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Abstract. This paper presents additional conditions that are needed to create proper digraphs representation of the character-
istic polynomial. Contrary to currently used methods (like canonical forms) digraphs representations allow to find a complete
set of all possible realisations instead of only a few realisations. In addition, all realisations in the set are minimal. Proposed
additional conditions on creating digraphs representations allow faster creation of representations by restricting the creations of
representations that are not proper and would have to be removed in later steps of algorithm.
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Introduction
In recent years, linear positive systems are of great in-

terest for many researchers. Analysis of the positive two-
dimensional (2D) systems is more difficult than of posi-
tive one-dimensional (1D) systems, as additional problems
arise in positive two-dimensional systems, that are not com-
pletely solved; for example: positive realisation problem
[1], [2], [3], determination of lower and upper index reach-
ability [4], [5], determination of reachability index set [6],
[7], [8], etc.

The realisation problem is a very difficult task. In
many research studies we can find canonical form of the sys-
tem [2], [1], i.e. constant matrix form, which satisfies the
system described by the transfer function. Use of that form
allows us to write only one realisation of the system, while
absolutely there exists many possible solutions. This means
that there exist many sets of matrices which fit into system
transfer function.

The digraphs theory was applied to the analysis of dy-
namical systems. The use of multidimensional theory was
proposed for the first time in the paper [9] to analysis of
positive two-dimensional systems. In [10] and [11] an ex-
perimental algorithm for finding set of possible realisations
of the characteristic polynomial was proposed, but due to
complicated nature of the problem (which is assumed to
be NP-complete) it tends to find improper solutions, fur-
thermore practical implementation is slow as the algorithm
struggles with creating and eliminating many representa-
tions. In this article we propose lemma stating conditions
under which digraphs representation is both proper and
minimal for given characteristic polynomial, which allows
to restrict the created representation set and speed-up the
algorithm.

2D positive systems
Let Rn×m

+ be the set of n×m real matrices with non-
negative entries and Rn

+ = R
n×1
+ . The set of non-negative

integers will be denoted byZ+ and the n×n identity matrix
by In .

Consider the two-dimension (2D) general model de-
scribed by the equation:

xi+1, j+1 = A0xi j +A1xi+1, j +A2xi , j+1+
+B0ui j +B1ui+1, j +B2ui , j+1 (1)

yi j = Cxi j +Dui j

where xi j ∈ Rn , ui j ∈ Rm and yi j ∈ Rp are state, input
and output vectors, respectively at the point (i , j ), and Ak ∈
Rn×n , Bk ∈Rn×m , k = 0,1,2, C ∈Rp×n , D ∈Rp×m .

In this paper we will consider special case of general
model for A0 = 0 and B0 = 0 – the second Fornasini-
Marchesini model described by the equation:

xi+1, j+1 = A1xi+1, j +A2xi , j+1+
+B1ui+1, j +B2ui , j+1 (2)

yi j = Cxi j +Dui j

For two-dimensional system the characteristic polyno-
mial consist from two variables: z1 and z2 if we have discrete
time system; s1 and s2 if we have continuous time system;
z and s if we have hybrid system. For discrete time system
described by the equation (2) we have the following charac-
teristic polynomial:

d (z1, z2) = det [Iz1z2−A1z−Az2] =

= zn
1 zn

2 −
n
∑

i=0

n
∑

j=0

di j z i
1 z j

2 = (3)

= zn
1 zn

2 − dn−1,n zn−1
1 zn

2 − dn,n−1zn
1 zn−1

2 −
· · ·− d10z1− d01z2− d00
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for

n ¶ i + j ¶ 2n− 1, i , j = 0,1, . . . , n (4)

Digraphs
A directed graph [12], [13] (or just digraph) D consists

of a non-empty finite set V(D) of elements called vertices
and a finite set A(D) of ordered pairs of distinct vertices
called arcs. We call V(D) the vertex set and A(D) the arc
set of D. We will often write D= (V,A) which means that
V andA are the vertex set and arc set ofD, respectively. The
order of D is the number of vertices in D. The size of D is
the number of arc in D. For an arc (v1, v2) the first vertex
v1 is its tail and the second vertex v2 is its head.
Example 1 The digraph D in Figure 1 have order
V(D) = {v1, v2, v3} equal to 3 and size A(D) =
{(v1, v2), (v2, v3), (v3, v1), (v3, v2), (v2, v2)} equal to 5.

v1 v2 v3

Fig. 1: A digraph D.

A two dimensional digraphs D(2) is a directed graph
with two types of arcs (corresponding to matrices A and
A2) and input flows (corresponding to matrices B1 and B2).
For the first time this type of digraphs was presented in
paper [7].

Remark 1 Aq -arcs and Bq -arcs, are drawn by the other
colour or line style. In this paper A1-arc and B1-arc is drawn
by the solid line and A2-arc and B2-arc is drawn by the dashed
line.

Conditions for digraphs realisation
Method proposed in [10] creates all possible digrpahs

representations for every monomial in the characteristic
polynomial. After that one representation of each mono-
mial is joined with others by means of disjoint union –
algorithm repeats this step many times, to create all pos-
sible combinations of representations. Thus are created
digrpahs representations of the characteristic polynomial,
which can be translated easily into A and B matrices. The
problem with experimental algorithm is that, not all cre-
ated representations are proper (it can be even said, that in
many cases most representations are improper) and algo-
rithm must eliminate them – but they can be checked only
after the long process of creation. The idea is to find a set of
restrictions, that will remove all improper representations,
without the need of going through the time-costly represen-
tation creation process. Some assumptions were proposed
earlier in [14] and [10], below we propose a set of restric-
tions tends that removes was proven experimentally to re-
move all improper results and retains all the proper repre-
sentations.
Lemma 1 There exists positive state matrices of the positive
system (2) corresponding to the characteristic polynomial (3) if

1. the coefficients of the characteristic polynomial are non-
negative

di , j ¾ 0, f o r i , j = 0,1 . . . , n; dn,n = 1 (5)

2. digraph do not appear additional cycles.
3. the set A and B corresponding to two multidimensional

digraphs are not disjoint.

To illustrate the workings of restrictions presented in
the lemma let as consider the following example:
Example 2 Let the characteristic polynomial

d (z−1
1 , z−1

2 ) = 1− z−2
1 z−1

2 − z−1
1 z−1

2 − z−1
1 (6)

be given and we need to determine its realisation.
In the first step we decompose polynomial (6) into a

set of the simple monomials. We obtain:
• monomial M1 = z−1

1 (digraphs corresponding to
monomial M1 presented in Figure 2),

• monomial M2 = z−1
1 z−1

2 (digraphs corresponding to
monomial M2 presented in Figure 3),

• monomial M3 = z−2
1 z−1

2 (digraphs corresponding to
monomial M3 presented in Figure 4).

Fig. 2: Two dimensional digraphs corresponding to mono-
mial M1

Fig. 3: Two dimensional digraphs corresponding to mono-
mial M2

Fig. 4: Two dimensional digraphs corresponding to mono-
mial M3

In the next step we put together all simple monomial
realisations presented in the Figure 2, Figure 3 and Figure
4. From all those realisations we choose the following three
possible realisations, in which the monomial z−1

1 (colour
red) presented in Figure 2 is toggled between vertices:

1. The first realisation is presented in Figure 5. From the
digraphs obtained we can write state matrices A1 and
A2 in the form of (7).

Fig. 5: The first two-dimensional digraphs

A1 =







0 1 1

0 0 0

0 0 0






A2 =







1 0 0

1 0 0

0 1 0






(7)

Using Lemma 1 we check the conditions:
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(C1) The coefficients of the characteristic polynomial
(6) satisfy the condition (5). The Condition 1 is
satisfied.

(C2) Obtained digraphs presented in Figure 5 do not
create additional cycles. The Condition 2 is sat-
isfied.

(C3) To verify this condition we must compare the sets
A and B corresponding to representations of sim-
ple monomial digraphs.

• In the first step we compare set A (digraphs
from Figure 4) corresponding to monomial
z−2

1 z−1
2 with the set B (digraphs from Figure

3) corresponding to monomial z−1
1 z−1

2 .

1 2 3

∩
1 2 3

=
1 2

Fig. 6: A∩B
• In the second step we compare set C (di-

graphs from Figure 6) with the set D (di-
graphs from Figure 2) corresponding to
monomial z−1

1 .

1 2 ∩ 1 = 1

Fig. 7: C ∩D
As can be seen described realisation satisfy
Condition 3.

All conditions are satisfied and digraphs presented in
Figure 5 create one of possible realisations of the poly-
nomial (6). Analytical verification of obtained solu-
tion is presented in equation (8).

d (z−1
1 , z−1

2 ) =

= det







1− z−1
1 −z−1

2 −z−1
2

−z−1
1 1 0

0 −z−1
1 1






= (8)

= 1− z−1
1 − z−2

1 z−1
2 − z−1

1 z−1
2

2. The second realisation is presented in Figure 8. From
obtained digraphs we can write state matrices A1 and
A2 in the form of (9).

Fig. 8: The second two-dimensional digraphs

A1=







0 1 1

0 0 0

0 0 0






A2 =







0 0 0

1 1 0

0 1 0






(9)

Using Lemma 1 we check the conditions:
(C1) The coefficients of the characteristic polynomial

(6) satisfy the condition (5). The Condition 1 is
satisfied.

(C2) Obtained digraphs presented in Figure 8 do not
create additional cycles. The Condition 2 is sat-
isfied.

(C3) To verify this condition we must compare the
sets A amd B corresponding to representations of
simple monomial digraphs.

• In the first step we compare set A (digraphs
from Figure 4) corresponding to monomial
z−2

1 z−1
2 with the set B (digraphs from Figure

3) corresponding to monomial z−1
1 z−1

2 . So-
lution is presented in Figure 6.

• In the second step we compare set C (di-
graphs from Figure 6) with the set D (di-
graphs from Figure 2) corresponding to
monomial z−1

1 .

1 2 ∩ 2 = 2

Fig. 9: C ∩D

Described realisation satisfies Condition 3.
All conditions are satisfied and digraphs presented in
Figure 8 are one of possible realisations of the polyno-
mial (6). Analytical verification of obtained solutions
is presented in equation (10).

d (z−1
1 z−1

2 ) =

= det







1 −z−1
2 −z−1

2

−z−1
1 1− z−1

1 0

0 −z−1
1 1






= (10)

= 1− z−1
1 − z−2

1 z−1
2 − z−1

1 z−1
2

3. The third realisation is presented in Figure 10. From
obtain digraphs we can write state matrices A1 and A2
in the form of (11).

Fig. 10: The third two-dimensional digraphs

A1=







0 1 1

0 0 0

0 0 0






A2 =







0 0 0

1 0 0

0 1 1






(11)

Using Lemma 1 we check the conditions:
(C1) The coefficients of the characteristic polynomial

(6) satisfy the condition (5). The Condition 1 is
satisfied.

(C2) Obtained digraphs presented in Figure 10 do not
create additional cycles. The Condition 2 is sat-
isfied.

The challenges of contemporary science. Theory and applications, ISBN 978-83-935118-1-5 111



(C3) To verify this condition we must compare the sets
A and B corresponding to representations of sim-
ple monomial digraphs.

• In the first step we compare set A (digraphs
from Figure 4) corresponding to monomial
z−2

1 z−1
2 with the set B (digraphs from Figure

3) corresponding to monomial z−1
1 z−1

2 . So-
lution is presented in Figure 6.

• In the second step we compare set C (digraph
from Figure 6) with the set D (digraph from
Figure 2) corresponding to monomial z−1

1 .

1 2 ∩ 3 = ;
Fig. 11: C ∩D

Described realisation does not satisfy Condi-
tion 3.

The third condition is not satisfied and digraphs pre-
sented in Figure 10 are improper realisations of the
polynomial (6). Analytical verification of obtained so-
lutions is presented in equation (12).

d (z−1
1 z−1

2 ) =

= det







1 −z−1
2 −z−1

2

−z−1
1 1 0

0 −z−1
1 1− z−1

1






(12)

= 1− z−1
1 − z−2

1 z−1
2 − (1− z−1

1 )z
−1
1 z−1

2 =

= 1− z−1
1 − z−1

1 z−1
2

Concluding remarks
Proposed conditions for creating digraphs representa-

tions allow for faster creation of digraphs and matrices rep-
resentations of the characteristic polynomial, as realisations
can be checked during their creation. Application of pro-
posed lemma to practical algorithm, proposed earlier in
[10], would allow to restrict the set of created solutions only
to those that are proper. The main advantages of proposed
solutions in comparison to currently used methods is find-
ing all possible realisations instead of just a few of them and
the minimal form of A matrices. The lemma was proposed
in the article was illustrated by numerical example, showing
its workings.
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