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The density functional theory (DFT) interaction energy of a dimer is rigorously derived from the
monomer densities. To this end, the supermolecular energy bifunctional is formulated in terms of
mutually orthogonal sets of orbitals of the constituent monomers. The orthogonality condition is
preserved in the solution of the Kohn-Sham equations through the Pauli blockade method. Numer-
ical implementation of the method provides interaction energies which agree with those obtained
from standard supermolecular calculations within less than 0.1 % error for three example function-
als: Slater-Dirac, PBE0 and B3LYP, and for two model van der Waals dimers: Ne2 and (C2H4)2,
and two model H-bond complexes: (HF)2 and (NH3)2.

I. INTRODUCTION

Deriving the dimer interaction energy via mutual po-
larization of constituent monomers is important both
from the fundamental perspective and from a practical
point of view. In particular, it may aid the understand-
ing how the non-covalent systems are described in the
density functional theory which is one of the most prob-
lematic issues of the electronic structure theory. The
major problem of DFT as applied to the van der Waals
systems is a wrong description of dispersion forces.1–3

Surprisingly enough, little has been done to better un-
derstand the performance of supermolecular interaction
energy in the framework of DFT. For the Hartree-Fock
(HF) interaction energy, such an approach has been
pioneered by Morokuma4 in the 1970s, and a decade
later, inspired by the work of Sadlej5, rigorously derived
by Gutowski and Piela6 (see also Ref.7). The pertur-
bation approach within the symmetry-adapted pertur-
bation theory (SAPT) formalism was also extensively
exploited in this context.8,9 In the age of DFT, it is
highly desirable to develop such an approach also for
the density functional formalism. Approximate DFT
treatments have already been advanced by Cortona10

and Wesołowski and Warshel11; see also recent energy
decomposition schemes proposed in Refs. Cybulski and
Seversen12, Reinhardt et al.13, Su and Li14, and Refs.
therein, as well as the density functional formulation of
SAPT.15,16

The goal of this work is to derive rigorously the super-
molecular density functional theory (DFT) interaction
energy via the mutual polarization of the monomer densi-
ties. To this end the supermolecular (dimer) energy func-
tional is expressed in terms of mutually orthogonalized
sets of the Kohn-Sham (KS) orbitals of the constituent
monomers. The coupled KS equations are next solved
iteratively, by using the Pauli blockade (PB) technique
of Gutowski and Piela6. The correctness of the deriva-
tion is demonstrated by comparing the interaction energy
calculated from the equations developed here and the su-

permolecular interaction energies. The DFT approxima-
tion to the Heitler London interaction energy, based on
the decomposition of the interaction energy introduced
in this paper, is also discussed.

II. THEORY

In this paper we consider the interaction between two
closed-shell systems, however, the generalization for high-
spin open-shell systems and clusters is straightforward.
The supermolecular interaction energy in terms of DFT
can be defined as the difference between the total energies
of the dimer AB and the individual monomers A and B,
separated to infinity:

EDFT
int = EDFT

AB − EDFT
A − EDFT

B . (1)

It was demonstrated by Gutowski and Piela6 that the HF
supermolecular interaction energy may be exactly recov-
ered by solving the HF equations for monomers in the
presence of the external perturbation, consisting of the
electrostatic potential and the non-local exchange poten-
tial generated by the second monomer. They have also
proposed a convenient computational scheme for the PB
method in terms of mutually orthogonalized A and B
orbitals with the penalty operator forcing the orthogo-
nality of monomers’ occupied orbitals. In this section we
derive an analogous formalism in terms of appropriately
modified KS equations and monomer densities.

We begin with KS equations for the isolated monomers
which yield the starting orbitals

{
a0
i

}
i∈A and

{
b0k
}
k∈B .

The orbitals of monomer A are the solutions of the fol-
lowing eigen equation:

f̂KS,0
A (r)a0

i (r) = ε0A,ia
0
i (r), (2)

and the analogous equations hold for the monomer B.
The KS operator of Eq. (2) is written as

f̂KS,0
A (r) = −1

2
∆r + vne

A (r) + ̂A(r) + vxc
A (r), (3)
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where the monomer A nuclear potential is

vne
A (r) = −

NA∑
α=1

Zα
|r−Rα|

(4)

with NA being the number of monomer A nuclei, each
described by its position Rα and charge Zα. Its coulom-
bic potential reads

̂A(r) =

∫
R3

ρ0
A(r′)

|r− r′|
d3r′. (5)

The total energy of monomer A can be written as

EA

[
ρ0

A

]
= T s

[
ρ0

A

]
+ V ne

A

[
ρ0

A

]
+ J

[
ρ0

A

]
+

+ Exc
[
ρ0

A

]
+ V nn

A .
(6)

The functional (6) comprises the non-interacting kinetic
energy:

T s
[
ρ0

A

]
= 2

∑
i∈A

〈
a0
i

∣∣∣∣− 1

2
∆r

∣∣∣∣a0
i

〉
, (7)

with A being the set of the indices of occupied orbitals
of the monomer A, nuclear-electron attraction energy:

V ne
A

[
ρ0

A

]
=

∫
R3

vne
A (r)ρ0

A(r) d3r, (8)

coulombic energy

J
[
ρ0

A

]
=

1

2

∫
R3

∫
R3

ρ0
A(r1)ρ0

A(r2)

r12
d3r1d

3r2, (9)

exchange-correlation (xc) energy

Exc
[
ρ0

A

]
=

∫
R3

F xc
(
ρ0

A(r);
{
∇rρ

0
A(r); . . .

})
d3r (10)

which is evaluated through the numerical integration of
the F xc integrand on a grid of points around monomer A,
and the nuclear-nuclear repulsion term

V nn
A =

NA−1∑
α=1

NA∑
β=α+1

ZαZβ
Rαβ

(11)

which is constant for a fixed geometry. The density of
monomer A is

ρ0
A(r) = 2

∑
i∈A

∣∣a0
i (r)

∣∣2 . (12)

Similar expressions can be written for monomer B.
The original, isolated-monomer orbital sets

{
a0
i

}
i∈A

and
{
b0k
}
k∈B are not mutually orthogonal. To proceed, it

is also important to introduce the set of orthonormalized
orbitals which are obtained by using Löwdin symmetric
orthonormalization.17 The quantities expressed in the or-
thonormalized orbitals are henceforth marked with tilde.

One should remember that the orthonormalization leaves
the total density of the dimer unchanged. However, it
does change the monomer densities into the densities de-
formed by the presence of the interacting partner.

In the PB method the zeroth-order wavefunction of
the dimer is the wavefunction of the system in the ab-
sence of molecular interaction. It is constructed from the
antisymmetrized product of the orthogonalized occupied
orbitals of the monomers A and B. In case of KS equa-
tions for dimer the KS determinant can be constructed
in the same manner as:

ψ0
AB = Â ψ̃0

Aψ̃
0
B, (13)

where ψ̃0
A and ψ̃0

B are KS determinants of monomers A
and B, respectively. Since the determinants are con-
structed from orthonormalized orbitals, the ψ0

AB is nor-
malized.

It can be easily shown that the zeroth-order density of
the system can be simply written as a sum of monomer
densities expressed in terms of orthonormalized orbitals,

ρ0
AB = ρ̃0

AB = ρ̃0
A + ρ̃0

B. (14)

Note that (14) does not hold for the densities obtained
from nonorthonormal orbitals of the dimer, i.e. ρ0

AB 6=
ρ0

A + ρ0
B.

If the interaction between monomers is switched on we
assume that the KS determinant of the dimer can be writ-
ten as the antisymmetrized product of two determinants
for both the monomers:

ψ̃AB = Â ψ̃Aψ̃B, (15)

and hence the dimer density fulfills the additivity con-
dition (14). Owing to (14) and using (6), the energy
functional for the system corresponding to (15) is

EAB[ρAB] = EAB[ρ̃AB] = EAB[ρ̃A + ρ̃B] =

= T s[ρ̃A + ρ̃B] + V ne
AB[ρ̃A + ρ̃B] + J [ρ̃A + ρ̃B]+

+ Exc[ρ̃A + ρ̃B] + V nn
AB. (16)

Now we rewrite the functional (16) extracting the
monomer contributions to the dimer energy through a
careful inspection of the terms in (16). It is clear from (7)
that the non-interacting kinetic energy functional is lin-
ear,

T s[ρ̃A + ρ̃B] = T s[ρ̃A] + T s[ρ̃B], (17)

the nuclear-electron attraction may be separated as

V ne
AB[ρ̃A + ρ̃B] =

=

∫
R3

(
vne

A (r) + vne
B (r)

)(
ρ̃A(r) + ρ̃B(r)

)
d3r =

= V ne
A [ρ̃A] + V ne

B [ρ̃B]+

+

∫
R3

vne
B (r)ρ̃A(r) d3r +

∫
R3

vne
A (r)ρ̃B(r) d3r, (18)
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and the coulombic term may be decomposed according
to

J [ρ̃A + ρ̃B] =

=
1

2

∫
R3

∫
R3

(
ρ̃A(r1) + ρ̃B(r1)

)(
ρ̃A(r2) + ρ̃B(r2)

)
×

× r−1
12 d

3r1d
3r2 =

= J [ρ̃A] + J [ρ̃B] +

∫
R3

∫
R3

ρ̃A(r1)ρ̃B(r2)

r12
d3r1d

3r2.

(19)

However, the explicit analytical form of the xc func-
tional is unknown and its approximations depend on the
functional used. Thus, we introduce the xc energy non-
additivity, ∆Exc:

∆Exc[ρ̃A + ρ̃B] = Exc[ρ̃A + ρ̃B]−Exc[ρ̃A]−Exc[ρ̃B]. (20)

It is worthwhile to note that the present formulation nei-
ther separates nor approximates any of the kinetic non-
additivity terms appearing in the method of Wesołowski
and Warshel11. These terms are implicitly and exactly
included in the term (20) and thus are automatically ac-
counted for in a consistent manner for any functional.
Although the expression (16) is a functional of a single
density, we now make use of (14) and treat the system en-
ergy as a bifunctional depending on both monomer den-
sities:

EAB[ρ̃A + ρ̃B] ≡ EAB[ρ̃A; ρ̃B]. (21)

Thus, in our search for the ground-state dimer energy, we
will minimize, with respect to ρ̃A and ρ̃B, the bifunctional
of the form:

EAB[ρ̃A; ρ̃B] =

= T s[ρ̃A] + V ne
A [ρ̃A] + J [ρ̃A] + Exc[ρ̃A] + V nn

A +

+ T s[ρ̃B] + V ne
B [ρ̃B] + J [ρ̃B] + Exc[ρ̃B] + V nn

B +

+ Ẽint[ρ̃A; ρ̃B]

= EA[ρ̃A] + EB[ρ̃B] + Ẽint[ρ̃A; ρ̃B], (22)

where

Ẽint[ρ̃A; ρ̃B] =

=

∫
R3

vne
B (r)ρ̃A(r) d3r +

∫
R3

vne
A (r)ρ̃B(r) d3r+

+

∫
R3

∫
R3

ρ̃A(r1)ρ̃B(r2)

r12
d3r1d

3r2 + V nn
int +

+ ∆Exc[ρ̃A; ρ̃B] =

= Eelst[ρ̃A; ρ̃B] + ∆Exc[ρ̃A; ρ̃B]. (23)

In the above equation, V nn
int is intermonomer nuclear-

nuclear repulsion energy. However, for the density addi-
tivity condition (14) to hold, all orbitals must be kept mu-
tually orthogonal, and the orthogonality also ensures that
the intersystem Pauli exclusion principle is fulfilled. To

this end, we perform the variational optimization in two
steps, using the Pauli blockade (PB) method of Gutowski
and Piela6: first, the bifunctional extremal search is per-
formed without the imposition of the intermonomer or-
thogonality constraint, and secondly, the penalty oper-
ator is added in the resulting iterative scheme. The
penalty operator for monomer A reads

ˆ̃RA =
∑
i∈A
|ãi〉 〈ãi| (24)

and it is obvious that its action on monomer B’s orbitals
annihilates them once the orbitals are orthogonal. Now
we turn to the first step: to find a bifunctional mini-
mum, we calculate the variational derivative of (22) with
respect to ρ̃A:

δEAB[ρ̃A; ρ̃B]

δρ̃A(r)
=

= −1

2
∆r + vne

A (r) + ˆ̃A(r) + ṽxc
A (r)+

+ vne
B (r) + ˆ̃B(r) + ∆ṽxc

A (r) =

=
ˆ̃
fKS

A (r) + ∆ṽxc
A (r) + ˆ̃velst

B (r), (25)

where the electrostatic potential is

ˆ̃velst
B (r) = vne

B (r) + ˆ̃B(r) (26)

and the non-additivity xc operator reads

∆ṽxc
A (r) =

=
δ∆Exc[ρ̃A; ρ̃B]

δρ̃A(r)
=

=
δExc[ρ̃A + ρ̃B]

δρ̃A(r)
− δExc[ρ̃A]

δρ̃A(r)
=

=
δExc[ρAB]

δρAB(r)
− ṽxc

A (r) =

= vxc
AB(r)− ṽxc

A (r). (27)

Hence, the Euler equation for the bifunctional (22) is

µA = −1

2
∆r + v̂eff

A (r) (28)

with

v̂eff
A (r) = ˆ̃velst

A (r) + ṽxc
A (r) + ˆ̃velst

B (r) + ṽxc
A (r) + ∆ṽxc

A (r),
(29)

and µA being the Lagrange multiplier for the constraint:

NA −
∫
R3

ρ̃A(r) d3r = 0 (30)

The minimization of (22) with respect to ρ̃B proceeds in
an analogous way. Finally, the orbitals minimizing the
functional (22) are determined to satisfy

(
ˆ̃
fKS

A (r) + ∆ṽxc
A (r) + ˆ̃velst

B (r)
)
ãi(r) = εA,iãi(r)(

ˆ̃
fKS

B (r) + ∆ṽxc
B (r) + ˆ̃velst

A (r)
)
b̃k(r) = εB,k b̃k(r)

.

(31)
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In the second step of the PB procedure, the iterative
process of solving Eqs. (31) with the aid of the penalty
operator is formulated. For monomer A the nth iterative
step reads(

ˆ̃
f

KS[n−1]
A + ∆ṽ

xc[n−1]
A + ˆ̃v

elst[n−1]
B + η ˆ̃R

[n−1]
B

)
a

[n]
i =

= ε
[n]
A,ia

[n]
i (32)

and its equivalent for monomer B is obtained through
the interchange of the A and B subscripts in (32). η > 0
is a parameter not affecting the final solutions. The or-
bitals obtained in (32) are orthogonalized, yielding an

orthonormal
{{

ã
[n]
i

}
i∈A

;
{
b̃
[n]
k

}
k∈B

}
set. The interac-

tion energy at the nth iteration is obtained upon the
insertion of the densities calculated with these orbitals
into (22) and subtracting the unperturbed monomer en-
ergies:

E
PB[n]
int = EAB

[
ρ̃

[n]
A ; ρ̃

[n]
B

]
− EA

[
ρ0

A

]
− EB

[
ρ0

B

]
=

= ∆Ẽ
[n]
A + ∆Ẽ

[n]
B + Eelst

[
ρ̃

[n]
A ; ρ̃

[n]
B

]
+ ∆Exc

[
ρ̃

[n]
A ; ρ̃

[n]
B

]
.

(33)

In the above equation, the A monomer deformation is

∆ẼA = EA

[
ρ̃

[n]
A

]
− EA

[
ρ0

A

]
, (34)

and analogously for monomer B. Upon reaching self-
consistency, the energy (33) is equal to the supermolec-
ular DFT interaction energy of (1). The computational
cost of our approach is essentially the same as that of the
standard KS calculations.

Since the iterative process (32) starts with the KS or-
bitals of the isolated monomers, the zero-iteration in-
teraction energy may be viewed as an analog of the
well-known HF-based Heitler-London interaction energy.
Specifically, we define the DFT-based HL interaction en-
ergy as

EHL
int = E

PB[0]
int = EAB

[
ρ̃0

A; ρ̃0
B

]
− EA

[
ρ0

A

]
− EB

[
ρ0

B

]
.

(35)
This definition is equivalent to that proposed by Cy-
bulski and Seversen12. The difference between the self-
consistent interaction energy and the HL interaction en-
ergy,

EPB
def = EPB

int − EHL
int , (36)

is referred to as the deformation energy.
It should be stressed here that both EHL

int and EPB
def , as

defined by the above equations, are uniquely defined, and
are independent of the orthogonalization procedure, and
may be interpreted in terms of SAPT. The EHL

int is the HL
energy arising between the unperturbed, non-orthogonal
monomers. At the HF level of theory, it includes the in-
termolecular electrostatic and exchange energies. In the
DFT case, depending on a particular functional, it may

also contain some obscure residual inter-monomer elec-
tron correlation terms that are related to the dispersion
effect. This is because the interaction operator is, in gen-
eral, the exchange-correlation operator rather than the
exact-exchange one only, and the correlation is basically
of a local type.

The EPB
def term represents the deformation effect with

respect to the non-orthogonal isolated monomers. First,
it includes both the induction effects and the CT effects
that are related to the induction and exchange-induction
energies as defined by SAPT except that it is obtained
iteratively through the infinite order rather than pertur-
batively through the finite order. Second, if an exact
exchange-correlation operator were used the dispersion
energy would be included in EPB

def . As for now, the major-
ity of existing functionals fail to to account for dispersion
and at the same time they are not entirely dispersion-
free. Consequently, for such functionals, EPB

def contains
some residual dispersion terms as well.

III. NUMERICAL RESULTS

A. Computational Details

The method described in Sec. II has been coded
within the Molpro program suite.18 Numerical calcu-
lations were carried out for three different function-
als: Slater-Dirac19 (henceforth termed DIRAC), PBE0,20

and B3LYP,21,22 and for model systems: two van der
Waals complexes (Ne2 and the ethylene dimer), and
two hydrogen-bonded dimers [(HF)2 and (NH3)2]. For
comparison, we also present the results for the stan-
dard Hartree-Fock method (HF). The distance between
Ne atoms in Ne2 was set to 6 a0. The geometries for
(NH3)2 and (C2H4)2 were taken from Ref.23 and from
Ref.24 for (HF)2. The numerical procedure depends on
the following parameters: energy threshold, i.e. the min-
imum difference in interaction energies from successive
iterations for which the iterations are continued, the grid
threshold, i.e. the accuracy with which the Slater-Dirac
functional can be integrated using the grid as compared
to its analytical integral, and η parameter of Eq. (32).
η = 105 was used for all calculations. However, we stress
once more that η does not affect the final solutions, only
the convergence.

In Table I we present the numerical values of the com-
ponents of Eq. (33) together with the DFT-based HL
interaction energy (35), the deformation (36), and the
relative difference between the interaction energies ob-
tained in a bifunctional and supermolecular approaches,

δEint =
EPB

int − EDFT
int

EDFT
int

· 100%. (37)

In Fig. 1 we present the dependence of the relative dif-
ference (37) on the grid threshold. The energy thresh-
old was set to 10−9 mH and it was kept at that value
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TABLE I: Interaction energies and their contributions for the bifunctional approach and its comparison with the DFT super-
molecular energies. All values in mH. The numbers in parentheses denote powers of ten.

System Functional ∆ẼA ∆ẼB Eelst ∆Exc EHL
int EPB

def EPB
int δEint/%

Ne2
(R = 6 a0)

DIRAC 0.658 0.658 −0.953 −0.625 −0.262 −0.0249 −0.287 −5.54(−5)
PBE0 0.416 0.416 −0.587 −0.343 −0.098 −0.00862 −0.107 −3.74(−6)

B3LYP 0.463 0.463 −0.664 −0.155 0.108 −0.00905 0.0993 2.8(−6)
HF 0.238 0.238 −0.325 −0.0872 0.064 −0.00148 0.0626 0.00014

(C2H4)2

DIRAC 6.04 6.04 −6.71 −7.15 −1.77 −1.21 −2.98 −0.00285
PBE0 4.58 4.58 −5.11 −3.98 0.0664 −0.702 −0.636 −0.0412

B3LYP 4.86 4.86 −5.37 −2.82 1.54 −0.708 0.834 0.047
HF 4.4 4.4 −4.96 −2.14 1.7 −0.374 1.32 0.000301

(HF)2

DIRAC 16.3 19.3 −28.7 −10.7 −3.68 −6.28 −9.96 −0.00402
PBE0 13.3 15.9 −24.7 −6.91 −2.31 −4.98 −7.28 −0.00026

B3LYP 14.2 17 −25.9 −7 −1.69 −5.08 −6.77 −0.00223
HF 11 13.1 −22.2 −4.17 −2.19 −3.61 −5.8 −2.12(−5)

(NH3)2

DIRAC 11.8 11.8 −18.9 −8.78 −4.04 −2.89 −6.93 −0.00268
PBE0 9.4 9.4 −15.7 −5.49 −2.36 −2.06 −4.41 −0.000912

B3LYP 9.97 9.97 −16.4 −4.9 −1.31 −2.11 −3.43 −0.000516
HF 8.69 8.69 −14.9 −3.3 −0.813 −1.42 −2.23 −2.16(−6)

-1e-05

-9e-06

-8e-06

-7e-06

-6e-06

-5e-06

-4e-06

-3e-06

-2e-06

-1e-06

 1e-06 1e-05 0.0001 0.001 0.01 0.1

δE
in

t/
%

grid threshold/mH

FIG. 1: Dependence of δEint on grid threshold for the Ne2
dimer at R = 6 a0 for PBE0 functional in aug-cc-pVQZ basis
set.

for all values of the grid threshold reported in Fig. 1.
The calculations employed aug-cc-pVQZ basis set for
neon dimer and aug-cc-pVTZ for the other systems.25–27

Dimer-centred basis set (DCBS) has been used through-
out the calculations and the supermolecular interaction
energies were counterpoise (CP)-corrected for the basis
set superposition error (BSSE).

B. Discussion

From the results of Table I it is clear that the bifunc-
tional approach converges to the same values of the inter-
action energies as the conventional KS procedure, within

excellent accuracy of below 0.003 % for the H-bonded
dimers, and 0.05 % for the van der Waals dimers.

In general, as long as our procedure is convergent, it
must converge to the same result as the standard KS ap-
proach. This is because no extra constraints are imposed
on the functional, and the finally optimized total density
must be the same in both cases. However, the details of
the convergence depend on several factors:

• the particular functional,

• the system under consideration,

• the initial orthogonalization of monomer orbitals,
and

• the orthogonality forcing technique in the iteration
process.

The functional and system convergence dependence is ev-
ident in Table I. The dependence on mutual orthognal-
ization scheme and the manner it is forced in the iter-
ation process have not been studied so far as only one
approach has been adopted — they will be studied in
the future in the context of actual applications. For in-
stance, convergence problems may appear for complexes
which undergo major redistribution of electron densities
between monomers, such as in donor-acceptor interac-
tions and also for those which are poorly described by a
single determinant due to static correlation effects.

The total interaction energy is composed of the HL en-
ergy and the PB deformation energy. As pointed out in
the previous Section, both EHL

int and EPB
def are uniquely

defined, and are independent of the orthogonalization
procedure. However, this is not the case for the first
four terms of Eq. (33) in Table I. They describe the
monomer deformation effects due to orthogonalization
(cols. 3 and 4), and electrostatic and exchange-correlation
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effects, arising between the monomers described with or-
thogonalised occupied orbitals (cols. 5 and 6). Therefore
they are not uniquely defined, and are strongly depen-
dent on the orthogonalization scheme — they are not
useful to interpret the interaction.

The total interaction energies listed in the Table I are
qualitatively correct only for polar molecules; for atoms
and non-polar species they are erroneous due to the well
known fact that the functionals: DIRAC, PBE0, B3LYP
do not reproduce the dispersion component. The EHL

int

and EPB
def components may be compared to similar terms

at the HF level of theory (the last entry for every dimer).
Assuming that the functionals reproduce only the local
correlation terms, but fail to recover dispersion contri-
butions, the DFT EHL

int results should differ from the HF
ones by a relatively small intramonomer correlation ef-
fect. This is apparently not the case for DIRAC, for
van der Waals complexes: Ne2 and (C2H4)2. Also PBE0
shows attraction, albeit small, for Ne2, and seems to be
not repulsive enough for (C2H4)2. Such a behavior in-
dicates that some residual dispersion terms are present.
As to the B3LYP functional, it seems to be the most
dispersion-free, since its values of EHL

int are the closest to
the HF values. These results are in agreement with the
observations that the amount of dispersion in a functional
correlates to the steepness of the exchange enhancement
factor: it becomes steeper when moving from DIRAC to
B3LYP, and, consequently, the amount of dispersion in-
cluded in these functionals is reduced (see Refs.28–31) Fi-
nally, for hydrogen-bonded complexes, all methods give
qualitatively correct EHL

int , only PBE0 and B3LYP are
closer to the HF result than DIRAC.

The above discussion suggests a useful application of
the formalism presented in this paper. For approximate
functionals the partitioning of the interaction energy into
the EHL

int and EPB
def components may serve as a diagnostic

of the functional’s adequacy in the intermolecular inter-
action energy problems. Indeed, one can determine, what
components and how efficiently are recovered by a tested
functional.

IV. SUMMARY AND OUTLOOK

In this paper we provided a rigorous derivation of
the supermolecular DFT interaction energy in terms of

mutual monomer polarization via the Pauli blockade
method. Numerical calculations for four model systems
and three example functionals of different types have
proved that the formalism leads to interaction energies
rapidly converging to the supermolecular interaction en-
ergies. The accuracy achieved is better than 0.1 % and
appears to be limited only by the size of the grid. The
accuracy is qualitatively similar for all three DFT func-
tionals under investigation. Our formalism appears thus
to be a viable and useful alternative of solving the KS
equations in terms of separated-monomer orbitals rather
than supermolecular orbitals. This fact has several im-
portant practical implications.

On the one hand, the presented formalism offers
possibilities of using different functionals to describe
the monomers and to describe the interaction. We
have recently exploited this feature to design a novel
DFT+dispersion approach.32 On the other, it would be
of interest to combine our approach for the DFT that is
capable to reproduce the dispersion energy, e.g. of range-
separated family of functionals.1

The bifunctional formulation provides a platform for
deriving a choice of DFT treatments which use different
functionals (or even theories) for different subsystems.
The results may thus be of interest for those who use
subsystem formulation in the context of embedding po-
tentials.10,33–35

Our formalism may also be useful when interpret-
ing different interaction energy decomposition schemes
that have recently been proposed within the DFT ap-
proach.12–14,36
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