Algorithm for finding coding signal using
homogeneous Markov chains independently for
three codon positions

bacterial genomes which encode smaller sets ofgemés.
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Abstract—Many currently used algorithms for protein coding  gpecific nucleotide or codon bias. To avoid thesbigms
sequences require large learning sets of true gengsestimate  yo developed a suitable statistical model which ten
sensible values for used parameters which are neecesy to useful for detection a protein coding signal. Thisdel

make the prediction reasonable. They also fail inacognition of utilizes specific properties of brotein codin s
short genes which usually contain weak coding sigha o avoid P prop P g seqce

these problems, we worked out a new algorithm forifding ~ 'élated to correlations in nucleotide composition i
protein Coding potentia| in prokaryotic genomesl Ths pal'tICU|aI' COdOI’] pOS|t|0nS, Wh|Ch was Observed bmth
algorithm uses homogeneous Markov chain for modelgn  prokaryotic [5] and eukaryotic genomes [6]. Ouraaithm
nucleotide transition between fixed positions in adons thereby  uses homogeneous Markov chains to analyse thisngodi
reduces order of Markov chain retaining simultaneosly  information on long distances in particular codasifions
information on dependence between nucleotides ingieence on  (separately for the first, the second and the }tamt does
relatively long distances. We tested performance othis not require high chain order to work properly. Thew

algorithm in re]gtionship to sizg of the learning st with true method was compared with commonly used GeneMark als
and false positive rates for different model orders We also .

made some comparisons between our algorithm and cononly based on Markov chains [3].
used GeneMark. The presented algorithm works better I ALGORITHM FOR FINDING A CODING SIGNAL
especially for smaller learning sets. )

The most common gene finders use Markov chain agpro

Keywords, ORF, gene finding, Markov chains for modeling dependences between occurrence of
nucleotides in a genome [4], [3]. Our method uses s
I.  INTRODUCTION homogeneous Markov chains of protein coding seeeet

determine the positional pattern frequencies wiiehused
to detect a coding signal in analyzed sequencess Th
algorithm consists of two stages: the training step the
analysis step.

Although many algorithms using different measurgsfér
predicting protein coding sequences in prokarygéoomes
have been developed (see [9] and [1] for receneves),
there is still an unsolved problem to distinguishet and
false coding sequences among short open readimgesra A Training step
(ORFs) fewer than 300 bp. Though majority of theders
are spurious, some short genes are likely presethiis set.
They may encode peptides important for cell fungtig,
e.g. fulfilling regulatory functions. The number small
ORFs (smORFs) increases exponentially with decr@ase
their length [8], which hampers to recognize reehes ! .
among false frames. Recognition of these geneslsiz a questionable or hypothetlggl. .

difficult because their coding signal is disturbéxy 1) Constru<_:t|on of transnon matrlces

statistical fluctuations coming out from their shor Let us consider S={(Sit, 8_2’ o S} 2 sequence of
sequences. As a result, gene predicting prograras th_nucleotldes extracted from fixed codon positiorss §j, 2, 3)

achieve very high rates of detection, accept sianelbusl in-a p.r.o.tein coding sequence. We. construct theianit
quite a lot yof ?alse positives. Moreover pmany bésg probabilities P(8) of h nucleotides i&ituated in the same

algorithms rely only on large learning sets of tiyenes codon positions i (where h defines the model ordad) also
which are necessary to make reliable estimatioruszd the probability transition matrices (i.e. betwearcleotides
parameters. Therefore, they are not optimal for llsma'n € same codon position). Matrices, N2, M3 concern

The main task of this step is to compute model patars
which are calculated from a learning set of nudtknt
sequences. For a given genome such a set is inafact
collection of ORFs annotated with ascribed function
GenBank database, excluding ORFs that were dedcabe



to direct (sense) strands of training sequencesresbe Fig. 1. Barplots of positional pattern frequenatesnputed

matrices M, Ms, Me are based on complementary strands ofor the training set fronEscherichia coli genome for six

these sequences (antisense). MatricesNis, Me are useful  reading frames.

for a model of "shadow” coding regions. Obviously .

matrices M, ..., Ms are transition matrices for homogeneousB- Test or analysis step

Markov chains. The aim of this step is to detect the correct megfliame for
2) Determination of positional pattern frequencies an analyzed DNA sequence.

The obtained matrices are used to determine veaibrs The first two steps are the same as in determimatib

positional pattern frequencies in the learning SEhe  positional pattern frequencies (subsection II.A):

positional pattern is a vector of indices of masi¢hat give 1. AslinllA.2;
the highest value of total probability for a givendon 2. As2inll.A.2;
position. In sum, there are 216 such potentialepast i.e. 3. For a positional pattern {dc, d3) found for every
111, 112, 113, etc. It is easy to notice that is ttase we window and every reading frame, we ascribe a
actually used a maximum likelihood approach. The respective frequencyiPPz, P3, P4, Ps, Ps which
frequencies of these vectors are obtained as fellow were determined previously for the learning set;
4. As an additional non-coding reference we assume
1. Each sequence in every reading frame is analyzed uniform distribution of positional pattern
by moving windows with a fixed length (e.g. 96 nt) frequencies and introduce £ 1/216;
and a fixed window shift (e.g. 12 nt); 5. For every window we obtain a coding signal
2. For each window a vector of digitsi(dd, o) vector of frequencies for six reading frames plus
(called the positional pattern) is determined ia th the non-coding reference:
following way: By B &
a. For each of three codon positions (-)—? VP j:i:'_ﬁ)

probabilities Ri1, Pvz, Pms, Pma, Pvs, Pvs
are calculated by using trained matrices
M1, M2, M3, M4, Ms, Ms, respectively;

b. if Pmj=max(Ru1, Pm2, Pms, Pva, Pms, Pme)
(for fixed codon position i), thenid j and
finally a positional pattern d c, ) is
obtained; . . L

The idea of the presented algorithm is similar e t

3. Igliulgfgéji?g% ;?Ir a?\Z(I:hzegOaI/?r?goa\/lvsp\?\/t:\?éE ;r':algorithm which was introduced in the paper [2]eThain
Y difference is the extension of the set of possgusitional

made of the leaming set for each reading framepattern frequencies from 27 to 216. The new approakes

Finally, the respective elements of the coding
signal vector are averaged over all windows for a

if the i position in coding signal vectors has the
highest value.

(Fig. 1). into account all possible frequencies obtained kyng
matrices M, M2, ..., Msat once. This approach gives better
. ! frame . Il rame results especially in genomes with strong codirggaii in
. s ° the complementary (antisense) strand (e.g. Ein coli
is s genome).
g g Ill.  RESULTS
ol patrn posioal We have tested our algorithm dbscherichia coli 536
genome and also have analyzed several skiyatbplasma
Il frame IV frame

genomes. To evaluate efficiency of our algorithm we
measured true positive rate (sensitivity) and faissitive

rate. For fixed model orders (h = 2, 4) we also parad our
| . results with the results obtained by GeneMark B.5 @, 5)
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Furthermore, from the training set we chose rangoml
subsets containing increasing number of ORFs, 1i0f),
200, ..., 1000 ORFs which we used as training €ais.aim
was to find dependences between true positive inathe
test set and the size of the learning set for fixediel order

h =1, 2, 3, 4. These results averaged on 20 stiontaare
presented in Fig. 2. The fraction of correctly mpuiaed
genes increases rapidly with the learning set simd
stabilizes from the set of 300 or 400 ORFs. Intangky,

lower order models perform much better for smaller

learning sets than the most complex one (h=4) whic
slightly surpasses the simpler models for largerrg
sets.
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Fig 2. Relationship between true positive rate thiedsize of
training set.

2) Estimation of false positive rate
We estimated false positive rate using two test set
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Fig 3. Relationship between false positive rate tedsize
of the training set for: sequences in incorrectieg frame
(in the left) and randomly generated sequencethémight).

3) Comparison of the new algorithm with GeneMark

We used the same learning and test sets for bgthitims
and compared the new model of the order h = 2, th wi
GeneMark of the order h = 2, 5. We chose the GenleMa
order of h=5 because it is the most common usedrard
the current GeneMark version 2.5. Performance edetiwo
algorithms according to true positive rate in fielaghip to
the size of learning set is shown in Fig. 4 and. BigAll
algorithms achieve true positive rate higher tha&880For
low order models (Fig. 4) the new algorithm recsithégher
true positive rate than GeneMark, more than 0.94afb
learning sets with exception to the smallest onkelVmore
complex model are used (Fig. 5) the new algorithith s
works better for all learning sets but the diffarerbetween
two algorithms diminishes with the learning seesind two
algorithms converge for the set consisting of 1@RFs

1. protein coding sequences in incorrect readingachieving true positive rate about 0.945.

frame;
2.

Comparison of two methods regarding relationshigvben

random sequences generated according to thi@lse positive rate and the size of learning serésented in

genome nucleotide composition and the lengthFig. 6 and Fig. 7. The relationship is weaker tf@ntrue

distribution of real genes.

The results averaged on 20 simulations are shoviigin3.
The relationships between false positive rate ahd t
learning set size is differs for the two test séthen ORFs
in the incorrect reading frame are used as a tstfalse
positive rate of the h=4 model is higher than thate 1of the
simpler models for the smaller learning sets bubveer for
the larger learning sets. The rate increases \hihsize for
generated sequences and decreases for ORFs read
incorrect frame. In the case of the generated semse the
high order model (h=4) receives the lowest falssitp@
rate for all learning sets in comparison to the pdéam
models.

positive rate. Interestingly, performance of twgathms
depends on the test set. The new algorithm hasrltalse
positive rate for incorrect reading frames with tireler of
h=2 and for random sequences with the order of kil
GeneMark performs better in the case of incorreatling
frames with the order of h=5 and for random segesndgth
the order of h=2. By average the two algorithmswsho
similar 0.055 false positive rate. GeneMark aclseleth
the lowest and the highest false positive rateeslu
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4) Comparison of coding signal
The main task of our algorithm is to find a sequemgth
coding signal in a proper reading frame. In Figw8
compared the strength of the coding signal for rhodger
of h=2 in different group of sequences: protein iocgd
sequences, sequences in incorrect reading frameaaddm
sequences. The strength was described by empiadal
distribution functions (i.e. 1-F(x) = P(X > X)), wle X is a
random variable of the value of strongest codiggal. The



distribution for protein coding sequences is cleathifted

towards higher values of coding signal. Protein imgpd
sequences with coding signal higher than 0.3 aez 8¥%

while there are only 13% of incorrect ORFs and amm

random sequences (0.9%) above this value.
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Fig 8. Comparison empirical tail distribution fuimects (1-
F(X)) for: protein coding sequences (red solid )jne
sequences in incorrect reading frame (black doliteg),
random sequences (green dashed line).

5) Small genomes
TABLE I. TRUE POSITIVE RATE(TPR)FOR SMALL
MYCOPLASMA GENOMES
Genome TPR
M. agalatiae (0.88 Mbp) 0.97
M. arthihritidis 158L3 1 (0.82 Mbp) 0.96
M. mobile 163K (0.78 Mbp) 0.91
M. mobile 163K (0.78 Mbp) 0.97
M. pulmonis UAB CTIP (0.96 Mbp) 0.94
M. synoviae 53 (0.8 Mbp) 0.97

As was mentioned in
important problems in
sequences is difficulty in obtaining a large enotigtining
set for small genomes. Here, we tested the newitigoin

the case of small genomes assuming tiny learnirig segg
(Table ). For every genome we chose randomly 200

annotated ORFs the training set and the rest of OR&S
used to build the test set. Sets for calculatidsefpositive
rate were prepared similarly but were based on OiRkd

Introduction, one of the mosté]
recognition of protein coding

in incorrect frames. The algorithm achieved truesitpee
rate higher than 0.90 and false positive rate bé&ldw

IV. CONCLUSION

The presented algorithm describes nucleotide tiansin
three codon positions independently. Thereforeeituces
order of Markov chain retaining the same coding
information that is contained in higher order clkain
analyzing dependence between nucleotides in subsequ
positions of a sequence. This algorithm achieveddgo
performance both for small and large learning sletsour
test we obtained average true positive rate oveéd @nd
false positive rate below 0.1. Models of lower orderked
usually better for smaller learning sets but thesnoomplex
ones were better for larger ones. However, theediffce
both in true positive rate and false positive ragtween
models of different order was bigger for the snhedirning
sets than for larger ones. Models with higher ostewed
stronger relationship with the size of learning $ean
simpler ones. Our results indicate that our albaritis
comparable with GeneMark algorithm according tosdal
positive rate but achieves higher true positive.r&ince the
new algorithm work well under low order models.
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