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ABSTRACT 

 

We have tested usefulness of Self-Organizing Maps (SOM) in classification of proteins coming from different 
prokaryotic taxa. The final neural network was carefully selected based on three criteria: Bayesian Information 
Criterion, topological error, and spatial autocorrelation. The carried out analyses showed a clear relationship 
between amino acid composition of proteins and environment in which live studied species. Interesting 
differences were observed in the composition of domain and non-domain regions as well as proteins classified 
to various functional groups. The studies indicate that SOM can be successfully applied in huge data sets such 
as whole proteome studies delivering significant biological information.  

 
INTRODUCTION 

 

Rapid increase of numerous completely sequenced genomes delivers huge data that require special 
large-scale analyses carried out by sufficient statistical and data mining methods. From biological 
point of view, a very interesting subject is the study of amino acid composition of proteins. This 
feature may reflect mutational and selectional constraints on the coded proteins, as well as may be 
related with the taxonomic affiliation of organisms and their environmental conditions. The most 
characteristic amino acid usage was observed in thermophiles [1]-[3] and halophiles [4], [5]. The 
former approaches used standard multidimensional analyses for example Principal Component 
Analysis or Correspondence Analysis. Here we applied Self-Organizing Maps (SOM) atypically to 
analyze differences in amino acid composition of prokaryotic proteins. Thanks to this approach we 
were able to present sets of proteins (i.e. proteomes) in multidimensional space and calculate 
distances between them. These distances express differences and specific amino acid compositions 
of the analyzed proteomes. The presented method enabled to identify relationships between the 
amino acid composition and environmental factors that influence the analyzed organisms. The 
SOM turned out to be a very sensitive method because it was able to distinguish even very similar 
proteomes. 
 

MATERIAL AND METHODS 
 

The applied neural network was chosen based on three parameters. First parameter was Bayesian 
Information Criterion (BIC) defined as: 
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where: 
n is number of teaching vectors (proteins), 
k is number of neurons. 
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is sum of quantization errors that are defined as: 
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where: 

ix is teaching vector i,                 

ixm is centroid of ix , 

d is distance function (Euclidean in this case). 
 

The teaching vector xi describes the percentage amino acid composition of protein i. The more 
neurons are in the network, the lower RSS and the lower BIC are because teaching vectors are 
closer to their centroids. However, this decrease in BIC becomes smaller when the number of 
neurones k increases because the second component of Eq. (1) is larger. Then for big k, the BIC 
may again receive high values. Therefore it is important to make a trade-off between the goodness 
of fit and the number of neurons. The neural network is the better if it is characterized by the 
smaller BIC. We tested all 190 rectangular topologies whose dimension ranged from 2×2 to 20×20 
neurones. 

The second parameter describing the goodness of fit was the topological error te defined as: 
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where:  
the function u(xi) gets 0 when the first two Best Match Units, BMU1xi  and BMU2xi, are neighbors, 
and 1 when they are not neighbors. The network with smaller te is better.  

The third criterion of goodness of fit was the spatial autocorrelation. Quantization errors at 
different neurons may not be independent.  For example, measurements made at neighboring units 
may be closer in their values than measurements made at distant locations of the same network. 
The spatial autocorrelation measures the correlation of quantization error with itself through the 
space. 

A distance between two sets of analyzed proteomes, B1 and B2, was measured by: 
 

 ∑
= −

−=
K

k

kk

mN

n

m

n
d

1
21

21

2
1

),( BBBB  (5) 

 
where: 

1Bkn and
2Bkn are numbers of proteins classified to neuron k and coming from the set B1 and B2, 

respectively, 

m and N-m are total numbers of proteins in the set B1 i B2 , respectively. 

The distance d(B1,B2) asymptotes 0 and 1. 

The analyzed data set contained 434 000 teaching vectors (proteins) belonging to 194 archaeal 
and bacterial species. Their proteomes were grouped according to environmental factors that are 



optimal for growth of these organisms. Moreover, proteins were divided into three groups 
according to their function: information storage and processing (Isp), cellular processes and 
signaling (Cps), and metabolism (Metab). The biological functions of proteins were identified 
based on their classification to Clusters of Orthologous Groups (COG). Additionally, we analyzed 
separately the amino acid composition of domain and non-domain regions in proteins. COG 
classification and domain searches in Conserved Domain Database (CDD) were made by rpsblast 
software. Numerical analyses were carried out in R package (www.r-project.org).  
 

RESULTS AND DISCUSSION 
 

Fig. 1 presents relationship between BIC values and dimension of tested neural networks. The best 
networks with the lowest BIC value consisted of 10×10 neurons and 5×19 neurons. Finaly, 10×10 
map was chosen to further analyses. 
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 Figure 1. Relationship between Bayes Information Criterion (BIC) and size 
of map. 

 

 
Distances d(B1,B2) between sets of proteins derived from different microbes classified 

according to their characteristic environmental factors are shown in Fig. 2 and Table 1. The results 
indicate that temperature has the strongest relation to the amino acid composition of proteins. The 
distance value for hyperthermophilic microbes is d(B1,B2) = 0.4461 which means that 
hyperthermophiles are more similar to themselves up to 44.6% than to the other species. Relation 
to host cell is the second factor which strongly influences the amino acid composition. Intracellular 
species (i.e. parasites or endosymbionts) show very specific amino acid usage and the distance 
between their proteins and the rest is d(B1,B2) = 0.3705. 

Fig. 3 shows the relationship between different environmental factors and amino acid 
composition in three sets of proteins divided according to their functional grouping. It was 
observed that temperature has the strongest influence on the amino acid composition, but it 
depends on functional classification of proteins. In the case of hyperthermophilic species, the 
largest distance d(B1,B2) = 0.5665 is for proteins responsible for information storage and 
processing (Isp), which indicates that these set of proteins has the most different amino acid usage 
in comparison to non-hyperthermophiles. This difference is much bigger than in the case of 
proteins responsible for cellular processes and signaling (Cps), d(B1,B2) = 0.3655 and metabolism 



(Metab), d(B1,B2) = 0.2951. On the other hand, proteins responsible for metabolism have the most 
disparate amino acid usage in intracellular microbes in comparison to the rest species. 

The most unique amino acid composition of hyperthermophilic proteins results likely from 
constraints imposed on thermostability of their structure [1]–[3] whereas the composition of 
proteins from intracellular species is usually modeled by the higher rate of mutations accumulation 
(see [6] and references therein). 
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 Figure 2. Relationship between environmental factors and amino acid 
composition measured by distances d(B1,B2) between sets of all proteins. 
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 Figure 3. Relationship between environmental factors and amino acid 
composition measured by distances d(B1,B2) between sets of proteins 

divided into three functional groups. 

 



 
Comparison of amino acid composition of domain and non-domain protein regions according to 

environmental factors is presented in Fig. 4 and Table 1. The composition of protein domains is 
generally much weaker connected with environmental factors than the composition of non-domain 
regions. For example, the amino acid composition of domain regions in aerobic species (i.e. living 
oxygenic conditions) are much more similar to other species (i.e. anaerobic and facultative aerobic) 
than the composition of non-domain regions. In the first case the distance between them is d(B1,B2) 
= 0.2467 whereas in the second case is d(B1,B2) = 0.383. Remarkable is fact, that differences in 
amino acid composition of hypethermophiles’ proteins to others are very close for domain and non-
domain regions in proteins. In both cases the distances are large but very similar, d(B1,B2) = 0.4091 
and d(B1,B2) = 0.4523, respectively. Analogous results are in the case of intracellular microbes. 
They are characterized by different amino acid usage in comparison to other species (i.e. free 
living/extracellular, free-living, and extracellular), but the differenses are very similar for domain, 
d(B1,B2) = 0.3665, and non-domain, d(B1,B2) = 0.3817, regions in proteins.  

It is usually accepted that non-domain regions are less functionally and structurally constrained, 
therefore they should accumulte more substitutions than domain regions. Assuming that and the 
observed stronger relationship between amino acid composition and environmental factors for non-
domain regions than for domains, one may deduce that different environment conditions cause 
variuos mutational patterns in genomes and encoded proteins. However, it cannot be excluded that 
some of these substitution has a structural significance, for example reinforcing stability of protein 
loop usually formed by non-domain regions. 
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 Figure 4. Relationship between environmental factors and amino acid 
composition measured by distances d(B1,B2) for domain and non-domain 

regions in proteins. 

 

 
 
 
 
 
 



 
 Table 1. Distances d(B1,B2) for different sets of proteins as a measure of 

relationship with environmental factors. 
 

 

Environmental factors Non-domain 
regions 

Domain 
regions 

All 
proteins 

Metab Cps Isp 

aerobic 0.383 0.2467 0.2599 0.2779 0.2244 0.2427 

anaerobic 0.2888 0.1806 0.201 0.1974 0.1577 0.2543 Oxygen 

facultative aerobic 0.1854 0.1789 0.1877 0.2002 0.1557 0.1844 

hyperthermophilic 0.4523 0.4091 0.4461 0.2951 0.3655 0.5665 

mesophilic 0.2976 0.1671 0.1914 0.1611 0.1316 0.3032 

thermophilic 0.1932 0.1222 0.1337 0.0914 0.1988 0.1348 
Temperature 

psychrophilic 0.3742 0.1676 0.1654 0.1974 0.1674 0.154 

extracellular 0.1432 0.0801 0.0812 0.082 0.1045 0.0961 

free-living 0.2805 0.1946 0.1915 0.1716 0.2069 0.2076 

free-
living/extracellular 

0.2017 0.0962 0.1049 0.1014 0.0961 0.1359 

Relation to host 
cell  

intracellular 0.3817 0.3655 0.3705 0.39 0.3379 0.3365 
 

Functional classification of proteins: Isp - information storage and processing, Cps - cellular processes and 
signaling, Metab - metabolism. 
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