solving the problem on the macro and the micro scales, the displacement version of the 
finite element method was used. The domains of both the problems are discretized with four-
node finite element Q4 that has two degrees of freedom at each node (Fig. 7), which are the 



A. Denisiewicz, M. Kuczma 

 6 

nodal values of the horizontal ),( ηξuu =  and vertical ),( ηξvv =  components of the dis-
placement field u = ( u, v), and bilinear shape functions  N1,…, N4 shown in Fig. 6: 
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Figure: 6. Bilinear shape functions 

 
The relationship between the components of deformation and displacement of nodes in 

the plane state of stress is expressed in matrix form by the formula  

 BqNqε =∂=
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where ∂  is the matrix operator of partial derivatives, B  is the matrix of deformations includ-
ing the derivatives of shape functions and [ ]44332211 ,,,,,,, vuvuvuvuT =q  is the vector of  
nodal displacements of the finite element. The displacement field within the finite element 

Ω⊂Ωe  is defined by  

 Nqu =  (7) 

where 

 
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Each material component of the microstructure is modeled as a linear elastic isotropic 
material. For the isotropic material and the considered plane stress state, the stiffness matrix is 
expressed by the formula 
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and i = 1,2,3 is the number of a particular component of the microstructure.  
Finally, the system of algebraic FEM equations on macro-scale can be written in the 

form 

 FuK =  (11) 

in which K  is the global macro-scale stiffness matrix,   

         Ω= ∫Α
Ω

d
E

T

E
BCBK  (12)   

where the symbol Α  stands for the aggregation procedure of macro-scale finite elements E 
contributions and C  is the tangent stiffness matrix, which will be discussed below in Section 
3.4.   

3.3 The boundary value problem on micro-scale 
The boundary value problem of mechanics for the specified RVE after FEM discretization is 
solved by the minimization of the function with additional constraints 

 0gCufuKuuuu =−−= ..
2
1)(min tsTTϕ  (13) 

The BVP can be solved by using the Lagrange’s method, but for the method of numeric ho-
mogenization we have a large computational complexity, that’s why the approach based on 
Lagrange’s multipliers is too time consuming. Because of that, there was selected an alterna-
tive approach [1, 3], which brings down to the solution of the equations: 

 FuK ~~ =  (14) 

where 
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To enforce deformations of RVE in accordance with macro-deformations ε  there were 

applied the displacement boundary conditions of the first type [3,4,5]: 
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where 
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Γ

Γ= dT
u

e
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and the matrix uH , in the case of displacement boundary conditions that we have applied in 
this paper, is equal to the 8x8 unit matrix. 

The finite element Q4 used in the analysis, definition of boundary Γ  and the way of inte-
grating are presented in Fig. 7 and Eqn. (27). 

 
Figure 7: Finite element Q4 – single element RVE 

The representative volume element (RVE) in micro-scale is a representation of the material 
point in macro-scale. Let x  be the position vector of a point on the edge Γ , then 

 xxxxxx Γ12ΓΓ2
∆+=−+= −−+

44
 (22) 

and using the assumption that the RVE is a point we have 

 −− =∆+
→∆ 44

)(lim ΓΓ0x
xxx  (23) 

 −+ =
4ΓΓ xx

2
 (24) 

Analogously on the top and bottom edges,  
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3.4 Macrostress and tangent stiffness matrix 

We determine the macro-stress σ  and the tangent stiffness matrix C in the macro-scale prob-
lem by solving the three linear systems of equations (14) for the RVE [3]: 
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and  

 e

e

Te
uV ∑= λDσ )(1  (30) 

where   

 )()( eeeTe
u

e uKFRλ −=  (31) 

 
qu ≡e [ ]Tvuvuvuvu 44332211 ,,,,,,,=  is  a vector of nodal micro-displacements in RVE, 0F =e  

is a vector of nodal micro-loads in RVE (herein assumed zero).  

4 NUMERICAL EXAMPLES 
We begin with a basic test on a single element homogenous RVE, on which the unit macro-
deformations, e.g. 0,0,1 122211 === εεε , as shown in Figs. 8 and 9 were enforced. The calcu-
lated deformed shapes of the RVE are displayed as bright colour lines.  The next test serves as 
a check of our two-scale analysis computer program. In Figs. 10 and 11 the obtained numeri-
cal results in a two-scale analysis of the homogeneous disc under compression in the plane 
state stress are presented. The homogeneous microstructure is modelled by a square 5x5 RVE 
with elasticity parameters given in Fig. 10. The results obtained in a two-scale analysis by our  
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program written in FORTRAN 90 are compared with those by using the commercial program 
ABAQUS. The next test concerns the microstructure of 50x50 RVE (top of Fig. 12), which 
was generated randomly by (1) and contains: cement matrix (47.08%), sand (40.52%), 
crushed quartz (8.40%), pores (4%). The assumed values of elasticity parameters are: cement 
matrix – E = 30 GPa, ν = 0.16, crushed quartz and sand –  E = 75 GPa, ν = 0.3. The boundary 
value problem induced by the macro-strain ]0,0,1[−=ε  on the RVE was solved. The distribu-
tions of micro-stresses 11σ  and 22σ are shown in Fig. 12a,b.  
 
 

 
Figure 8: Tests on single-element cell 

 
Figure 9: Tests on single-element cell 
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Figure 10: Two-scale analysis for a homogenous material 

 

 

Figure 11: Comparison of the results obtained in two-scale analysis (CH) by our own computer program  
and of that by ABAQUS for a homogenous material  
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Figure 12: Microstructure of the RVE, a) micro-stress distributions, b) smoothed micro-stress distributions 

ADDITIONAL INFORMATION 
Article was prepared as part of a research grant 506-07-01-03 MNiSW. 
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