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1. INTRODUCTION

Linear programming problems can be solved with high prenisising reliable and fast
IPM (interior-point methods) algorithms. There are optiation tasks, however, that do not
meet linearity requirement, dominating in real-life. lftldecision variables are numbers
of unknown values and objective function is nonlinear, thebpem falls in the category of
unconstrained nonlinear programming.

The methods presented below concentrate on minimizingtigefunction which is not
to stringent requirement, since all results can be obtdimechaximization problem as well.
Among general nonlinear programming problems one can ifgesitdicated and effective
methods or special structures of the tasks.

There is a variety of approaches to solving nonlinear pmogtahus there is no method to
solve the problems in general. As in the case of unconsttairiaimization problems, one
can divide the methods available to classes, such as zesp-afnd second-order algorithms.

In some methods, necessary and sufficient optimality cmmditare used, leading to ob-
taining the algorithms described in this paper.

The paper concentrates on presenting three classes ottlalgsmwith information con-
cerning efficiency of the algorithms given, defined as meanbmr of iterations necessary to
reach the minimizer with a prescribed tolerance. The caiahs can be helpful in selecting
the algorithm dedicated to the problem to be solved.

2. BASIC STEPS IN NUMERICAL METHODS TO SOLVE UNCONSTRAINED
NONLINEAR PROGRAMS

Analytical methods based on solving necessary and sufficemditions for nonlinear
programs have limited applicability in practice. The pbsireasons for the latter, and sub-
sequently, possible reasons to resort to iterative methoglshe cases when constraint or
objective functions:

e are of complicated form, what may result in difficulties wiblving the problems
analytically,

e are not explicit functions of the decision variables,

¢ do not satisfy differentiability conditions or are discionious.

*Pozna University of Technology, Institute of Control and Infoation Engineering, Department of Control and
Robotics, Piotrowo 3a Str., 60-965 Poana-mail:Dar i usz. Hor | a@ut . poznan. pl

© Poznaskie Towarzystwo Przyjaciot Nauk 2018ai t . ci e. put . poznan. pl



8 Dariusz Horla

Numerical methods of solving optimization problems leadeoative approaches, where
an approximate solution is sought in consecutive steps, wiproved solutions expected to
be better than the current ones (objective function shoeddahse).

In the case of € #", one can formulate a general algorithm for such methods:

e forinitial guessz(®) putk = 0,
e find the directiond® in which objective function value is improved,

e choose the step length, from the pointz(*) in the directiond® to the pointz(*+1),
i.e. an improved solution to the problem,

e compute the improved solutiarf*+1) = z(*) + a,.d*® to the given problem,
e check stopping criterion, what should answer if the imptbselution is satisfactory

and whether it should be amended or not; if yes,kjput k& + 1 and start the algorithm
OoVer.

3. STOPPING CRITERIA

And important question in numerical algorithms is if the moyed solution is satisfactory,
i.e. it is viable to set the stopping criterion to the aldamit It is only in the limited number
of cases that the solution to the optimization problem cafobad in a limited number of
steps. One has to choose the rules to verify if the approeidnstlution is acceptable.

Sample stopping criteria for arbitrarily chosen thresHelels include:

¢ theoretical criteria
f@®) = fl@) <e, Nz -z < e,
e approximate stationary solution to the problem
IVf(z®)|| <e

e practical criteria

(k+1)

k
|} 2P <e or 2®) — 2| <e

or
f@® ) — fa®) < e .

4. CHARACTERISTICS OF THE NUMERICAL ALGORITHM

When using numerical algorithms one has to take the follg@atures under consider-
ation:

e convergence

algorithm is convergent if there exists the limit to the sege of approximate solu-
tions obtained from its consecutive steps,
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PERFORMANCE EVALUATION OF ITERATIVEMETHODS. .. 9

e initial solution

effectiveness of the algorithm depends on the choice délrgblution, as, e.g., algo-
rithm may stuck in a local minimum of a multimodal functiondaim such a case it
should be started many times from different initial poirt$ind the global minimum,

e stopping criterion

in order to stop the iterative algorithm, one should chedkéfimproved approximate
solution changes from one iteration to another, as the spith@ algorithm, i.e. time
that it takes to execute it, is an another factor, apart fieenaiccuracy of the obtained
solution.

5. CLASSIFICATION OF ITERATIVE ALGORITHMS OF SINGLE VARIABLE

The feature that allows one to differ the algorithms is thaéeorof derivatives used by
them, and as such we have:
e zero-order algorithms

used to compute function values at specific points only,&aflgwhen objective func-
tion has complicated form or cannot be explicitly given,

e gradient algorithms (first-order)

used when gradient of the objective function is available,
e second-order algorithms

used when information about second derivatives are availab
6. ZERO-ORDER METHODS
6.1. HOW TO SEARCH FOR THE MINIMIZER OF THE UNIMODAL FUNCTION?

The zero-order algorithms are used to seek for the minimutheofunctionf : Z — #
in the interval {x(of), x(o*)] with 2(°7) > 2(°7)_ The only property that objective function
f must posses is unimodularity, i.e. it should have a singl@mmim in the given set. The
examples of unimodal functions are shown in Figure 1.

I

Fig. 1. Unimodal functions

The methods to be presented are based on computing values olbjective function in
various points of the se{tc(()*), I(oﬂ] in such a way to enable one to stipulate the minimizer
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10 Dariusz Horla

of f in the smaller number of steps with successive reductiohfiriterval in which it is
included in.
Let a unimodal function be given in the uncertainty rarﬁg@”, 2@ |, If the value of

f is computed at a single point only, there is no way to answer teoreduce its length to
find the minimizer off. The value off should therefore be computed in two intermediate
points, with symmetrical reduction, respecting the cdodit

2070 2 g(07) g% p0%)  0%) _ 407y

wherep < % as shown in Figure 2.

1217 — g(07), 12(1F) — 20,
| | | !
[ | |
| | | |
| | | |

2(07) 217 20 20

Fig. 2. Value of the objective function at two intermediatérps

Having computed the values ¢f at intermediate points, the minimizer is in the in-
terval {x(()*), :z:(ﬁ)] when it holds thatf (1)) < f(z(*"), and for the opposite case,

ie. f(z17)) > (1), itisin the range{x(r), x(o*)} as itis shown in the Figure 3.

F@™)

fz(7))

2(07) o* 27 L) 2(01)

Fig. 3. The case of (z(' ) < f(z)), with the minimizerz* € [x(ofﬁ m(ﬁ)]

The next iteration should be started from the reduced iateand the procedure is re-
peated all over again by stipulating two new points,4@. ), z(2") and comparing objective
function values. From this point of view, the zero-ordernoets are obviously called branch
and bound methods. Furthermore, the functiotioes not have to be neither differentiable,

nor continuous ir{x(of), x(0+)} ,

To summarize, for an initial set € 2(°) = [:v(of), x(m)} a general branch and bound
algorithms is as follows:

e compute a minimal numbeN of iterations so that the difference between exeict
and approximate solutioris (assumed to lie in the center 6f¥)) does not exceed a
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PERFORMANCE EVALUATION OF ITERATIVEMETHODS. .. 11

given tolerance, i.e.
¥ =3 < e(:v(w) —z(07)),

e fork=1,..., N:

— settwo new intermediate point§t ), 2*7) (27 < 2k, {:E(’f), :E(”)} €

2*=1) in the intervalz (1),
— compute the next uncertainty rangé*) with the previously proposed points:

a) ifitholdsthatf (2 )) < f(z(D), setzk+D) € g*) = [a:(k—l*), @W)},
b) otherwise, iff (2 )) > f(z*), thenz*+D € 9 = [@Uﬂ, xw—lﬂ,
— putk =k +1,

e assume that* = %(:c(N+)+x(N7)) is the approximate solutions to the given problem.
6.2. EQUAL DIVISION METHOD

If the rangez(?) is divided into smaller and equal parts withinterior points of interme-
diate distance(z(°") —z(° ")), wheree is the preferred tolerance of the approximate solution,
the minimal number of iterations satisfies > % — 1 with:

FET) = p-17) 4 E(x(f)*) — 207y,

FU) = 1) _ (0%) _ 407y,

where% should be a natural number, as shown in Figure 4.
f(=)

xT

207) 200

Fig. 4. Division of the initial set with tolerance of 10%V(= 9)

6.3. GOLDEN-SEARCH METHOD

Let for the given uncertainty interva?(©) it hold that f (0 )) < f(z(©"). Itis evident
thatin such acase* € 20 = [2(°7), 2(7)]. Sincez! ) is in the new rang&?"), and the
value f(z(* ")) is known (computed in the previous iteration), it is impatta choose:(* )
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2(07) _ 2(07) — 1

1—-2p

|

|

| |
| |
| p I I
| [ [
I | I
T I T T
207) 227 7)) —.h 20 201

Fig. 5. How to choose in order to compute value of at a single intermediate point only

to lie atz("). In such a case, only a single intermediate value of the fomgt should be
computed a2 ).
In order to choose that should satisfy the latter property, one should exarigare 5.
We can assume that an initial set has a unit length, and inagelse» should be chosen

to satisty
0 (xu*) _ I(o*)) — (Iu*) _ x<2+>) ,
Since it holds hat(!") — z(07) = 1 — pandz(") — 22" =1 — 2p, thus

p(l—p)=1-2p,

and finally,
P> =3p+1=0.

The solutions to this quadratic equations are:

3+5 3-5
2 ) P2 = 2

p1 =

and since it should hold that< %, obviously we have = 3—2\/5 >~ (.382.

On this basis, we have a golden division of the line segment:

51
1—p= f2 ~(.618,

p 1—p

1—0p 1
The length of the range is reduced by the factod 6f p at each iteration, so afte¥
iterations the initial uncertainty interval is reduced kactor (1 — p)V, and the minimal
number of iterations satisfi€s — p)V < e. The step of the algorithm can be described as:

FO7) = 1) (1) 1)y

2*D) = 217 (1 — p) (2B = g1y
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PERFORMANCE EVALUATION OF ITERATIVEMETHODS. .. 13

6.4. GOLDEN-SEARCH METHOD(EXAMPLE)
Find the minimizer off (z) = 22° + 32* — 0.523 + 2® — 10z in the rang€0, 2] with
tolerance: = 0.2.

Minimal number of iterationsV = 4 satisfies(1 — p)* = 0.6180* = 0.1459 < 0.2, and
the initial interval is2(*) = [0, 2].

Iteration |
- 3—5
) =0+ 2‘/—(2—0):0.7639,
3—5
#0Y — 0+ (1 — 2\f> (2-0)=1.2361,

f(@E3)) = 2.0.7639° + 3-0.7639* — 0.5 - 0.7639° + 0.76392 — 10 - 0.7639 = —5.7365
F(20)) = 2.1.2361° + 3-1.2361* — 0.5 - 1.2361% + 1.23612 — 10 - 1.2361 = 0.9981,
FO)) < (20, thus2® = [0, 1.2361], |1.2361 — 0] = 1.2361 > |2 — O]e = 0.4.

Iteration |1

_ 3—6
2

2 =0+

(1.2361 — 0) = 0.4721,

3—V56
#20 — 0+ <1 - 2\[> (1.2361 — 0) = 0.7640,

f(@37)) = —4.3548,
) = —5.7366,
F(2@)) > £(3@), thus2® = [0.4721, 1.2361],|1.2361 — 0.4721| = 0.7640 > 0.4.

Iteration |11

- 3—vV5
#67) = 04721 4 2\[ (1.2361 — 0.4721) = 0.7639 ,

6T Z 04721 + <1 (1.2361 — 0.4721) = 0.9443,

J220)
2

f(@3)) = —5.7365,

F(2G7)) = —5.0852,

F(2G7)) < £(36), thus2® = [0.4721, 0.9443],0.9443 — 0.4721| = 0.4722 > 0.4.

Iteration IV

247 — 47214 2 _2\/5

(0.9443 — 0.4721) = 0.6525 ,

3-5
@) = 04721 + (1 - 2f> (0.9443 — 0.4721) = 0.7639 ,
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14 Dariusz Horla

f(@#%7)) = —5.4578,

F(24)) = —5.7365,

FEU) > F(EMD), thus2® =[0.6525,0.9443], [0.9443 —0.6525| = 0.2918 < 0.4.
The stopping criterion is satisfied, and the approximatatioi is i* = 9:6525+0.9443 _

2
0.7984, f(Z*) = —5.7332 (an exact solution to the problem is = 0.7789, f(z*) =
—5.7410).

6.5. DCHOTOMY METHOD
In this case, the two intermediate points are chosen synwaliyrin the proximity of the

middle of the currentinterval. The minimal number of itévas satisfiessy +6 (1 — 55 ) <
€, where0 < § < 1is a small number defining the placement of intermediatetppin

FT) 1) % (ak=17) _ =17y
A 17y # (ak=17) _ phm17))
as close as possible to the center of the current rafi§g as in the Figure 6.

f(z)

pe=1T) __(k—17)

|
|
|
|
| |
2(E=17) 257 k) L(E—11)

Fig. 6. Dichotomy method

6.6. HBONACCI METHOD

In a golden-search method the reduction factor is consten, does not vary among
all iterations. Let us assume that it can be changed with fuheoalgorithm so that atth
iteration the valugy, is used, angh;; in the next iteration. Similarly to the golden-search
method, the factod < pj < % is chosen to compute the value of the objective function at a
single point only at each iteration.

According to the Figure 7, the reduction facjgris sought such that

pr+1(1—pr) =1—2py,
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with

Pk
Pr+1=1— :
L —pr
There are many choices pf, po, .. .that satisfy the above requirement and the inequality
O0<pe<3.€0p=pr=...= %ﬁ (golden-search method).

We can assume that the rule of choosing the reduction fagxists, and aftel iterations
the initial range reduces by

(L=p)(I = p2)-- (1= pn).

The appropriate choice of reduction rates results fromisglthe nonlinear programming
problem

min (1 =p1)(1=p2)--- (1= pn)

I
|
|
kth iteration :
|
|

P1, P25 s PN
Pk
s.t. pgr1=1-— , k=1,2,..., N—-1,
L —pr
1
O<pk<§, k=1,2,...,N—1,
that is:
P Fy_q
] = ——1
Fyni1’
Dy = Fn_o
2 FN )
Pk = -
EFn_jpqo
K1
PN =T T
pe=1T) _ o (k—17) ¢ .
|
1—pp | |
1 |
Pk I 1—2pg I Pk |
T T i T
| [ |
1 I 1 1
2k=17) 2(k7) 2(kT) 2k—17)
k + 1-th iteration
I I I z
I | | I
I ' I I
2(k7) 2(BH17) L (k+1T) 2B

Fig. 7. The method of choosing intermediate points
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where the numbers:

Fy =1
F, =1
F, =2
=3,
Fy =5
Fs =8
Fs
=21,

I
—
w

form Fibonacci sequence, withy, = Fj,_1 + Fj_o.

At the Nth iteration, it holds thapy = % thus the reduction factor is modified to be
PN = %’ —0= % — 0, with 0 < § <« 1 to assure that the both proposed points are close to
the middle to the last uncertainty interval.

Minimal number of iterations satisfielsy 1 > % and intermediate points are chosen

according to the formulas:
#ET) = pk-17) 4 pk(x(k—l*) — 1)y

D) = p=17) (1— pk)(x(kflﬂ _ I(k—l’))

)

Fn_
Fn_g42”

with pp, =
7. SECOND-ORDER METHOD(NEWTON METHOD)
7.1. BASIC STEP

Let us go back to the assumption that the minimizef @fith respect tac € & is sought.
In addition let it be possible to compuféz(*)), f(z*)) and f(2*)) at each point:(*),

One can fit a quadratic functiay(z) at eachz(*), which first and second derivatives at
=) are equal tof (z(¥)) and f(z(*)), respectively. Such a quadratic approximation has the
form

(@) = Fa) + Ha®) (o = 29) + 5 Fa®) @ - a2,

whereg(z®) = f(z®)), G(z®) = f(z®), §(z*) = f(z*)), according to the Figure 8.
Now, instead of minimizing’, one can find the minimizer of its approximatignand on
the basis of first-order necessary condition obtaining

i) = F@®) + fa®)@ - 2) = 0.

Having substituted: = z(**1) we have

R1) _ (k) Ji(ff(k)) .
fa®)

2
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f(=), q(x) q(z)

| xT

o) plktD)

Fig. 8. Newton method fof (z(*)) > 0

Since the approximatiopis quadratic, the sufficient condition for the existencetenini-
mumisf(z*)) > 0.

At each iteration we have to assume tfiat*)) > 0. In the opposite case, i.¢(z(*)) <
0, the algorithm may stop avoiding the minimizer f3fas presented in Figure 9.

f(@), q(z)

2(k+1) 3 (k) z*

Fig. 9. Newton algorithm foif (%)) < 0

7.2. EXAMPLE OF A NEWTON METHOD RUN

Find the minimizer off (z) = 23 4+ 1022 + 20z + e~ with absolute tolerance= 0.01
andz(® = 1.

Derivatives off (x) have the forms:

f(x) = 322 + 200 4+20 — e ®,
flz) =6z +20+e7,
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and approximate solutions at consecutive iterations:

k=0

f(1) = 42.6321,
f(1) = 26.3679,
42.6321
M =1 - =" — _0.6168
* 26.3679 ’
| —0.6168 — 1| = 1.6168 > € = 0.01;
k=1
f(—0.6168) = 6.9523,
f(—0.6168) = 18.1522,
6.9523
(2 — _0.6168 — - _
T 0.6168 — - == = —0.9998,
| — 0.9998 + 0.6168| = 0.3830 > 0.01;

k=2
£(—0.9998) = 0.2851,

F(—0.9998) = 16.7189,

0.2851
(®) = —0.9998 — =—1.01
x 0.9998 — s 0169,
| —1.0169 + 0.9998| = 0.0171 > 0.01;
k=3

f(=1.0169) = —3.5434-107*,

F(—1.0169) = 16.6632,

—3.5434- 104
@ = 10169 — """~ —_101
x 0169 6632 0169,

| —1.0169 4+ 1.0169| 22 0 < 0.01.

Since the stopping criterion, i.e:(*) —2()| = 0 < € = 0.01, is satisfied thug* = —1.0169
andf(z*) = —8.2841.

The Newton method can be alternatively shown as a mean ta§jtkdé point at which the
first derivative off vanishes. If we assume thgtr) = f (), the Newton method transforms
to the algorithm enabling one to solve equatig(is) = 0 in the form

(k)
2D (k) 9(17 )

namely to the method of tangents. The name can be understoamexamining Figure 10.
If the tangent line tg(z) atz(*) is drawn, it intersects the axis at the point:(**1) that
should be closer to* thanz(¥). It also holds that

(k)
<o (k)Y g(z™)
g(ZC ) - ,T(k) _ ,T(k"'l) 9
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ga®)) t——— - ——— — —

g(m(kﬂ)) ——————————————

\ T T
[ (k+2) (k1) (k)

Fig. 10. Method of tangents

from which

~

2D — (k) Q(I(k)
g(a®))

The method of tangents may fail wh%@% is not small enough, so any initial knowledge
about the solution of(z) = 0 is necessary.

A version of Newton method when derivative ffz) cannot be explicitly found uses the
approximation:

RGN f@®) +6) — fa™ —4)
f(@) = 55 ,

[ECIES f(z®) 4 8) — zf(;(k)) + f@® —5) |

with a small numbeé > 0 (quasi-Newton method).

8. FIRST-ORDER METHOD (SECANT METHOD)

In the Newton method, the knowledge about derivativg of used

(k)
L) _ ) FE)

fa®)

When the second derivative g@fis unavailable, it can be approximated as

fa®) - fla*)

x(k) — gp(k—1)

Having substituted this approximation to the general Newtethod,

k k—1
2D — () _ a )—?( : F@®y,

f@®) = fat=1)
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one obtains secant method. It is necessary now to krl8handz(—1 to start the algorithm
that can be summarized as:
L) _ f'(x(k))x(kfl) _ f'(x(k—l))x(k) |

fa®)) = fat-1)
Similarly to the Newton method, the value pfs not computed directly, but rather its deriva-
tive is driven to zero, and the method can be used to solvegtii@tiong(x) = 0 with a basic
step

x(k) — x(k_l)
9@ — glatm) %!

L) () 20

or
(k+1) _ g(x(k))x(k_l) _g(x(k_l))x(k)
g(a®) — g(z+=1)

The idea of secant method is presented in Figure 11 — as iteardn, the secant from
(k — 1)th iteration tokth iteration is drawn to compuié + 1)th iteration.

g(x)

T

"
— ¥ p(k+2) L(k+1)  p(k)  L(k=1)

Fig. 11. Secant method

9. COMPARISON OF A SINGLE VARIABLE ALGORITHMS

A general comparison of the presented algorithms is diffi@and its effectiveness de-
pends on:

e number of extremum points gf

if the function is not unimodal, the computed local minimuraymot in general be
global thus multiple tests are needed to find the global mir@nchanging the initial
points; in the case of zero-order algorithms, the lengthtaedocation of the initial
range must be varied; such a methodology should lead toribgaihe approximate
solution for a function with multiple minima or a single eastnum point, allowing one
to choose the global minimum;
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o first and second derivative norms;
e rounding errors.

In order to choose the appropriate algorithm for finding thieimizer we choose:

e Newton method, if explicit formulas to the function and ieridatives are available,
e Fibonacci method, if derivatives are unavailable, but thail set is known|,
e quasi-Newton method, if derivatives, as well as initial| se¢ unavailable.

10. OPTIMAL CONTROL EXAMPLE

Find the controller that minimizeg = (r; — y;)? for the planty, = 1.8y; 1 —0.9y; 2+
u; +0.5u; 1 using quasi-Newton method in the unconstrained case, sdthard constraints
imposed on the control signal with zero initial conditions.

The performance inde¥; is nonnegative, thus its minimal value, i.e.
zero, refers to the perfect tracking case. Using the forrfaulthe tracking error

€t = Tt — 1.8yt,1 + O.Qyt,Q — Ut — O.5Ut,1 =
= (re = 1.8y;—1 + 0.9y 2 — 0.5us 1) — us = pr — uy

a one-step performance index takes the form
J = €] = (pr —we)? = uf = 2pu; + @7

i.e. the form of a quadratic function.
Introduction of soft constraints can be performed by asagntiie performance index
takes the form

Jp = €2 4+ quu? = (1 4+ qu)u? — 2ppus + @2,

where the control cost coefficieqt > 0 refers to the impact of; on the increase of the per-
formance index at each step. Itis to be stressed that theadéeonm ofJ; is also nonnegative,
thus the control action is penalized for eagh# 0.

Hard constraints can be implemented by transformation ogethet the constrainta <
us < a (a > 0) be given. It holds that for; = asin(z;) the performance index can be
transformed to (a function af,)

Ji = ef =a? sin2(:vt) — 2apy sin(zy) + gof = f(=z).

Having assumed that at each time instaht= arg min J; results from the optimization
procedure withe = 10712, § = 1073, the tracking properties are presented in the Figure 12.

11. EFFICIENCY OF ITERATIVE MINIMIZATION METHODS OF FUNCTIONS
OF SINGLE VARIABLE — A COMPARISON

11.1. ZERO-ORDER METHODS

The criterion related to the execution speed of the algariththe numbe#V if iterations
that it takes to find the approximate minimizer with the gitelerancee. In the case of
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Fig. 12. a) unconstrained case, b) soft constraigis=£ 0.2), ¢) hard constraints with the cut-off at
level 0.8

zero-order methods, the formuM(e) is a direct result of inference concerning the reduction
factor at each iteration.

For the four previously considered methods, presented ¢tid®e6, the comparison re-
sults are presented in the Figure 13 where the given tolersngresented on the axis in
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10"
C — Equal division ]
—— Dichotomy, delta=0.0001H
— Dichotomy, delta=0.001 |
—— Dichotomy, delta=0.01
—— Golden search
Fibonacci

10

Fig. 13. Iteration number vs. tolerance or zero-order nagho

range froml0~* to 10° in log scale. The axis represents the numh¥rof iterations, also in
log scale. There are three different plotsfoe 1074, § = 103, ands = 102 respectively
and dichotomy method. One can verify from this Figure whicttimod for the given toler-
ancee requires the fewest number of iterations to obtain the apprate solution. The most
effective method is the dichotomy method, the second orteeigibonacci method, later the
golden-search method, and finally, the equal division natho

11.2. ARST-ORDER METHODS
11.2.1. RELIMINARIES

In gradient methods, the iterative process stops when pistpriterion is satisfied. On
the contrary to zero- order methods, the number of iteratrequired to solve the problem
does not depend ononly, but also on the shape of the minimized functiti). In order
to check the efficiency of first-order methods, the impact of the iteration number taking
aggregated stoping criterion into account, nam®lfe;, e3) for each of the four methods
from the Section 8 and

|I(k+1) _ I(k)|

IV £ ()]

<eér-
<€2.

The minimized function is a polynomial, i.e. a continuousdtion. The impact of steps in
the plot of the minimized function (discontinuity pointadalso been verified with record-
ing the number of iterations. For this purpose, it has beatldd what is the change in

© Poznaskie Towarzystwo Przyjaciét Nauk 2018ai t . ci e. put . poznan. pl



a)

24 Dariusz Horla

N(e1, €2) when the minimized function is continuous, has discontinpoints and includes
step changes. It has also been verified what is the impaceatdbfficient of the greatest
power of the polynomial on the iteration number.

11.2.2. NUMBER OF ITERATIONS FOR CONTINUOUS FUNCTION

The functionN (1, €2) has been computed for four different gradient methods, thith
objective function

1
flx)=—-2®+62°+3x—1.

6
The plot of the function has been presented in Figure 14anihgmizers arec* = —0.2527
andz* = —1.3776. Two row vectors of 100 linearly spaced points betwéén* and10°

have been generated, ig.andeo, and for each of the pairg;, e2) each method has been
run for a hundred initial points linearly spaced in the rahg#0, 10]. The value ofV (¢, €3)
is a mean value value computed from one hundred runs of tloeiddm.

f(z) b) f(z) <) f(@)

ANPANY)

Fig. 14. Objective function: a) continuous, b) with a distbonity point, c) with a step change

In the case of secant method, two initial points are requitteas for this case the point
(=1 is chosen as above, and for each choicelof), the pointz(? lies in the middle of the
range between(~1 andz*. In the case of quasi-Newton method, the valuediof;, e;)
have been computed fér= 10~* and§ = 10~ with results presented as mean numbers.

The results of the performed tests are presented in Figlre$8L In the case of quasi-
Newton method, the results for both valuesiare almost equal, what is why one can draw
the conclusion, that this parameter has a minor impact ondingber of iterations reached.
In Table 1 a mean number of iterations has been presenteduppéirs of(eq, €3).

Tab. 1. Mean number of iterations for different pair&e, 1)

e1 | &2 ||secantNewton|q.-Newtorjtangents
10~%[10~%|] 3.83 | 4.52 3.52 3.77
10~4{1071|| 3.14 | 3.95 2.92 3.77
1071|107%|| 3.83 | 4.52 3.52 3.52
10~1{10~1|| 1.59 | 2.88 1.88 2.35

Based on the performed tests, it can be seen that for nat stivjgping criteria a secant
method is mostly effective, and the least effective the Mewhethod is. From the Table 1 it
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Fig. 15. Mean number of iteration§ for secant method
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Fig. 16. Mean number of iteratior’g for Newton method
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Fig. 17. Mean number of iteration¥ for quasi-Newton method
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Fig. 18. Mean number of iteration§ for method of tangents
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can also be seen in the case of Newton method, quasi-Newtinochend and secant method,
there is smaller sensitivity WV to ¢, than toe,. For the method of tangents, numhbéris
more sensitive te,, than toe;.

11.3. GONTINUITY IMPACT ON THE NUMBER OF ITERATIONS

Similar test, respecting the impact of continuity, poirftdiscontinuity and steps in objec-
tive function have been carried out as in the previous Sec#ofunction with discontinuity
has a form

F@) = %x3—|—6x2—|—3x—1 forxz <0
TV= e + 2 —1.9016 forz >0 "

with the plot presented in Figure 14b, and for function witkps

@) = 28462 +3z—1 forz <0
T let+x forz >0

the plot has been presented in Figure 14c.

Below, the plots ofN(e1,e2) have been presented in the Figures 19-24. In Table 2,
number of iterations for selected points are presented ismodtinuous function. Table 3
presents the functio®V for e; = 0.0001, e = 0.0001 and continuous and discontinuous
function. From Table 3 it results that secant method is masficient for discontinuous
function, enabling one to get the solution with the least hanof iterations. From Table
3 it can be seen that the proposed discontinuity point casesesre increase in number of
iterations. This is, however, with no major change in thepshaf the surface describing
N(eq, e2) function.

Tab. 2. Mean number of iteration for different stoppingemih and discontinuous function

e1 | ez | secantq.-Newtorjtangents
10~%[10~*{| 6.60 7.41 7.68
10~4{107Y| 5.97 6.84 7.68
10~110~%|| 6.60 7.41 7.41
10-1|10~1|| 3.35 5.83 6.30

Tab. 3. Continuity/discontinuity impact on the mean numtiféterations

function/methog¢lsecantq.-Newtorjtangents
continuous || 3.83 3.52 3.77
discontinuous|| 6.60 7.41 7.68
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Fig. 19. Mean number of iteratior$ for secant method and discontinuous function
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Fig. 20. Mean number of iteration$ for method of tangents and discontinuous function
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Fig. 21. Mean number of iteration¥ for quasi-Newton method and discontinuous function
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Fig. 22. Mean number of iteratior§ for secant method and function with a step change
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Fig. 23. Mean number of iteratior$ for method of tangents and function with a step change
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Fig. 24. Mean number of iteration$ for quasi-Newton method and function with a step change
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11.4. IMPACT OF STEEPNESS OF FUNCTION ON NUMBER OF ITERATIONS

In the current test, the impact of coefficient at the largestgr of the decision variable
in the polynomial defining objective function

f(z) = az® + 62% + 3z — 1

has been changed. For 20 linearly spaced valuesfadm the rangg0.01, 0.15] and con-
stant stopping criteria, namely = 0.0001, e2 = 0.0001 a number of iterations has been
given allowing to obtain approximate solution to the mirdation problem with the selected
accuracy for each of the four methods.

This function has been presented in Figure 14c, numerisaltsehave been presented
in Table 4, and in the graphic form in Figure 25. As it can bensélee functionN (a) is
approximately linear, the linear regression coefficients+ b computed and presented in
the Table 5. The results indicate that the greater the caffie is, the greater the iteration
number becomes. Since the directional coefficient for tlesgmted methods are similar, one
can say that for each of them, the impacta$ similar.

Tab. 4. Mean number of iterations vs.

a/method|secantNewton g.-Newtontangents
0.0100 || 2.57 | 3.09 2.09 2.51
0.0174 || 2.70 | 3.39 2.39 2.68
0.0248 || 2.76 | 3.54 2.54 2.76
0.0321 || 2.80 | 3.62 2.62 2.80
0.0395 || 2.87 | 3.67 2.67 2.83
0.0468 || 3.02 | 3.71 2.71 2.85
0.0542 || 3.11 | 3.74 2.74 2.91
0.0616 || 3.20 | 3.77 2.77 2.98
0.0689 || 3.26 | 3.82 2.82 3.08
0.0763 || 3.33 | 3.87 2.87 3.16
0.0837 || 3.37 | 3.92 2.92 3.21
0.0911 || 3.41 | 3.96 2.96 3.28
0.0984 || 3.45 | 4.01 3.01 3.32
0.1058 || 3.50 | 4.07 3.07 3.36
0.1132 || 3.54 | 4.12 3.12 3.40
0.1206 || 3.59 | 4.16 3.16 3.48
0.1279 || 3.64 | 4.22 3.22 3.52
0.1353 || 3.68 | 4.29 3.29 3.56
0.1426 || 3.71 | 4.33 3.33 3.62
0.1500 || 3.76 | 4.38 3.38 3.65

12. SUMMARY

Based on the performed tests it can be seen that for the dpmatexsolutions obtained
with low accuracy (tolerances 0.5) and combined stopping criteria, and in the case of
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Fig. 25. A comparison of effectiveness of selected funation

Tab. 5. Linear regression coefficients

coeff,|| secan{q.-Newtor)Newton/tangents
a ||8.3231| 7.4080 |7.4080 | 7.8163
b 1/2.5976] 3.2913 |2.2913| 2.5226

continuous function, the performance of approx. 1.5 iterat per solution is achieved with
secant method, 2.3 for method of tangents and, similar8/,05.Newton methods. In the
case of discontinuous function, as well as for the functié@h atep change, 3.3 iterations per
solution for secant method, 5.8 for quasi-Newton method@8dor method of tangents.

When high accuracy is taken into consideration, as in TatdadbFigure 25, the worst
is, surprisingly, Newton method (with improving perforntarfora — 0 — quadratic con-
vergence and one-iteration solution for quadrglicsecondly, secant method, furthermore,
method o tangents, and, finally, quasi-Newton method.

As far as Newton method is concerned, the low performancebeajue to increase of
the coefficient at the greatest poweragfasaz® increases for large values of initial points
more rapidly thar6z2, and the minimizers in the sequence of quadratic approiomsbf
this function require more steps to converge to the truemini.

The results of this paper should aid the researchers in aigpt®e right method of opti-
mization based not only on the information about the shapdjafctive function, but also on
the graphical presentation of the interplay between stapgpiiteria.
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ABSTRACT

The paper considers performance issues of a class of vemthimization methods of unconstrained
single variable problems. Problem structures that assyer®r performance of a specific method
have been stipulated with appropriate conclusions drawn.

OCENA SZYBKOSCI DZIALANIA ITERACYJINYCH METOD MINIMALIZACJI FUNKCJI
JEDNEJ ZMIENNEJ BEZ OGRANICZHN

Dariusz Horla

W artykule poruszono zagadnienie szybkiodziatania metod minimalizacji funkcji jednej zmiennej
dla zada programowania nieliniowego bez ogranigzeNskazano przypadki, dla ktérych konkretna
metoda dziata szybciej npozostate oraz wyciagnieto wnioski odmée takiego stanu rzeczy.
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