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Abstract.

In this paper, the new method of the determination of entries of the state matrices of the positive two-

dimensional hybrid linear systems using multidimensional digraphs theory ©(") has been presented. For the proposed
method parallel computing algorithm was constructed. Algorithm is based on GPGPU (General - Purpose Computing
on Graphics Processing Units) computing method to gain needed speed and computational power for such solution.
Proposed method discussed and illustrated by numerical examples. Proposed solution allows digraphs construction for
any positive twodimensional system, regardless of their complexity.
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Introduction

In recent years, many researchers have been inter-
ested in positive linear systems. Analysis of the positive
two-dimensional (2D) systems is more difficult than of
positive one-dimensional (1D) systems [1], [4], [5], [19],
[12]. A lot of problems arise in positive two-dimensional
systems, and they remain not completely solved; for ex-
ample: positive realisation problem [15], [10], determi-
nation of index reachability [3], [2], [18], [7], [13], deter-
mination of reachability index set [8], [17], [11], etc.

In positive systems inputs, state variables and out-
puts take only non-negative values. Positive linear sys-
tems are defined on cones and not on linear spaces.
Therefore, the theory of positive systems is more com-
plicated then standard systems. The realisation prob-
lem is very difficult task. In many research studies we
can find canonical form of the system [15], i.e. constant
matrix form, which satisfy the system described by the
transfer function. With use of this form we are able
to write only one realisation of the system. Absolutely,
in general we have a lot of solutions. This means that
we can find many sets of matrices which fit into sys-
tem transfer function. The state of the art in positive
systems theory is given in the monographs [4].

The digraphs theory was applied a little in the
past to the analysis of dynamical systems. For the first
time in the paper [6], [8] proposed the use of multidi-
mensional digraphs theory to analysis of positive two-
dimensional systems. Since then, more and more sci-
entists try to use this theory in research. This work
have been inspiration to use digraphs to solve realisa-
tion problem.

This work has been organized as follows: Chapter
2 present some notations and basic definitions of hybrid

systems and digraphs theory. In Chapter 3, we con-
struct and discuss algorithm for determination of the
set of polynomial realisations which based on digraphs
theory and in Chapter 4 we illustrate it with numeri-
cal example. Finally we give some concluding remarks,
present open problems and bibliography positions.

Preliminaries and problem formulation
2D Hybrid Systems

Let R"*™ be the set of nxm matrices with nonneg-
ative entries and R} = R’_;Xl. The set of nonnegative
integers will be denoted by Z and n xn identity matrix

will be denoted by I,.
Consider a hybrid system described by the equa-
tions [14]:

z1(t, 1) = A1z (t, 1) + Araza(t, i) + Bru(t, )
(1) T2 (t, 7+ 1) = 1&21$1(t7 7,) + Aggzg(t, Z) + BQ’U,(t7 ’L)
y(t,i) = Cx1(t,4) + Cxa(t, i) + Du(t, i)

teRy =[0,+00], ©€Z4

where #1(t,7) = (0x1(t,4)/0t), x1(t,i) € R™, x2(t,4) €
R™2, U(t,l) e R™, y(l,j) € RP and A1, A1, Asgq, Ao,
B, B;, Cq, C;, D are real matrices.

Boundary conditions for system (1) have the form

xl(O,i) = .1‘1(7:), 1€ Z+, .Ig(t,O) = .Z‘Q(t), te R+

Definition 1 [14] The hybrid system (1) is called inter-
nally positive if for all boundary conditions (2) and ev-
ery sequence of inputs u(t,i) € R™, t e Ry, i € Z, we
have x1(t,i) € R™, xo(t,i) e R™, t € Ry, i € Zy.

Theorem 1 [1/] The hybrid system (1) is internally pos-
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itive if and only if

A, € Mnl, Ay € Rilxnz, Ay € Rizxnl,
(2) Ay € RZ_QXTQ, B, € R11><m’ B5 € ]RiQXWL,
C,eRP*™, C,eRP™, DeR™

The transfer matrix of the system (1) is given by

T(s,z) =

Inls — A
—Ay

_A12

3) =|C; C
() [ ! 2} IHQZfAQQ

B,
X
B,

In this paper we assume thet the hybrid system de-
scribe by the equation (1) is SISO (Single-Input-Single-
Output) system. In this case we can transfes matrix (3)
rewritte in the following form

+D e RP*™(s,2)

e bp,ms™Z + l)nﬂn_l(smzm’1 + ...
(5,2) = snzm —q sngym=1 _ B
n—1,m (R
o+ b1182 + b1gs + bo12 + boo

s —A1182 — A10S — A1 — Ao
n moog Qg
2 izo Zj:() bi,js'z
n,m _ n m 1
stz (Zz‘:o Zj:o Q4,58 ZJ)

Multiplying numerator and denominator by of (4) by

(4)

s~ "z~™ we obtain:
T(s~t 271 =
(5) _ bn,m"‘rbn,mflz_l +bn71,m5_1 + ...
l—apm-12"! —ap_1ms™t —...
—n,—m —1 —1
4 boos "2 N(s7H 27
—n,—m -1 -1
coe—agpsTzT™  d(s71, 271
where
d(s71z71) =
1-—- CLn,m—1271 - an—l,m571 - aoosfnzfm

is the characteristic polynomial.

Digraphs

A multi-dimensional digraphs (") is a directed
graph with n types of arcs and input flows. In de-
tail, it is a (S,V,X1,Xy,...X,, Y1, Ys,...,Y,), where

S = {s1,82,...,8m} is the set of sources, V =
{v1,v2,...,v,} is the set of vertices, X1, X»,...X, are
the subsets of V x V which elements are called X;-arcs
and Xs-arcs, ..., Xp-arcs respectively, B;, By are the
subsets of S x V which elements are called 2);-arcs and
s-arcs, ..., Yq-arcs respectively where p,g=1...00.
The procedure for determmination multi-
dimensional digraphs ®(") us the following:

o There exists X;-arc (Xs-arc, ..., X,-arcs) from ver-
tex v; to vertex v; if and only if the (i, j)-th entry
of the matrix X; (Xg, ..., X,) is nonzero.

o There exists ), -arc (Yq-arc, ..., Q,) from source
s; to vertex v; if and only if the I-th entry of the
matrix Y1 (Yo,..., Y,) is nonzero.

Remark 1 Xi-arc and Q)1-arc are drawn by the other
color than Xp-arc, and Yq-arc where p = q. In this
paper X1-arc, Yi-arc is drawn by the solid line and Xo-
arc and q-arc-arc is drawn by the dashed line.

Example 1 The system described by the following ma-
trices

(6) (X1,X2,X3,Y1,Y2,Y3) =

00 1 1 0 0 0 0
(|1 oo, oo 1| |10 1],
0 1 0 1 0 0 0 1
10 00 0 0
00|, 0,]0
0 1 00 0 0

we can drew using multi-dimensional digraphs © ™)
consisting of vertices vi,vs,v3 and source si,So. Multi-
dimensional digraphs corresponding to system (6) is
presented on Figure 1.

Fig. 1: Two-dimensional digraphs correesponding to
system (6)

Problem Formulation

For the given positive hybrid systems system de-
scribed by the model (1), we must determine all sets
of realisations, which satisfy characteristic polynomial
(6). The problem of finding all possible realisations of
given polynomial is of such complexity, that it cannot be
solved in reasonable time even by brute-force GPGPU
method.

Problem solution

Proposed method finds all possible realisation of
the characteristic polynomial (6) in two step. In the
firs step we decompose characteristic polynomial (6) on
set of the simple monomials.

d(s7', 271 =
(7) = 1_dn,m71(8_1az_1)_dnfl,m(s_l’z_l)_"'
o —doo(s™ 27

In the second step we can determine all possible charac-
teristic polynomial realisation using all combinations of
the digraph monomial representation determine in the
first step. Parallel parts algorithms are realised with
use of CUDA kernels. More about GPGPU computing
method we can find in [16] and [9].
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Numerical example

Let us consider the following example. For the
given characteristic polynomial
(8) d(s,z) = (s> +3s—1) (2* =22 — 42— 3)

determine entries of the state matrices A1, Aqs, Aoy
and Ao using digraphs theory and GPGPU computing
method. The above task we can divide on two subtask
in the following form:

(9) d(s) =s*+3s—1

(10) d(z) =23 — 222 —42 -3

Multiplying polynomial (9) by s~2 and polynomial (10)
by 273 we obtain

(11) dis™H) =1+s1—572

(12)  d(z7')=1-2z"1 —4272 - 3273

To solve this problem we use parallel algorithm.
Algorithm — createDigraphsKernel(V)

To determine all monomial realisation of the poly-
nomial (12) in the first step we must determine all pos-
sible connections between vertices. In our example we
have the following boundary conditions:

e number of vertices - VN = 3,

e number of colour in digraphs - CN =1,

e monomial - M; = [1] (corresponding to monomial
271, My = [2] (corresponding to z72), M3 = [3]
(corresponding to z73).

For the monomial M3 we have the following input

V=[0;0;[3];0;]1 1 1]]

Using  the firs part of the  algorithm
createDigraphKernel() we obtain the set of the
possible connections between all vertices:

VL= [o; [t 0 1]; (331 [0 1 1]
) V[L2= [0; 1 0 2]; 82 1 0 1] |;
VL= [o; 1o 35 [3];2 [0 1 0 [;

Digraph ®() corresponding to (13) presented on
Figure 2. Using the second part of the algorithm

® ©

Fig. 2: One-dimensional digraphs corresponding to
(13)

createDigraphKernel() we obtain the structure con-
taining all the possible realisations of the monomial M;.

VL1

[1 1 2]
My w=|1L|[1 2 3] [,0,,0| =V
[1 3 1]

Digraphs ®) corresponding to (14) presented on Fig-
ure 3. In the same way we follow with monomial Ms
and M3 and with polynomial (11).

0

Fig. 3: One-dimensional digraphs corresponding to
(14)
Algorithm - testSolutionKernel(R,cycles)
In the first step of the
creating Polynomial Realisation(R, cycles)
write input structure: cycles and arcs:

algorithm
we must

(15) cycles=[1 1 1],
[[1 0 1]]
[1 1 2]
[1 2 3]
arcs = [1 3 1}
(1 1 2]
[2 2 1]
EEEEN
Using the firs part of the algorithm algorithm

creating Polynomial Realisation() we obtain the struc-
ture arc_new and matrix P:

(16)

N NN W N = O
—_ o= NN =W N

S ST ST SNy SN N

—_ = = = =

[
[
arcs_new — [
[
[
[

1 11
P=]1 00
0 1 0

Digraphs ®) corresponding to matrix P described by
equation (16) presented on Figure 2.

o

Fig. 4: One-dimensional digraphs corresponding to
(16)

Using the second part of the algorithm

creatingPolynomial Realisation() we check con-
. VN _ —

dition Y i=1 1= P,; = cycles[]l] = 1.

Condition is satisfied it means that we have simple
cycle consisting of one vertex.

Using algorithm third part of the algorithm
creating Polynomial Realisation() we check for the cy-
cles comnsisting of two vertices. In this step we create
matrix () by removing all rows and columns with the
exception of i-th and j-th from matrix P and determine
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product p; j * Dj ;.

11
0 0

. I
(17)Q12 = Lol T ; Qs =

0 0

Q23 = [ Lo ] =0; cycles[2] =14+04+0=1

If condition is satisfied it means that we have simple cy-
cle consisting of two vertices. Using algorithm forth part
of the algorithm creatingPolynomial Realisation() we
check for the cycles consisting of three vertices.In this
step we create matrix @) and determine product p; j*p; ;.
We obtain Q3% = P =1 = cycles[3].

At this moment we stop algorithm and we can say
that digraphs presented on the Figure 4 satisfy poly-
nomial (12). It should be noted that it is one of the
possible realisations. To determine all polynomial re-
alisations we should in the same way repeat algorithm
for all combinations of the monomial realisations of M,
Ms and Ms. In this same way we determine realisation
of the polynomial (11). Digraph corresponding to poly-
nomial (11) presented on the Figure 5.

sodipo

Fig. 5: Two-dimensional digraphs corresponding to
polynomial (11)

Finally we write matrix A;; and Aoy in the form:

-3 1

(18)A11=[ 1 0

2 4 3
] ;AQQ == 1 O 0

0 1 0
Substituting obtained matrices: (18), A1z = Ag; =0
to (3) we obtain characteristic polynomial (8).

Concluding Remarks

The paper includes fast algorithm for determining
all possible realisations of the characteristic polynomial
of positive systems described with the use of the
hybrid system which includes single input and single
output (SISO). The proposed algorithm is based on
the digraphs theory and GPGPU computing method.
Currently, the method of determining a positive
polynomial realisation using GPU units and digraphs
methods is being implemented of the memory-efficient
way. At the same time we are working on extension
presented algorithm to solve reachability and realisa-
tion problems. Extending the proposed algorithm to
dynamic systems of another class as well as searching
for new areas of using multiprocessing calculations
remains an open problem.
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