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ABSTRACT: The second author presented the orthotropic Rankine-type plasticity model for the analysis of structural problems in the plane 

stress state during the previous local seminar of IASS PC in Warsaw. The model included a maximum principal stress failure criterion of 

Rankine both for tension and compression regimes by incorporating the second order strength tensor. Within the framework of the finite 

element method for the elastoplasticity theory of small strains for softening/hardening materials, two yield surfaces resulting from the ortho-

tropic principal stress criterion were implemented at the integration point level into the proprietary finite element program by means of user-

defined subroutines. This paper demonstrates an application of the model to the analysis of a masonry panel. The numerical tests have been 

done in order to check the possibility of the model to reproduce an orthotropic behaviour of masonry panels with di fferent tensile and com-

pressive strengths along the material axes as well as different inelastic behaviour for each material axis after the own numerical implementa-

tion in the finite element code. The ability of the model to reproduce a failure mode of the panels is also of interest. 
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1. INTRODUCTION 

A large number of buildings, including these that may correspond with 

the lightweight structure definition, are constructed with masonry infill 

walls for architectural needs or the fire rating and sound transmission 

reasons. The walls can also greatly stiffen a flexible steel or reinforced 

concrete frame and significantly affect the distribution of lateral loads to 

various parts of the building. However, unreinforced masonry may be 

assumed a homogeneous but obviously anisotropic material, which ex-

hibits distinct directional properties due to the influence of the mortar 

joints acting as planes of weakness. A model must reproduce an 

orthotropic material with different tensile and compressive strengths 

along the material axes as well as different inelastic behaviour for each 

material axis. A reduced number of orthotropic material models that 

may be specific for masonry have been proposed. An attempt of formu-

lating one of them is the orthotropic Rankine-type model proposed by 

Malyszko (Ref 4). The model was presented during previous PC IASS 

seminar in Warsaw.  This paper continues the previous work and illus-

trates behaviour of the masonry panels regarded as equivalent 

orthotropic continuum under a directional loading. Masonry is an exam-

ple of a material for which the model applies, having different strengths 

parallel and perpendicular to the bed joints. The possibility of formulat-

ing robust numerical algorithms by means of user-defined subroutines of 

the proprietary nonlinear finite element program is also of prime impor-

tance. The constitutive model for the plane stress is provided with the 

framework of the mathematical elastoplasticity theory of small strains 

for softening materials. Here, the model for compression regime is a 

novel development. The implementation of the model is done within a 

framework of an incremental-iterative algorithm of finite element 

method using both the return-mapping algorithm allowing the stresses to 

be returned to the yield surface and a consistent tangent stiffness opera-

tor. The paper is concluded by presenting some numerical results of a 

masonry panel analysis verifying own implementation.  

 

2. ORTHOTROPIC RANKINE-TYPE PLASTICITY MODEL  
For the sake of simplicity, the mechanical description of the elastic-

plastic model is presented in a state of plane stress parallel to the XZ-

plane based on the assumption that the principal axes of orthotropy co-

incided with the frame of reference. The constitutive relation between 

stresses  xzzx  ,,σ  and strains  xzzx  ,,ε  are given in a ma-

terial point. Within the framework of the theory of elastoplasticity, the 

orthotropic Rankine-type failure criteria (2) and (4) serve as the yield 

surfaces and have to distinguish between domains of the different ma-

terial response by means of the yield condition given by the yield sur-

face f. Within the yield surface (f < 0), the material behaves elastically. 

On the yield surface (f = 0), the material begins to yield. Thus, in the 

phenomenological approach that is applied in the present model, the 

geometrical nonlinearity like cracking is accounted for by the introduc-

tion of a loading function f describing the failure criterion. By the as-

sumption of small strains, the function f is set up with quantities that re-

fer to the undeformed configuration. 

 

2.1. Orthotropic failure criteria  

In an arbitrary right-handed Cartesian coordinate system {xi} coaxial 

with the axes of the principal stresses and for a so-called generalized 

plane state problem when 2 is equal to zero, the failure criterion for the 

tension regime can be written in the following form 
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where the angle   in the direction cosines measures the rotation be-

tween the first axis x1, i.e. the axis of the first principal stress 1 and the 

first material X-axis. The parameters ftX and ftZ denote the tensile 

strengths that may be determined from the simple tension tests along the 

direction of the material axes. In the {xi} frame coaxial with the XZ axes, 

where X and Z are the principal axes of material orthotropy, the failure 

criterion can be written as 

   02   xzztZxtX
ff                                                                 (2) 

For the compression regime, the similar form of the failure criterion can 

be obtained by replacing the tensile strengths by the compressive 

strengths with positive values, i.e. by the strengths -fcX and -fcZ . The 

failure condition caused by the compression can be written as 
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instead of Eqn (1) and as  

   02   xzzcZxcX ff                                                               (4) 

instead of Eqn (2). 

As one can see, a representation of an orthotropic failure surface in term 

of principal stresses only is not possible. For plane stress situation, a 



graphical representation can be obtained either in terms of the full stress 

vector (X ,Z and XZ), referred to the material axes, or in terms of prin-

cipal stresses and the angle . It is obvious that it is not possible to for-

mulate the failure criterion of orthotropic material in terms of the princi-

pal stresses only, since they are isotropic functions of the stress state. In 

Fig. 1, a comparison of the proposed criteria with experimental data of 

masonry specimens subjected to biaxial tests are presented. The material 

parameters are taken from Page (Refs 8, 9). The comparison shows quite 

good agreement in the tensile regime, less good agreement in compres-

sive regime and a discrepancy in the shear regime. Some improvements 

are needed which may be done either by an introduction of a correction 

factor in the Rankine criterion or by addition a third criterion specified 

the for the shear failure. The former method is presented in Ref 4. In 

Refs (5, 6) Malyszko discusses the latter method within simplified forms 

of the failure criterion. 
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Fig.1. Contours of generalized failure criterion of Rankine for strength 

parameters: ftX=0.3, ftZ=0.15, fcX=10.0, fcZ=8.5 [MPa] with comparison 

with experimental date from Page (Refs 8, 9) 

 

2.2. Elastic-plastic constitutive model 

Within the framework of the theory of elastoplasticity, the orthotropic 

Rankine-type criteria (2) and (4) serve as the yield surfaces. They have 

to distinguish between domains of the elastic and plastic material re-

sponse in the tension and the compression regimes by the introduction of 

loading functions fβ of the stress σ and the internal state parameter κβ, 

where β=t for tension and β=c for compression regime. Within the yield 

surface (fβ < 0), the material behaves elastically according to the linear 

Hooke’s law 

)( εεDDεσ
plel                                                                            (5)                                                                   

where in accordance with the usual approach of the flow theory of plas-

ticity, the basic assumption of additive strain decomposition of the strain 

tensor ε into an elastic part ε
el
 and an irreversible plastic part ε

pl
 is made. 

For an orthotropic or transversely isotropic material in a so-called gener-

alized plane stress problem in the XZ-plane, the elastic parameters are 

represented by the matrix D that contains four material constants: two 

Young’s moduli Ex and Ez , one shear module Gxz and Poisson’s ratio ν.  

On the yield surface (fβ = 0), the material begins to yield. The inelastic 

strain ε
pl

 may be nonzero. The inelastic strain rate in the intersection of 

the different yield surfaces is obtained from a linear combination of the 

plastic strain rate of the tensile and compressive yield surfaces according 

to Koiter’s generalization 
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where ct   ,  are inelastic multipliers and ct gg ,  are plastic potentials 

in tension and compression regimes, respectively . 

The inelastic behaviour can be described by a strain softening hypothesis 

given by the maximum and minimum principal plastic strains in tension 

and compression regime, respectively. Thus, the particularly simple ex-

pression      may be recovered for the internal state parameters κβ. 

 

2.3. Implementation in a finite element code 

The model has been coded in Fortran programming language (Ref 1) 

and next implemented in a proprietary finite element code Diana using 

the user-supplied subroutine usrmat (Ref 2). The subroutine lets the user 

specify a general nonlinear material behaviour by updating the state 

variables over the equilibrium step 1 nn  in the iterative local New-

ton-Raphson procedure. The implicit Euler backward algorithm is used. 

Assuming that the tension and compression regimes are uncoupled, in 

the presence of plastic flow, the return mapping algorithm for the corner 

regime reduces to the following system of five nonlinear equations con-

taining five unknowns (the 1nσ  components, 1,1,   ntnt   and 

1,1,   ncnc  ) 
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where the trial stress is 

1 nn
trial

εDσσ                                                                             (8) 

and (Eqn 9) 












































































0

,

0

,,

0

1

1

,

400

011

011

2

1
cZ

cX

ctZ

tX

t f

f

f

f

ηηησξπP 






 

Note that Eqns (2, 4) are recast in a matrix form in Eqns. (74,5). Also, the 

additional parameters γβ are introduced in the projection matrix P in Eqn 

(9) in order to control the shear stress contribution to failure instead of γβ 

=1.0 being the standard Rankine value. If the standard values are used in 

failure criteria, the model can underestimate the shear-compression part 

in terms of biaxial loading. However, the failure criteria (74,5) with the 

standard value may be taken as the plastic potentials g. If the projection 

matrix P with the standard value γβ =1.0 is taken in the plastic potentials 

g and, at the same time, the value γβ≠1 is taken in the yield criteria (74,5) 

then the non-associated flow rule is applied, both for tension and com-

pression regimes. The value γβ may be determined as 

2
00   ZX ff                                                                            (10)                                                                                          

where τβ are the pure shear strengths in tension and compression, respec-

tively. The values fβX0 and fβZ0 are the characteristic yield values (initial 

or peak) of the uniaxial strengths in the direction of the material X, Z 

axes that may be obtained from appropriate equivalent stress-equivalent 

strain softening/hardening diagrams      ZX ff , , with different 

fracture energies ZX GG  ,  for each yield value, see Ref 4 for details. 

Note that in Eqn (9) two additional strength parameters are introduced 

(γt and γc).  

 

For the testing of the directional mechanical response of the model with 

Diana a single-element test was chosen under displacement control, with 



dimensions 100 x 100 [mm
2
] (Fig. 2). The elastic material parameters 

are EX=7500 MPa, EZ=4000 MPa, ν=0,15 and GXZ=1400 MPa. 
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Fig. 2. Uniaxial tension and compression problem: a) loading in horizon-

tal direction, b) loading in vertical direction 

 

The inelastic material parameters are given in Tab. 1. The additional ma-

terial parameter, the equivalent plastic strain κcp corresponding to the 

peak compressive strength according to softening/hardening law, equals 

to 0.002. The equivalent length used to regularize the results with the re-

spect to mesh refinement, is equal to 0.1 m.  

 

Table 1. Inelastic material parameters 

Tension regime Compression regime Both 
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0.35 0.25 0.05 0.015 10.0 8.8 20.0 15.0 1.0 

 

Uniaxial problem - loading in the horizontal direction. 

Figure 3 (top) shows the stress-strain response for the tensile loading 

along the horizontal X-axis (along the masonry bed joints). When the 

tensile stress equals to 0.35 MPa is reached, the material strength de-

grades according to the exponential tensile softening of the theoretical 

model. The anticipated constitutive behaviour is exactly reproduced. The 

stress-strain response for the compressive loading along the same direc-

tion is shown at the bottom of the Fig. 3. Again, when the compressive 

stress equals to 10 MPa is reached, the material strength degrades ac-

cording to the hardening/softening law with a residual plateau from the 

theoretical model. 
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Fig. 3. Stress-strain response in horizontal tension and compression 

 

 

Uniaxial problem - loading in the vertical direction. 

The stress-strain response for the tensile loading along the vertical Z-

axis (perpendicular to the masonry bed joints) is shown at the top of Fig. 

4. Now the material strength degrades according to the exponential ten-

sile softening of the theoretical model when the tensile stress equals to 

0.25 MPa.  The bottom of the Fig. 4 shows the stress-strain response for 

the compressive loading along the same direction. Again, when the 

compressive strength equal now to 8.8 MPa is reached, the material 

strength degrades according to the hardening/softening law with a simi-

lar residual plateau as in loading in horizontal direction. 
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Fig. 4. Stress-strain response in vertical tension and compression 

 

The shear model problem is a single element test for disclosing the ba-

sic behaviour of the constitutive model in shearing. The test loads an 

element as shown in Fig. 5. The displacements in the vertical direction 

are constrained. Because of symmetry of the failure contours relative to 

hydrostatic axis the similar test with vertical loading will give similar re-

sults, thus the test in Fig. 5 is the only one considered. Figure 6 shows  
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Fig. 5. Shear model problem 

 

the stress-strain response in terms of the shear components. In this test, 

the tensile yield surface is active. For the value of the parameter  t  

equal to 1.0, the shear failure stress is  

tZtXf ff                                                                        (11) 

which means that for the strength parameters given in Tab. 1 

MPaf 30.0  as one can see in Fig. 6.  When the shear stress 

reaches the value of 0.3 MPa shear strength degrades in similar manner 

as the tensile strengths do. 
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Fig. 6. Shear stress-strain response in single element test  

 

3. APPLICATION TO THE ANALYSIS OF MASONRY PANEL  

The only example analysed is a masonry shear wall, 1 m square, without 

an opening built of 18 courses of masonry, from which the top and bot-

tom courses are fully clamped in steel beams. An initial vertical load 

equals to 0.30 MPa is applied before shearing the wall with the horizon-

tal force F. The top edge remains elastic constrained and can move a lit-

tle upwards upon shearing with a horizontal displacement δ, see Fig. 7.  
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Fig. 7. Masonry shear wall. Maximum principal strain for δ=9 mm  

 

 
 

Fig. 8. Masonry shear wall. Maximum principal stress for δ=9 mm  

 

The inelastic material parameters are given in Tab.1 and the elastic pa-

rameters in Tab. 2. Figure 8 shows the results of the analysis in a vector  

form of the maximum principal stress for the horizontal displacement 

δ=9 mm at the time when the diagonal crack starts forming. As expected 

 

Tab.2. Elastic material parameters of masonry shear wall 

EX EZ νXZ GXZ 

7520 

MPa 

3960 

MPa 
0.09 

1460 

MPa 

 

in most cases of unconfined masonry structures, the failure mechanism 

is determined by tensile behaviour. However, due to some difficulties in 

the analysis after the own implementation, the failure mode is slightly 

different from that obtained in Ref  3.  

 

4. FINAL REMARKS 

Although the tension softening and compression hardening/softening 

that may capture the total degradation process are taken into account in 

the model,  some improvements have to be done by addition a third cri-

terion specified for the shear failure. It seems that the generalization of 

the Coulomb-Mohr failure criterion combined with Rankine-type crite-

rion should be included in the model, see Ref  7. The addition of this cri-

terion should help controlling the shear stress contribution to the failure 

and proper estimate shear-compression and shear-tension regimes of the 

model. Due to the large number of material parameters, involved in the 

model, analyses have to be carried out in different structures to assess 

the influence of the variation of the material parameters on the structural 

response of the masonry panels. 
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