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Abstract 

In article there is proposed a new approach to 
particle filter modeling – creation discrete transition 
and measurement models. This new approach 
assumes knowledge of transition model (2) and 
measurement model (3), but written by certain values 
set (non-analytical form). It opens new perspectives 
for particle filter prosper, in problems which 
analytical form cannot be used or it is hindered. 

1. Introduction 

Particle filter (PF), is a state observer similar to 
Kalman filter, although PF can be used in either 
cases with non-linear/non-Gaussian processes, in 
which Kalman filter and its modifications (EKF and 
UKF) are insufficient [2]. 

First research regarding PF starts in the mid-
twentieth century [5, 6, 12], but their popularity still 
rises – it is connected with computational power 
increase over last years. Parallel calculations also 
contributed to frequent use PF methods, because of 
their principle of operation [10, 13]. 

Particle filter principle is described in chapter 2 – 
there is shown basic variants of PF. In chapter 3 
particle filter with discrete transition and 
measurement models are proposed (DMPF). 
Simulation results and PF comparison are presented 
in chapter 4. 

 
List of abbreviations: 

BF Bootstrap filter 
DMBF Discrete models in BF 
DMPF Discrete models in particle filter 
DMSIS Discrete models in SIS 
EKF Extended Kalman filter 
ESS Effective sample size 
HMM Hidden Markov Model 
IS Importance sampling 
PDF Probability density function 
PF Particle filter 
RBE Recursive Bayesian estimation 
SIR Sequential importance resampling 
SIS Sequential importance sampling 
SLLN Strong law of large numbers 
UKF Unscented Kalman filter 

2. Particle filter 

Consider the state space model 
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where 1kv  represents process noise and kn  

measurement noise [1]. System (1) is hidden Markov 
model (HMM), therefore state variables are 
unobserved (filtration is needed) and their value 
depends only on the previous step state. 

PF is one method of implementing a recursive 
Bayesian estimation (RBE), where are assumed that 
both hidden state values and measured object output 
are random variables [3]. Hence model (1) one can 
represent in the stochastic form [11] 

  1~ kkk xxpx  (2) 

  kkk xypy ~  (3) 

where (2) is a transition model whereas (3) is a 
measurement model. 

RBE goal is to find the posterior PDF 
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where  kk xyp  is the likelihood,  1kk Yxp  is the 

prior PDF and  1kk Yyp  is the evidence or 

normalizing factor. The notation assumes 

  kk yyyY ,...,, 21  (5) 

Equation (4) can be also written as 
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where  11  kk Yxp  is the posterior from the 

previous step. Thus one can see that it is recursive 

form.  1kk Yyp  can be describe as 

XIV International PhD Workshop 
OWD 2012, 20–23 October 2012 



 42 

         kkkkkkk dxYxpxypYyp 11  (7) 

It follows that denominator in (6) is used only to 
normalization posterior and this equation can be 
written as 

        111  kkkkkkkk YxpxxpxypYxp  (8) 

where   means „directly proportional”. 
To be able to use the RBE, both models (2) and 

(3) must be known. There is also required knowledge 

of the initial PDF  1xp . Knowledge about the 

model (2) is equivalent to knowledge about 

distribution Vvk ~  (because model (1) is known). 

Particle filter implementation assumes 
representation of posterior PDF by a set of particles 

},,1,{ Nkxk   with associated weight kw  [1] 
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where N  means number of particles, and    is 

the Dirac delta. Using strong law of large numbers 
(SLLN) one can write 
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therefore with increase number of particles N , 
posterior accuracy improved. 

But there are also more sophisticated PDF 
notation methods, for example 
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where each  xpi  is a PDF and the sum of all i  is 

equal to 1 [4]. 
Finally to calculate state variable estimate is need 

to compute the expected value of the discrete 
distribution 
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2.1 Sequential Importance Sampling (SIS) 

In (9) weights are selected to Importance 
Sampling (IS) principle [7]. In general draw from 

distribution  kk Yxp  can be difficult, so the 

particles are drawn from proposal distribution  q  

which can easily draw – it is so-called importance 
density. With this approach particle weights drawn 
from the importance density are defined by 
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Substituting      111,  k

i

kk

i

k

i

kk

i

k yxqyxxqyxq  

and (8) to (13) received 
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In Algorithm 1 SIS principle of operation is 
written. 

 
Algorithm 1 

1. Draw particles from initial distribution 

 00 ~ xpxi
; 1k . 

2. Draw particles from importance density 

 k

i

kk

i

k yxxqx ,~ 1 . 

3. Compute particle weights 
i

kw  according 

to (14) 
4. Weights normalization 
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5. Step update 1 kk ; return to step 2. 
 

Importance density  q  can be any function (for 

example in [9] Gaussian Particle Filter is presented, 
importance density is normal distribution where 
expected value and variance are dependent on state 
variable), moreover it can depend on one of these 
two arguments (for example in the Bootstrap Filter 
importance density is depended on state value from 
the previous step only), or be completely 
independent of state values and system output (but 
this choice may affect the PF principle). 

The biggest drawback of the SIS method is 
degeneration problem – after few (dozen) of steps all 
particles except one have weights close to or equal to 
zero. The easiest way to prevent the degeneration 
problem is resampling. 

2.2 Sequential Importance Resampling 
(SIR) 

SIR SIS algorithms are different from those that 
have resampling, therefore SIR principle of 
operation is as follows: 
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Algorithm 2 
1. Draw particles from initial distribution 

 00 ~ xpxi
; 1k . 

2. Draw particles from importance density 

 k

i

kk
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k yxxqx ,~ 1 . 

3. Compute particle weights 
i

kw  according 

to (14). 
4. Weights normalization according to (15). 
5. Check the condition for resampling.  
6. If the condition is met, do resampling. 

7. Step update 1 kk ; return to step 2. 
 
SIR versions will differ in importance densities 

only, but also in resampling conditions and in 
resampling at all. 

In general is checked so called effective sample 
size (ESS), which can be estimated by 
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If ESS is smaller then the set threshold TN , then 

resampling is needed. Typically threshold is set on 

2
N

TN   [2, 7]. 

The most commonly used resampling method is 

drawing N  new samples from the current 
approximation (9) – probability of selecting a value 

i

kx  is equal to 
i

kw . After resampling all weights are 

equal to N
i

kw 1 . 

With the resampling particles with small weights 
are removed, and particles with greater weights are 
copied. One can say that resampling is a probabilistic 
implementation of the Darwinian idea of survival of 
the fittest [14]. 

2.3 Bootstrap Filter (BF) 

Algorithm proposed in 1993 by Gordon, 
Salmond and Smith [8] is considered to be classic 
SIR algorithms, and PF at all. It assumed that 
resampling is in every step, and the transition  model 
is importance density 
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Hence (14) one can write as 
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Resampling is in every step, so all weights are equal 

N
i

kw 1
1  , and finally 
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BF principle of operation present Algorithm 3.  

 
Algorithm 3 

1. Draw particles from initial distribution 

 00 ~ xpxi
; 1k . 

2. Draw particles from transition model 

 i

kk

i

k xxpx 1~  . 

3. Compute weights   i

kk

i

k xypw  . 

4. Weights normalization according to (15). 
5. Resampling. 

6. Step update 1 kk ; return to step 2. 
 
Transition model choice as importance density 

results that particles are drawing without taking into 
account the system output – algorithm is not 
resisting for outliers values [2], but its benefits (ease 
of implementation, no requirement to save weights 
values from previous step, relatively high speed) 
make this algorithm is willingly used. 

3. Transition model and 

measurement model 

Knowledge of both models is one of the PF 
assumptions and usually follows directly from the 
model (1). For example one can consider state-space 
model 
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Transition model needed to computing in step 3 of 
Algorithm 1 one can receive by appointment noise 
value from system model 

 11 9.0   kkk xxv  (21) 

and then it need to find PDF value this random 
variable 

    11 9.0   kkvkv xxSvS  (22) 

Just proceed to the measurement model to find 

 i

kk xyp  value – then is obtained 
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To draw particle in 2nd step of Algorithm 3 one only 

need to draw system noise sample 1kv  from 

distribution vS  and to substitute into the first 

equation in (20). 
It should be noted that in each of these cases, 

knowledge about PDF vS  and nS  is required. The 

problem also exist when the object is a white box 
(model structure is known, but the unknown is each 
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constant), or when knowledge is even less about the 
model (for example, limited to the number of state 
variables). There are also much more complex 
systems than (20), in which for states affect more 
different random variables. There may not be able to 
provide noise in the equation form. Another 
problem is need to modificate the code at every 
change the system – in this case, better to write the 
universal program. 

In each of these cases one can use proposed in 
this article transition and measurement models write 
form – it involves saving the both models in the 
form of discrete PDF. 

An example is illustrated in Fig.1 – first there is 
drawing some samples. Then histogram is created, 
which becomes PDF after normalization. 

 
Fig.1. Way to create discrete PDF. 

Thus obtained transition model and measurement 
model written as well as posterior – by a set of 
particles with associated weights. But these models 
are fixed and the distance between all particles is 
constant. 

Unfortunately, to create both model it must be 
possible to measure not only the system output, but 
also the state variables. Only after obtaining 
information needed to create transition and 
measurement models, object can be considered as 
HMM. 

It should also be noted that the greater simulation 

experiment steps number simM , the more accurate 

discrete models are created. Also increase in the 

number of intervals (particle counts) fL  has a 

positive effect on the accuracy of representation of 

these two models (but simM  has to be big enough). 

Therefore by the SLLN, using discrete transition 

and measurement models, assuming simM  

and fL  one can write 
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It follows that there are a particles number N , 
beyond which further increase has no effect on 
improvement of PF, therefore (10) ceases to apply 
for DMPF. 

4. Simulation results 

To simulation uses system 
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In all cases there have been used the same 
sequence of state variable and system output 

(simulation length is 10000M ), so it possible to 
compare results of different methods.  

For DMBFm it is assumed that always 20fL . 

Besides there is subscript next to the method name – 
it informs about the length of the simulation 
experiment 

 
m

simM 10  (27) 

4.1 SIS degeneration 

Fig.2 presents the problem of SIS degeneration. 
One can see that after a few steps number of 
significant particles is reduced to one. 

 
Fig.2. Particle weights (posterior PDF)  

in SIS method. 

By increasing the number of particles N  one can 
delay degeneration, but it is inevitable. 
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4.2 BF and DMBF comparison 

Fig.3 presents fragments of plots with true value 
of state variable and two estimates – from algorithm 
BF and DMBF4. 

 
Fig.3. Estimates of state variable 

for methods BF and DMBF4.  

One can notice that in both cases state variable is 
well tracked. However, it should be noted that in BF 

the perfect knowledge about distributions vS  and 

nS  is considered. In the next plot – Fig.4 – presents 

estimates of state variable for DMBF7 and case of 
BF in which both noise distributions are poorly 
recognized – the average value is shifted by the value 
of variance. 

 
Fig.4. Estimates of state variable 

for methods BFbadS and DMBF7. 

Compared Fig.3 and Fig.4 one can notice that 

valid knowledge about vS  and vS  is required for 

proper functioning of BF. On the other hand, 
looking at the state values for DMBF7, one can get 
the impression that it is the worst algorithm. 

There are results for all simulations in Tab.1 – 
mean square error 
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and computation time t . 

Tab.1. 

Compare the effects of different PF algorithms 

 N=50 N=100 N=150 N=200 

DMBF4 MSE=0.114 
t=1.80s 

MSE=0.102 
t=3.26s 

MSE=0.094 
t=5.40s 

MSE=0.095 
t=7.84s 

DMBF5 MSE=0.076 
t=1.73s 

MSE=0.056 
t=3.16s 

MSE=0.055 
t=5.22s 

MSE=0.037 
t=7.84s 

DMBF6 MSE=0.063 
t=1.55s 

MSE=0.037 
t=3.37s 

MSE=0.044 
t=5.28s 

MSE=0.039 
t=7.82s 

DMBF7 MSE=0.067 
t=1.77s 

MSE=0.047 
t=3.17s 

MSE=0.037 
t=5.19s 

MSE=0.033 
t=7.75s 

BF MSE=0.401 
t=1.39s 

MSE=0.051 
t=2.64s 

MSE=0.025 
t=4.16s 

MSE=0.014 
t=6.34s 

BFbadS MSE=1.543 
t=1.62s 

MSE=0.398 
t=2.61s 

MSE=0.124 
t=4.34s 

MSE=0.050 
t=6.43s 

 
This means that the simulation of the presented 

graphically (all were made for 200N ), the 
DMBF7 given quite good result. 

The best results were achieved by the standard 
method BF. DMBF is also worse in terms of 
computation time, but it is a quite small difference. It 
should be noted as a huge impact on the BF effects 

has the number of particles – for 50N  
algorithms with discrete transition and measure 
models are much better than the standard version. 

It can be concluded that DMBF algorithm will be 
useful where, because of the computation time, very 
small number of particles is required. 

4.3 Influence of particle number N 

Previously, it was found that the increase in 

particles number N  does not always improve the 

kx  tracking. Fig.5 shows the change in mean square 

error, with values of particles number for BF and 
DMBF7 

 
Fig.5. Dependence of particles number N  

for MSE average value.  

The graph confirms earlier observations – BF 
algorithm is very dependent on the number of 
particles. It has greater MSE value than DMBF7 for 

small N , and smaller MSE value than DMBF7 for 

large N . 
From the graph can be read number of particles 

– about 125N  – for which both methods give 
the same results. 
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5. Summary 

The paper presents new approach to particle 
filters – discretization of transition and measurement 
models. Given a number of cases in which their use 
is appropriate. Based on the simulations it was found 
that for a small number of particles DMBF method 
competes with standard versions of algorithms. 

Further research can help to improve the 
algorithm and achieve better results while 
maintaining the requirements of a small number of 
particles. 
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