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1. INTRODUCTION

Linear programming problems can be solved with high precision using reliable and fast
IPM (interior-point methods) algorithms. There are optimization tasks, however, that do not
meet linearity requirement, dominating in real-life. If the decision variables are numbers
of unknown values and objective function is nonlinear, the problem falls in the category of
unconstrained nonlinear programming.

The methods presented below concentrate on minimizing objective function which is not
to stringent requirement, since all results can be obtainedfor maximization problem as well.
Among general nonlinear programming problems one can identify dedicated and effective
methods or special structures of the tasks.

There is a variety of approaches to solving nonlinear programs, thus there is no method to
solve the problems in general. As in the case of unconstrained minimization problems, one
can divide the methods available to classes, such as zero-, first- and second-order algorithms.

In some methods, necessary and sufficient optimality conditions are used, leading to ob-
taining the algorithms described in this paper.

The paper concentrates on presenting three classes of algorithms with information con-
cerning efficiency of the algorithms given, defined as mean number of iterations necessary to
reach the minimizer with a prescribed tolerance. The conclusions can be helpful in selecting
the algorithm dedicated to the problem to be solved.

2. BASIC STEPS IN NUMERICAL METHODS TO SOLVE UNCONSTRAINED

NONLINEAR PROGRAMS

Analytical methods based on solving necessary and sufficient conditions for nonlinear
programs have limited applicability in practice. The possible reasons for the latter, and sub-
sequently, possible reasons to resort to iterative methodsare the cases when constraint or
objective functions:

• are of complicated form, what may result in difficulties withsolving the problems
analytically,

• are not explicit functions of the decision variables,
• do not satisfy differentiability conditions or are discontinuous.
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8 Dariusz Horla

Numerical methods of solving optimization problems lead toiterative approaches, where
an approximate solution is sought in consecutive steps, with improved solutions expected to
be better than the current ones (objective function should decrease).

In the case ofx ∈ Rn, one can formulate a general algorithm for such methods:

• for initial guessx(0) putk = 0,

• find the directiond(k) in which objective function value is improved,

• choose the step lengthαk from the pointx(k) in the directiond(k) to the pointx(k+1),
i.e. an improved solution to the problem,

• compute the improved solutionx(k+1) = x(k) + αkd(k) to the given problem,

• check stopping criterion, what should answer if the improved solution is satisfactory
and whether it should be amended or not; if yes, putk := k + 1 and start the algorithm
over.

3. STOPPING CRITERIA

And important question in numerical algorithms is if the improved solution is satisfactory,
i.e. it is viable to set the stopping criterion to the algorithm. It is only in the limited number
of cases that the solution to the optimization problem can befound in a limited number of
steps. One has to choose the rules to verify if the approximated solution is acceptable.

Sample stopping criteria for arbitrarily chosen thresholdlevels include:

• theoretical criteria

|f(x(k)) − f(x∗)| < ε1, ‖x(k) − x∗‖ < ε2 ,

• approximate stationary solution to the problem

‖∇f(x(k))‖ < ε

• practical criteria

|x(k+1)
i − x

(k)
i | 6 εi or ‖x(k+1) − x(k)‖ 6 ε

or
|f(x(k+1)) − f(x(k))| < ε1 .

4. CHARACTERISTICS OF THE NUMERICAL ALGORITHM

When using numerical algorithms one has to take the following features under consider-
ation:

• convergence

algorithm is convergent if there exists the limit to the sequence of approximate solu-
tions obtained from its consecutive steps,
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• initial solution

effectiveness of the algorithm depends on the choice of initial solution, as, e.g., algo-
rithm may stuck in a local minimum of a multimodal function and in such a case it
should be started many times from different initial points to find the global minimum,

• stopping criterion

in order to stop the iterative algorithm, one should check ifthe improved approximate
solution changes from one iteration to another, as the speedof the algorithm, i.e. time
that it takes to execute it, is an another factor, apart from the accuracy of the obtained
solution.

5. CLASSIFICATION OF ITERATIVE ALGORITHMS OF SINGLE VARIABLE

The feature that allows one to differ the algorithms is the order of derivatives used by
them, and as such we have:

• zero-order algorithms

used to compute function values at specific points only, especially when objective func-
tion has complicated form or cannot be explicitly given,

• gradient algorithms (first-order)

used when gradient of the objective function is available,
• second-order algorithms

used when information about second derivatives are available.

6. ZERO-ORDER METHODS

6.1. HOW TO SEARCH FOR THE MINIMIZER OF THE UNIMODAL FUNCTION?

The zero-order algorithms are used to seek for the minimum ofthe functionf : R → R

in the interval
[

x(0−), x(0+)
]

with x(0+) > x(0−). The only property that objective function

f must posses is unimodularity, i.e. it should have a single minimum in the given set. The
examples of unimodal functions are shown in Figure 1.

x

f(x)

x

f(x)

x

f(x)

Fig. 1. Unimodal functions

The methods to be presented are based on computing values of the objective function in

various points of the set
[

x(0−), x(0+)
]

in such a way to enable one to stipulate the minimizer
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10 Dariusz Horla

of f in the smaller number of steps with successive reduction of the interval in which it is
included in.

Let a unimodal function be given in the uncertainty range
[

x(0−), x(0+)
]

. If the value of

f is computed at a single point only, there is no way to answer how to reduce its length to
find the minimizer off . The value off should therefore be computed in two intermediate
points, with symmetrical reduction, respecting the condition

x(1−) − x(0−) = x(1+) − x(0+) = ρ(x(0+) − x(0−)) ,

whereρ < 1
2 , as shown in Figure 2.

x(0−) x(0+)x(1−) x(1+)

x(1+)
− x(0+)x(1−)

− x(0−)

x

Fig. 2. Value of the objective function at two intermediate points

Having computed the values off at intermediate points, the minimizer is in the in-

terval
[

x(0−), x(1+)
]

when it holds thatf(x(1−)) < f(x(1+)), and for the opposite case,

i.e.f(x(1−)) > f(x(1+)), it is in the range
[

x(1−), x(0+)
]

, as it is shown in the Figure 3.

x

f(x)

x(0−) x(0+)x(1−) x(1+)

f(x(1−))

f(x(1+))

x∗

Fig. 3. The case off(x(1−)) < f(x(1+)), with the minimizerx∗
∈

[

x(0−), x(1+)
]

The next iteration should be started from the reduced interval, and the procedure is re-
peated all over again by stipulating two new points, i.e.x(2−), x(2+) and comparing objective
function values. From this point of view, the zero-order methods are obviously called branch
and bound methods. Furthermore, the functionf does not have to be neither differentiable,

nor continuous in
[

x(0−), x(0+)
]

.

To summarize, for an initial setx ∈ D(0) =
[

x(0−), x(0+)
]

a general branch and bound

algorithms is as follows:

• compute a minimal numberN of iterations so that the difference between exactx∗

and approximate solutionŝx∗ (assumed to lie in the center ofD(N)) does not exceed a
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given toleranceε, i.e.
|x∗ − x̂∗| 6 ε(x(0+) − x(0−)) ,

• for k = 1, . . . , N :

– set two new intermediate pointsx̂(k−), x̂(k+) (x̂(k−) < x̂(k+),
{

x̂(k−), x̂(k+)
}

∈
D(k−1)) in the intervalD(k−1),

– compute the next uncertainty rangeD(k) with the previously proposed points:

a) if it holds thatf(x̂(k−)) < f(x̂(k+)), setx(k+1) ∈ D(k) =
[

x(k−1−), x̂(k+)
]

,

b) otherwise, iff(x̂(k−)) > f(x̂(k+)), thenx(k+1) ∈ D(k) =
[

x̂(k−), x(k−1+)
]

,

– putk := k + 1,

• assume that̂x∗ = 1
2 (x(N+)+x(N−)) is the approximate solutions to the given problem.

6.2. EQUAL DIVISION METHOD

If the rangeD(0) is divided into smaller and equal parts withN interior points of interme-
diate distanceε(x(0+)−x(0−)), whereε is the preferred tolerance of the approximate solution,
the minimal number of iterations satisfiesN > 1

ε
− 1 with:

x̂(k−) = x(k−1−) + ε(x(0+) − x(0−)) ,

x̂(k+) = x(k−1+) − ε(x(0+) − x(0−)) ,

where1
ε

should be a natural number, as shown in Figure 4.

x

f(x)

x(0−) x(0+)

Fig. 4. Division of the initial set with tolerance of 10% (N = 9)

6.3. GOLDEN-SEARCH METHOD

Let for the given uncertainty intervalD(0) it hold thatf(x(0−)) < f(x(0+)). It is evident
that in such a casex∗ ∈ D(1) = [x(0−), x(1+)]. Sincex(1−) is in the new rangeD(1), and the
valuef(x(1−)) is known (computed in the previous iteration), it is important to choosex(1−)

c© Poznánskie Towarzystwo Przyjaciół Nauk 2013,sait.cie.put.poznan.pl



12 Dariusz Horla

x(0−) x(0+)x(1−) =x(2+)x(2−) x(1+)

x(0+)
− x(0−) = 1

1 − ρ

ρ 1 − 2ρ ρ

x

Fig. 5. How to chooseρ in order to compute value off at a single intermediate point only

to lie atx(2+). In such a case, only a single intermediate value of the function f should be
computed atx(2−).

In order to chooseρ that should satisfy the latter property, one should examineFigure 5.
We can assume that an initial set has a unit length, and in sucha caseρ should be chosen

to satisty

ρ
(

x(1+) − x(0−)
)

=
(

x(1+) − x(2+)
)

.

Since it holds hatx(1+) − x(0−) = 1 − ρ andx(1+) − x(2+) = 1 − 2ρ, thus

ρ(1 − ρ) = 1 − 2ρ ,

and finally,

ρ2 − 3ρ + 1 = 0 .

The solutions to this quadratic equations are:

ρ1 =
3 +

√
5

2
, ρ2 =

3 −
√

5

2

and since it should hold thatρ < 1
2 , obviously we haveρ = 3−

√
5

2
∼= 0.382.

On this basis, we have a golden division of the line segment:

1 − ρ =

√
5 − 1

2
∼= 0.618 ,

ρ

1 − ρ
=

1 − ρ

1
.

The length of the range is reduced by the factor of1 − ρ at each iteration, so afterN
iterations the initial uncertainty interval is reduced by factor (1 − ρ)N , and the minimal
number of iterations satisfies(1 − ρ)N 6 ε. The step of the algorithm can be described as:

x̂(k−) = x(k−1−) + ρ(x(k−1+) − x(k−1−)) ,

x̂(k+) = x(k−1−) + (1 − ρ)(x(k−1+) − x(k−1−)) .
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6.4. GOLDEN-SEARCH METHOD(EXAMPLE)

Find the minimizer off(x) = 2x5 + 3x4 − 0.5x3 + x2 − 10x in the range[0, 2] with
toleranceε = 0.2.

Minimal number of iterationsN = 4 satisfies(1 − ρ)4 = 0.61804 = 0.1459 6 0.2, and
the initial interval isD(0) = [0, 2].
Iteration I

x̂(1−) = 0 +
3 −

√
5

2
(2 − 0) = 0.7639 ,

x̂(1+) = 0 +

(

1 − 3 −
√

5

2

)

(2 − 0) = 1.2361 ,

f(x̂(1−)) = 2 · 0.76395 + 3 · 0.76394 − 0.5 · 0.76393 + 0.76392 − 10 · 0.7639 = −5.7365 ,

f(x̂(1+)) = 2 · 1.23615 + 3 · 1.23614 − 0.5 · 1.23613 + 1.23612 − 10 · 1.2361 = 0.9981 ,

f(x̂(1−)) < f(x̂(1+)), thusD(1) = [0, 1.2361], |1.2361− 0| = 1.2361 > |2 − 0|ε = 0.4.

Iteration II

x̂(2−) = 0 +
3 −

√
5

2
(1.2361− 0) = 0.4721 ,

x̂(2+) = 0 +

(

1 − 3 −
√

5

2

)

(1.2361 − 0) = 0.7640 ,

f(x̂(2−)) = −4.3548 ,

f(x̂(2+)) = −5.7366 ,

f(x̂(2−)) > f(x̂(2+)), thusD(2) = [0.4721, 1.2361], |1.2361− 0.4721| = 0.7640 > 0.4.

Iteration III

x̂(3−) = 0.4721 +
3 −

√
5

2
(1.2361− 0.4721) = 0.7639 ,

x̂(3+) = 0.4721 +

(

1 − 3 −
√

5

2

)

(1.2361 − 0.4721) = 0.9443 ,

f(x̂(3−)) = −5.7365 ,

f(x̂(3+)) = −5.0852 ,

f(x̂(3−)) < f(x̂(3+)), thusD(3) = [0.4721, 0.9443], |0.9443− 0.4721| = 0.4722 > 0.4.

Iteration IV

x̂(4−) = 0.4721 +
3 −

√
5

2
(0.9443− 0.4721) = 0.6525 ,

x̂(4+) = 0.4721 +

(

1 − 3 −
√

5

2

)

(0.9443 − 0.4721) = 0.7639 ,
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f(x̂(4−)) = −5.4578 ,

f(x̂(4+)) = −5.7365 ,

f(x̂(4−)) > f(x̂(4+)), thusD(4) =[0.6525, 0.9443], |0.9443−0.6525|=0.2918<0.4.

The stopping criterion is satisfied, and the approximate solution is x̂∗ = 0.6525+0.9443
2 =

0.7984, f(x̂∗) = −5.7332 (an exact solution to the problem isx∗ = 0.7789, f(x∗) =
−5.7410).

6.5. DICHOTOMY METHOD

In this case, the two intermediate points are chosen symmetrically in the proximity of the
middle of the current interval. The minimal number of iterations satisfies1

2N +δ
(

1 − 1
2N

)

6

ε, where0 < δ � 1 is a small number defining the placement of intermediate points:

x̂(k−) = x(k−1−) +
1 − δ

2
(x(k−1+) − x(k−1−)) ,

x̂(k+) = x(k−1−) +
1 + δ

2
(x(k−1+) − x(k−1−))

as close as possible to the center of the current rangeD(k), as in the Figure 6.

x

f(x)

x
(k−1+)−x

(k−1−)

2

x(k−1−) x(k−1+)x(k−) x(k+)

Fig. 6. Dichotomy method

6.6. FIBONACCI METHOD

In a golden-search method the reduction factor is constant,asρ does not vary among
all iterations. Let us assume that it can be changed with run of the algorithm so that atkth
iteration the valueρk is used, andρk+1 in the next iteration. Similarly to the golden-search
method, the factor0 < ρk 6 1

2 is chosen to compute the value of the objective function at a
single point only at each iteration.

According to the Figure 7, the reduction factorρk is sought such that

ρk+1(1 − ρk) = 1 − 2ρk ,
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with
ρk+1 = 1 − ρk

1 − ρk

.

There are many choices ofρ1, ρ2, . . . that satisfy the above requirement and the inequality
0 < ρk 6

1
2 , e.g.ρ1 = ρ2 = . . . = 3−

√
5

2 (golden-search method).
We can assume that the rule of choosing the reduction factorsexists, and afterN iterations

the initial range reduces by

(1 − ρ1)(1 − ρ2) · · · (1 − ρN ).

The appropriate choice of reduction rates results from solving the nonlinear programming
problem

min
ρ1, ρ2, ..., ρN

(1 − ρ1)(1 − ρ2) · · · (1 − ρN )

s.t. ρk+1 = 1 − ρk

1 − ρk

, k = 1, 2, . . . , N − 1 ,

0 < ρk 6
1

2
, k = 1, 2, . . . , N − 1 ,

that is:

ρ1 =
FN−1

FN+1
,

ρ2 =
FN−2

FN

,

...

ρk =
FN−k

FN−k+2
,

...

ρN =
F0

F2
=

1

2
,

x(k−1−) x(k−1+)x(k−) x(k+)

x(k−1+)
− x(k−1−) = 1

1 − ρk

ρk 1 − 2ρk
ρk

x

kth iteration

k + 1-th iteration

x(k−) x(k+)x(k+1+)x(k+1−)

x
ρk+1(1 − ρk)

Fig. 7. The method of choosing intermediate points
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where the numbers:

F0 = 1 ,

F1 = 1 ,

F2 = 2 ,

F3 = 3 ,

F4 = 5 ,

F5 = 8 ,

F6 = 13 ,

F7 = 21 ,

...

form Fibonacci sequence, withFk = Fk−1 + Fk−2.
At the N th iteration, it holds thatρN = 1

2 , thus the reduction factor is modified to be
ρN = F0

F2
− δ = 1

2 − δ, with 0 < δ � 1 to assure that the both proposed points are close to
the middle to the last uncertainty interval.

Minimal number of iterations satisfiesFN+1 >
1
ε
, and intermediate points are chosen

according to the formulas:

x̂(k−) = x(k−1−) + ρk(x(k−1+) − x(k−1−)) ,

x̂(k+) = x(k−1−) + (1 − ρk)(x(k−1+) − x(k−1−)) ,

with ρk =
FN−k

FN−k+2
.

7. SECOND-ORDER METHOD (NEWTON METHOD)

7.1. BASIC STEP

Let us go back to the assumption that the minimizer off with respect tox ∈ R is sought.
In addition let it be possible to computef(x(k)), ḟ(x(k)) andf̈(x(k)) at each pointx(k).

One can fit a quadratic functionq(x) at eachx(k), which first and second derivatives at
x(k) are equal toḟ(x(k)) andf̈(x(k)), respectively. Such a quadratic approximation has the
form

q(x) = f(x(k)) + ḟ(x(k))(x − x(k)) +
1

2
f̈(x(k))(x − x(k))2 ,

whereq(x(k)) = f(x(k)), q̇(x(k)) = ḟ(x(k)), q̈(x(k)) = f̈(x(k)), according to the Figure 8.
Now, instead of minimizingf , one can find the minimizer of its approximationq, and on

the basis of first-order necessary condition obtaining

q̇(x(k)) = ḟ(x(k)) + f̈(x(k))(x − x(k)) = 0 .

Having substitutedx = x(k+1), we have

x(k+1) = x(k) − ḟ(x(k))

f̈(x(k))
.
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x

f(x), q(x)

x(k) x(k+1)

f(x)

q(x)

Fig. 8. Newton method for̈f(x(k)) > 0

Since the approximationq is quadratic, the sufficient condition for the existence of its mini-
mum isf̈(x(k)) > 0.

At each iteration we have to assume thatf̈(x(k)) > 0. In the opposite case, i.e.̈f(x(k)) <

0, the algorithm may stop avoiding the minimizer off , as presented in Figure 9.

x

f(x), q(x)

x(k)x(k+1) x∗

f(x)q(x)

Fig. 9. Newton algorithm for̈f(x(k)) < 0

7.2. EXAMPLE OF A NEWTON METHOD RUN

Find the minimizer off(x) = x3 + 10x2 + 20x + e−x with absolute toleranceε = 0.01
andx(0) = 1.

Derivatives off(x) have the forms:

ḟ(x) = 3x2 + 20x + 20 − e−x ,

f̈(x) = 6x + 20 + e−x ,
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and approximate solutions at consecutive iterations:

k = 0

ḟ(1) = 42.6321 ,

f̈(1) = 26.3679 ,

x(1) = 1 − 42.6321

26.3679
= −0.6168 ,

| − 0.6168− 1| = 1.6168 > ε = 0.01 ;

k = 1

ḟ(−0.6168) = 6.9523 ,

f̈(−0.6168) = 18.1522 ,

x(2) = −0.6168− 6.9523

18.1522
= −0.9998 ,

| − 0.9998 + 0.6168| = 0.3830 > 0.01 ;

k = 2

ḟ(−0.9998) = 0.2851 ,

f̈(−0.9998) = 16.7189 ,

x(3) = −0.9998− 0.2851

16.7189
= −1.0169 ,

| − 1.0169 + 0.9998| = 0.0171 > 0.01 ;

k = 3

ḟ(−1.0169) = −3.5434 · 10−4 ,

f̈(−1.0169) = 16.6632 ,

x(4) = −1.0169− −3.5434 · 10−4

16.6632
= −1.0169 ,

| − 1.0169 + 1.0169| ∼= 0 < 0.01 .

Since the stopping criterion, i.e.|x(4)−x(3)| ∼= 0 6 ε = 0.01, is satisfied thuŝx∗ = −1.0169
andf(x̂∗) = −8.2841.

The Newton method can be alternatively shown as a mean to finding the point at which the
first derivative off vanishes. If we assume thatg(x) = ḟ(x), the Newton method transforms
to the algorithm enabling one to solve equationsg(x) = 0 in the form

x(k+1) = x(k) − g(x(k))

ġ(x(k))
,

namely to the method of tangents. The name can be understood when examining Figure 10.
If the tangent line tog(x) atx(k) is drawn, it intersects thex axis at the pointx(k+1) that

should be closer tox∗ thanx(k). It also holds that

ġ(x(k)) =
g(x(k))

x(k) − x(k+1)
,
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x

g(x)

g(x(k))

g(x(k+1))

x(k)x(k+1)x(k+2)

x∗

Fig. 10. Method of tangents

from which

x(k+1) = x(k) − g(x(k))

ġ(x(k))
.

The method of tangents may fail wheng(x(0))
ġ(x(0))

is not small enough, so any initial knowledge

about the solution ofg(x) = 0 is necessary.
A version of Newton method when derivative off(x) cannot be explicitly found uses the

approximation:

ḟ(x(k)) ∼= f(x(k) + δ) − f(x(k) − δ)

2δ
,

f̈(x(k)) ∼= f(x(k) + δ) − 2f(x(k)) + f(x(k) − δ)

δ2
,

with a small numberδ > 0 (quasi-Newton method).

8. FIRST-ORDER METHOD (SECANT METHOD)

In the Newton method, the knowledge about derivative off is used

x(k+1) = x(k) − ḟ(x(k))

f̈(x(k))
.

When the second derivative off is unavailable, it can be approximated as

ḟ(x(k)) − ḟ(x(k−1))

x(k) − x(k−1)
.

Having substituted this approximation to the general Newton method,

x(k+1) = x(k) − x(k) − x(k−1)

ḟ(x(k)) − ḟ(x(k−1))
ḟ(x(k)) ,
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one obtains secant method. It is necessary now to knowx(0) andx(−1) to start the algorithm
that can be summarized as:

x(k+1) =
ḟ(x(k))x(k−1) − ḟ(x(k−1))x(k)

ḟ(x(k)) − ḟ(x(k−1))
.

Similarly to the Newton method, the value off is not computed directly, but rather its deriva-
tive is driven to zero, and the method can be used to solve the equationg(x) = 0 with a basic
step

x(k+1) = x(k) − x(k) − x(k−1)

g(x(k)) − g(x(k−1))
g(x(k))

or

x(k+1) =
g(x(k))x(k−1) − g(x(k−1))x(k)

g(x(k)) − g(x(k−1))
.

The idea of secant method is presented in Figure 11 – as it can be seen, the secant from
(k − 1)th iteration tokth iteration is drawn to compute(k + 1)th iteration.

x

g(x)

x(k−1)x(k)x(k+1)x(k+2)x∗

Fig. 11. Secant method

9. COMPARISON OF A SINGLE VARIABLE ALGORITHMS

A general comparison of the presented algorithms is difficult, and its effectiveness de-
pends on:

• number of extremum points off

if the function is not unimodal, the computed local minimum may not in general be
global thus multiple tests are needed to find the global minimizer changing the initial
points; in the case of zero-order algorithms, the length andthe location of the initial
range must be varied; such a methodology should lead to obtaining the approximate
solution for a function with multiple minima or a single extremum point, allowing one
to choose the global minimum;
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• first and second derivative norms;
• rounding errors.

In order to choose the appropriate algorithm for finding the minimizer we choose:

• Newton method, if explicit formulas to the function and its derivatives are available,
• Fibonacci method, if derivatives are unavailable, but the initial set is known|,
• quasi-Newton method, if derivatives, as well as initial set, are unavailable.

10. OPTIMAL CONTROL EXAMPLE

Find the controller that minimizesJt = (rt−yt)
2 for the plantyt = 1.8yt−1−0.9yt−2 +

ut +0.5ut−1 using quasi-Newton method in the unconstrained case, soft and hard constraints
imposed on the control signal with zero initial conditions.

The performance indexJt is nonnegative, thus its minimal value, i.e.
zero, refers to the perfect tracking case. Using the formulafor the tracking error

et = rt − 1.8yt−1 + 0.9yt−2 − ut − 0.5ut−1 =

= (rt − 1.8yt−1 + 0.9yt−2 − 0.5ut−1) − ut = ϕt − ut

a one-step performance index takes the form

Jt = e2
t = (ϕt − ut)

2 = u2
t − 2ϕtut + ϕ2

t ,

i.e. the form of a quadratic function.
Introduction of soft constraints can be performed by assuming the performance index

takes the form

Jt = e2
t + quu2

t = (1 + qu)u2
t − 2ϕtut + ϕ2

t ,

where the control cost coefficientqu > 0 refers to the impact ofut on the increase of the per-
formance index at each step. It is to be stressed that the second term ofJt is also nonnegative,
thus the control action is penalized for eachut 6= 0.

Hard constraints can be implemented by transformation method. Let the constraint−a 6

ut 6 a (a > 0) be given. It holds that forut = a sin(xt) the performance index can be
transformed to (a function ofxt)

Jt = e2
t = a2 sin2(xt) − 2aϕt sin(xt) + ϕ2

t = f(xt) .

Having assumed that at each time instantu∗
t = argmin Jt results from the optimization

procedure withε = 10−12, δ = 10−3, the tracking properties are presented in the Figure 12.

11. EFFICIENCY OF ITERATIVE MINIMIZATION METHODS OF FUNCTIONS

OF SINGLE VARIABLE – A COMPARISON

11.1. ZERO-ORDER METHODS

The criterion related to the execution speed of the algorithm is the numberN if iterations
that it takes to find the approximate minimizer with the giventoleranceε. In the case of
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Fig. 12. a) unconstrained case, b) soft constraints (qu = 0.2), c) hard constraints with the cut-off at
level±0.8

zero-order methods, the formulaN(ε) is a direct result of inference concerning the reduction
factor at each iteration.

For the four previously considered methods, presented in Section 6, the comparison re-
sults are presented in the Figure 13 where the given tolerance is presented on thex axis in
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Fig. 13. Iteration number vs. tolerance or zero-order methods

range from10−4 to 100 in log scale. They axis represents the numberN of iterations, also in
log scale. There are three different plots forδ = 10−4, δ = 10−3, andδ = 10−2 respectively
and dichotomy method. One can verify from this Figure which method for the given toler-
anceε requires the fewest number of iterations to obtain the approximate solution. The most
effective method is the dichotomy method, the second one is the Fibonacci method, later the
golden-search method, and finally, the equal division method.

11.2. FIRST-ORDER METHODS

11.2.1. PRELIMINARIES

In gradient methods, the iterative process stops when a stopping criterion is satisfied. On
the contrary to zero- order methods, the number of iterations required to solve the problem
does not depend onε only, but also on the shape of the minimized functionf(x). In order
to check the efficiency of first-order methods, the impact ofε on the iteration number taking
aggregated stoping criterion into account, namelyN(ε1, ε2) for each of the four methods
from the Section 8 and

|x(k+1) − x(k)| 6 ε1 .

‖∇f(x(k))‖ 6 ε2 .

The minimized function is a polynomial, i.e. a continuous function. The impact of steps in
the plot of the minimized function (discontinuity points) has also been verified with record-
ing the number of iterations. For this purpose, it has been checked what is the change in
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N(ε1, ε2) when the minimized function is continuous, has discontinuity points and includes
step changes. It has also been verified what is the impact of the coefficient of the greatest
power of the polynomial on the iteration number.

11.2.2. NUMBER OF ITERATIONS FOR CONTINUOUS FUNCTION

The functionN(ε1, ε2) has been computed for four different gradient methods, withthe
objective function

f(x) =
1

6
x3 + 6x2 + 3x − 1 .

The plot of the function has been presented in Figure 14a. Itsminimizers arex∗ = −0.2527
andx∗ = −1.3776. Two row vectors of 100 linearly spaced points between10−4 and100

have been generated, i.e.ε1 andε2, and for each of the pairs(ε1, ε2) each method has been
run for a hundred initial points linearly spaced in the range[−10, 10]. The value ofN(ε1, ε2)
is a mean value value computed from one hundred runs of the algorithm.

x

f(x)a)

x

f(x)b)

x

f(x)c)

Fig. 14. Objective function: a) continuous, b) with a discontinuity point, c) with a step change

In the case of secant method, two initial points are required, thus for this case the point
x(−1) is chosen as above, and for each choice ofx(−1), the pointx(0) lies in the middle of the
range betweenx(−1) andx∗. In the case of quasi-Newton method, the values ofN(ε1, ε2)
have been computed forδ = 10−4 andδ = 10−1 with results presented as mean numbers.

The results of the performed tests are presented in Figures 15–18. In the case of quasi-
Newton method, the results for both values ofδ are almost equal, what is why one can draw
the conclusion, that this parameter has a minor impact on thenumber of iterations reached.
In Table 1 a mean number of iterations has been presented for four pairs of(ε1, ε2).

Tab. 1. Mean number of iterations for different pairs o(ε1, ε1)

ε1 ε2 secantNewton q.-Newtontangents
10−4 10−4 3.83 4.52 3.52 3.77
10−4 10−1 3.14 3.95 2.92 3.77
10−1 10−4 3.83 4.52 3.52 3.52
10−1 10−1 1.59 2.88 1.88 2.35

Based on the performed tests, it can be seen that for not strict stopping criteria a secant
method is mostly effective, and the least effective the Newton method is. From the Table 1 it
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Fig. 15. Mean number of iterationsN for secant method

Fig. 16. Mean number of iterationsN for Newton method
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Fig. 17. Mean number of iterationsN for quasi-Newton method

Fig. 18. Mean number of iterationsN for method of tangents
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can also be seen in the case of Newton method, quasi-Newton method and and secant method,
there is smaller sensitivity ofN to ε1, than toε2. For the method of tangents, numberN is
more sensitive toε2, than toε1.

11.3. CONTINUITY IMPACT ON THE NUMBER OF ITERATIONS

Similar test, respecting the impact of continuity, points of discontinuity and steps in objec-
tive function have been carried out as in the previous Section. A function with discontinuity
has a form

f(x) =

{

1
6 x3 + 6x2 + 3x − 1 for x < 0
ex + x − 1.9016 for x > 0

,

with the plot presented in Figure 14b, and for function with step

f(x) =

{

1
6 x3 + 6x2 + 3x − 1 for x < 0
ex + x for x > 0

the plot has been presented in Figure 14c.
Below, the plots ofN(ε1, ε2) have been presented in the Figures 19–24. In Table 2,

number of iterations for selected points are presented for discontinuous function. Table 3
presents the functionN for ε1 = 0.0001, ε2 = 0.0001 and continuous and discontinuous
function. From Table 3 it results that secant method is mostly efficient for discontinuous
function, enabling one to get the solution with the least number of iterations. From Table
3 it can be seen that the proposed discontinuity point causessevere increase in number of
iterations. This is, however, with no major change in the shape of the surface describing
N(ε1, ε2) function.

Tab. 2. Mean number of iteration for different stopping criteria and discontinuous function

ε1 ε2 secantq.-Newtontangents
10−4 10−4 6.60 7.41 7.68
10−4 10−1 5.97 6.84 7.68
10−1 10−4 6.60 7.41 7.41
10−1 10−1 3.35 5.83 6.30

Tab. 3. Continuity/discontinuity impact on the mean numberof iterations

function/methodsecantq.-Newtontangents
continuous 3.83 3.52 3.77

discontinuous 6.60 7.41 7.68

c© Poznánskie Towarzystwo Przyjaciół Nauk 2013,sait.cie.put.poznan.pl



28 Dariusz Horla

Fig. 19. Mean number of iterationsN for secant method and discontinuous function

Fig. 20. Mean number of iterationsN for method of tangents and discontinuous function
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Fig. 21. Mean number of iterationsN for quasi-Newton method and discontinuous function

Fig. 22. Mean number of iterationsN for secant method and function with a step change
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Fig. 23. Mean number of iterationsN for method of tangents and function with a step change

Fig. 24. Mean number of iterationsN for quasi-Newton method and function with a step change
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11.4. IMPACT OF STEEPNESS OF FUNCTION ON NUMBER OF ITERATIONS

In the current test, the impact of coefficient at the largest power of the decision variable
in the polynomial defining objective function

f(x) = ax3 + 6x2 + 3x − 1

has been changed. For 20 linearly spaced values ofa from the range[0.01, 0.15] and con-
stant stopping criteria, namelyε1 = 0.0001, ε2 = 0.0001 a number of iterations has been
given allowing to obtain approximate solution to the minimization problem with the selected
accuracy for each of the four methods.

This function has been presented in Figure 14c, numerical results have been presented
in Table 4, and in the graphic form in Figure 25. As it can be seen, the functionN(a) is
approximately linear, the linear regression coefficientsan + b computed and presented in
the Table 5. The results indicate that the greater the coefficienta is, the greater the iteration
number becomes. Since the directional coefficient for the presented methods are similar, one
can say that for each of them, the impact ofa is similar.

Tab. 4. Mean number of iterations vs.a

a/method secantNewton q.-Newtontangents
0.0100 2.57 3.09 2.09 2.51
0.0174 2.70 3.39 2.39 2.68
0.0248 2.76 3.54 2.54 2.76
0.0321 2.80 3.62 2.62 2.80
0.0395 2.87 3.67 2.67 2.83
0.0468 3.02 3.71 2.71 2.85
0.0542 3.11 3.74 2.74 2.91
0.0616 3.20 3.77 2.77 2.98
0.0689 3.26 3.82 2.82 3.08
0.0763 3.33 3.87 2.87 3.16
0.0837 3.37 3.92 2.92 3.21
0.0911 3.41 3.96 2.96 3.28
0.0984 3.45 4.01 3.01 3.32
0.1058 3.50 4.07 3.07 3.36
0.1132 3.54 4.12 3.12 3.40
0.1206 3.59 4.16 3.16 3.48
0.1279 3.64 4.22 3.22 3.52
0.1353 3.68 4.29 3.29 3.56
0.1426 3.71 4.33 3.33 3.62
0.1500 3.76 4.38 3.38 3.65

12. SUMMARY

Based on the performed tests it can be seen that for the approximate solutions obtained
with low accuracy (tolerances> 0.5) and combined stopping criteria, and in the case of
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Fig. 25. A comparison of effectiveness of selected functions

Tab. 5. Linear regression coefficients

coeff. secantq.-NewtonNewton tangents
a 8.3231 7.4080 7.4080 7.8163
b 2.5976 3.2913 2.2913 2.5226

continuous function, the performance of approx. 1.5 iterations per solution is achieved with
secant method, 2.3 for method of tangents and, similarly, 5.8 or Newton methods. In the
case of discontinuous function, as well as for the function with step change, 3.3 iterations per
solution for secant method, 5.8 for quasi-Newton method and6.3 for method of tangents.

When high accuracy is taken into consideration, as in Table 5and Figure 25, the worst
is, surprisingly, Newton method (with improving performance fora → 0 – quadratic con-
vergence and one-iteration solution for quadraticf ), secondly, secant method, furthermore,
method o tangents, and, finally, quasi-Newton method.

As far as Newton method is concerned, the low performance maybe due to increase of
the coefficient at the greatest power ofx, asax3 increases for large values of initial points
more rapidly than6x2, and the minimizers in the sequence of quadratic approximations of
this function require more steps to converge to the true minimum.

The results of this paper should aid the researchers in choosing the right method of opti-
mization based not only on the information about the shape ofobjective function, but also on
the graphical presentation of the interplay between stopping criteria.
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ABSTRACT

The paper considers performance issues of a class of iterative minimization methods of unconstrained
single variable problems. Problem structures that assure superior performance of a specific method
have been stipulated with appropriate conclusions drawn.

OCENA SZYBKOŚCI DZIAŁANIA ITERACYJNYCH METOD MINIMALIZACJI FUNKCJI
JEDNEJ ZMIENNEJ BEZ OGRANICZÉN

Dariusz Horla

W artykule poruszono zagadnienie szybkości działania metod minimalizacji funkcji jednej zmiennej
dla zadán programowania nieliniowego bez ograniczeń. Wskazano przypadki, dla których konkretna
metoda działa szybciej niż pozostałe oraz wyciągnięto wnioski odnośnie takiego stanu rzeczy.
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