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1. INTRODUCTION

There is a vast number of decision-making problems that result in integer optimization
problems which is a great challenge because of its well-known exponential worst-case com-
putational complexity. In recent years, the main development in the field took place in binary
linear programming (LP).

The paper aims to evaluate the performance of selected binary and integer programming
algorithms dedicated to solving LPs [2,3,4,9]. The worst-case assumption concerning the
computational complexity should not be applied here, because of many improvements orig-
inating from observations of the characteristics of given optimization problems, resulting in
speeding up the algorithms.

The paper is composed of two parts, concerning binary, and, subsequently, integer LPs,
followed by the Section presenting the results. The latter can be used to select the most ap-
propriate algorithm for the encountered optimization problems, and does not result from pure
mathematical inference concerning the structure of the problem, but is based on generating
random problems and trying to solve them.

2. LINEAR PROGRAMMING IN INTEGER SETS

Linear programs have an optimal point in the convex polyhedron where decision variables
from the vectorx can have any values, as far as the solution is in the feasible setΦ. The only
case on the contrary to the former is the degenerate solution, where the setΦ contains a single
point only.

In many practical problems, however, it is desired that the optimal solution should be
contained in a discrete-set, i.e. thatx should have a limited number of possible values.

The discrete set usually includes specified elements, i.e. natural numbers. The linear
program of the following type:
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min
x

cT x

s.t. Ax = b ,

x > 0 ,

xi ∈ Z , i ⊂ I ⊆ N = {0, 1, 2, 3, . . .} ,

where some (I ⊂ N ) or all (I = N ) componentsxi of the vector of decision variablesx
are natural numbers, is called a discrete linear program.

A general division of linear programs in discrete sets is as follows:

• binary programming problems (0-1),

• integer programming problems.

3. BINARY PROGRAMS

3.1. INTRODUCTION

Apart from standard linear programming constraints, the decision variables may be re-
quired to take on values0 or 1 only, in binary programming problems, what may be treated
as logical true of false, and the mathematical problem is formulated as follows:

min
x

cT x

s.t. Ax = b ,

xi = 0 or xi = 1 (i = 1, 2, . . . , n) .

As it can be seen,n variables of the linear program may have two values only, thus the number
of all possible solutions is limited and not greater than2n.

By systematic enumeration of the possible solutions, one can verify if the constraints
are violated and compute the value of the aim functionf(x) = cT x, and find the solution
in a finite time by choosing solutions that abide constraintsand for which the aim function
decreases. Such a task is not computationally demanding, because one only needs addition
and multiplication operations.

3.2. LEXICOGRAPHIC ORDER METHOD[7]

In the algorithm that performs systematic enumeration of the feasible points from the set
Φ, consecutive solutions are verified. There is a need, however, to avoid losing any point.
As an example, there is a simple lexicographic order search presented in the Figure 1 for
x = [x1, x2, x3]

T .
The computational burden of such an algorithm can be reducedby incorporating new,

artificial constraints, into the problem, related to the current value of the aim function, what
is the basis of the presented algorithms.
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Fig. 1. A lexicographic order example

3.3. BALAS METHOD [1,7,10]

The algorithm is expected to perform exhaustive search by enumerating all possible solu-
tions to the problem, and each candidate solution must abideall m constraints (A ∈ Rm×n).

In order to find the optimal solution one needs to perform fromm2n to (m + 1)2n opera-
tions, assuming that all points satisfy the constraints andthe aim function is to be computed at
all times. The optimization problem with largen requires many calculations to find the opti-
mal solution, thus it is often appealing to introduce, as it has been initially written, additional
constraints to their matrix representationA in the form of static or dynamic filter.

Static filter approach allows one to introduce a single additional constraint once the first
feasible solution̂x is found in the lexicographic order, in the formcT x 6 cT x̂, allowing to
reject all feasible points with no improvement to the initial point.

Dynamic filter version of the algorithm updates the filter every time an improved solution
is found, substitutinĝx with it. In the both cases, the additional filtering constraint is placed at
the top of the constraints (in the first row ofA) to improve the performance of the algorithm.

As an example, let us define the following binary programmingproblem:

min
x

9x1 + 2x2 + 8x3 + 8x4

s.t. 4x1 − 9x2 − 2x3 − 6x4 6 −6 , (1)
4x1 − 10x2 + 10x3 + 2x4 > −9 , (2)
−4x1 − 10x2 + 6x3 − 7x4 6 2 , (3)
xi = 0 or xi = 1 (i = 1, 2, . . . , n) .
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In the table below the basic Balas algorithm using lexicographic method solution is presented

x1 x2 x3 x4 (1) (2) (3) f(x)
0 0 0 0 −
0 0 0 1 + + + 8
0 0 1 0 −
0 0 1 1 + + + 16
0 1 0 0 + −
0 1 0 1 + + + 10
0 1 1 0 + + + 10
0 1 1 1 + + + 18
1 0 0 0 −
1 0 0 1 −
1 0 1 0 −
1 0 1 1 −
1 1 0 0 −
1 1 0 1 + + + 19
1 1 1 0 + + + 19
1 1 1 1 + + + 27

with 41 calculations performed out of 64 in maximum. Using static filter approach an addi-
tional constraint(0) may be defined as below

x1 x2 x3 x4 (0) (1) (2) (3) f(x)
0 0 0 0 −
0 0 0 1 + + + 8
0 0 1 0 + −
0 0 1 1 −
0 1 0 0 + + −
0 1 0 1 −
0 1 1 0 −

,

...

what allows one to reject solutions with no improvement before evaluating their feasibility,
where the additional filtering constraint becomes

9x1 + 2x2 + 8x3 + 8x4 6 8 (0) .

Even in comparison with dynamic filter method, additional improvement can be observed
if order in variables’ values are changed, i.e. having sorted the vector of decision variables
for lexicographic order with respect to increasing absolute values of elements ofc.

3.4. ALGORITHM FOR BINARY PROGRAMMING WITH PARTIAL ENUMERATION

This algorithm finds the optimal solution among subsets of2n element set of possible can-
didate solutions, generating consecutive partial solutions by prescribing 0/1 values to decision
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variables and checking for possible violation of the constraints. For the partial solution, that
is feasible, some variables have fixed binary values and remaining possible solutions result
by choosing free variables’ values.

For the problem of the form

min
x

cT x

s.t. Ax = b ,

xi = 0 or xi = 1 (i = 1, 2, . . . , n)

jth constraint can be re-written as (j = 1, 2, . . . , m)

n
∑

i=1

aj,ixi 6 bj .

Let the indexi belong to the set of indexes that can be decomposed into the set Σ of
fixed decision variables and the setΣ of variables with values to-be-chosen. In order to find
a partial solution thejth constraint must be transformed into

∑

i∈Σ

aj,ixi +
∑

i∈Σ

aj,ixi 6 bj ,

with
∑

i∈Σ

aj,ixi 6 bj −
∑

i∈Σ

aj,ixi . (1)

The condition (1) is used to check if the candidate solution is feasible, and its negation
∑

i∈Σ

aj,ixi > bj −
∑

i∈Σ

aj,ixi

is used to eliminate the candidate solution from further consideration.
By choosing an improved partial solution, the solutions that do not assure an improvement

in the aim function are eliminated, i.e. for thekth improved partial solution it must hold that





∑

i∈Σ

cixi +
∑

i∈Σ

cixi





(k)

<





∑

i∈Σ

cixi +
∑

i∈Σ

cixi





(k−1)

. (2)

The condition (2) allows one to improve the solution and reject all worse solutions from
further considerations.

In the algorithm that is given below, vectoru defines the state of the variables for the
partial solution. There are three possible states, namely:fixed, with already considered com-
plement, and with variable complement. If the variable is fixed but its complement has not
been already considered then the index of this variable is included intou. If the complement
has been already considered, then the index with negative sign is included intou. If the vari-
able has no fixed value the zero value is included intou. The order in which the variables are
fixed is important in the algorithm.
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The algorithm for the problem in the form

min
x

cT x

s.t. Ax 6 b ,

xi ∈ {0, 1} (i = 0, 1, . . . , n) .

can be described as follows:

1) Initialization step

Verify if b > 0. If so, the optimal solutionx = 0 has been found. In the opposite case, set
the optimal value offmin as sufficiently large number and proceed to step 2.

2) Compute
yi = bi −

∑

j∈J

aijxj ,

whereJ includes the indexes of non-fixed variables (initiallyJ = ∅).

Compute
ymin = min

i=1, ..., m
yi ,

and check the following conditions:ymin > 0 andf̂ < fmin, wheref̂ is the aim function
value for the solution under considerationx. If the latter conditions hold, thanxmin = x,
fmin = f̂ , and proceed to step 6.

3) Create the setT comprising free (non-fixed) variables, such that:

T =
{

j : f̂ + cj < fmin, aij < 0 for i satisfyingyi < 0
}

.

If it holds thatT = ∅, proceed to step 6, in the opposite case proceed to step 4.

4) Infeasibility test – if there is an indexk that it holds that

yk −
∑

j∈T

min(0, ak,j) < 0 with yk < 0 ,

proceed do step 6, in the opposite case, proceed to step 5.

5) Choosing a free variable to fix – for free variables create the sets

Mj∈J = {i : yi − aij < 0} .

If all the sets are empty, proceed to step 6. In the opposite case compute

vj∈J =
∑

i∈Mj

(yi − aij) .

If it holds thatMj = ∅, assumevj = 0. Fix a free variable value related to maximumvj

(assume thatxj = 1), and proceed to step 2.
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6) For the fixed variablexj that refers to positive index in vectoru, choose the zero value
(consider its complement). Change the sign of the last positive index in vectoru and fix
all its right-hand side variables (with respect to the zeroed variable). If all complements
have already been considered, i.e.u does not contain positive values, stop the algorithm.
The optimal solution is defined by the pairxmin, fmin. If fmin is at its initial large value,
the problem is infeasible.

As an example, let us define the following binary programmingproblem:

min
x

3x1 + 2x2 + x3 + 8x4

s.t. −x1 + x2 + 6x3 + x4 6 5 ,
−x1 − 2x2 + 3x3 − x4 6 −3 ,
2x1 + 2x2 − x3 − 8x4 6 −6 ,
xi = 0 or xi = 1 (i = 1, 2, . . . , n) .

Iteration no. 1

2) yi = [5, −3, −6]T , ymin = −6. Since it holds thatymin < 0 or f > fmin, we proceed
to step 3.

3) A setT is created for free variables, namely,x1, x2, x3, x4, T = {1, 2, 3, 4}.

4) The current solutionx = [0, 0, 0, 0]T , f(x) = 0 is infeasible.

5) Minimum violation of the constraints test:M1 = {2, 3}, M2 = {2, 3}, M3 =
{1, 2, 3}, M4 = {2}, v1 = −10, v2 = −9, v3 = −12, v4 = −2, with the largest
vj for j = 4. Fix the value ofx4 = 1.

Iteration no. 2

2) yi = [4, −2, 2]T , ymin = −2. Since it holds thatymin < 0 or f > fmin, we proceed
to step 3.

3) A setT is created for free variables, namely,x1, x2, x3,, T = {1, 2}.

4) The current solutionx = [0, 0, 0, 1]T , f(x) = 1 is infeasible.

5) Minimum violation of the constraints test:M1 = {1}, M2 = ∅, M3 = {1, 2}, v1 =
−1, v2 = 0, v3 = −7, with the largestvj for j = 2. Fix the value ofx2 = 1.

Iteration no. 3

2) yi = [3, 0, 0]T , ymin = 0. Since it holds thatymin > 0 andf < fmin the improved
solution is found, namelyx = [0, 1, 0, 1]T , f(x) = 3.

6) Consider the complementary value ofx2, namelyx2 = 0.

Iteration no. 4

2) yi = [4, −2, 2]T , ymin = −2. Since it holds thatymin < 0 or f > fmin, we proceed
to step 3.
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3) A setT is created for free variables, namely,x1, x3,, T = ∅.

6) Consider the complementary value ofx4, namelyx4 = 0.

Iteration no. 5

2) yi = [5, −3, −6]T , ymin = −6. Since it holds thatymin < 0 or f > fmin, we proceed
to step 3.

3) A setT is created for free variables, namely,x1, x3,, T = {3}.

4) The current solutionx = [0, 0, 0, 0]T , f(x) = 0 is feasible.

6) All the remaining complements have been considered, and the algorithm may stop.
The optimal solution is

x∗ = [0, 1, 0, 1]T , f(x∗) = 3 .

4. INTEGER PROGRAMMING PROBLEMS

4.1. FORMULATION OF THE PROBLEM

In integer LPs, in comparison with standard LP problems, there is an additional require-
ment that decision variables must have integer values, whatis of practical value. The feasible
set contains in the specific case a set of points. The problem however, becomes answering
the question if the point is feasible or infeasible.

If the feasible solution set is compact and contains a limited number of points, one can per-
form exhaustive search to systematically reject worse solutions, what can be time-consuming.
If we, however, reject the integer requirement, the solution can be found via, e.g. a simplex
algorithm, and rounded towards the nearest integer neighbour. This may lead to infeasibility
of the solution, as depicted in Figure 2.

Let the following problem be given

min
x

−2x1 − 5x2

s.t. 2x1 − x2 > 6 ,

x1 − 6x2 > −24 ,

x > 0 ,

x1, x2 ∈ Z .

The dashed line in Figure 2 denotes the feasible solution setomitting the last constraint.
The large black dots are possible feasible solutions withx1, x2 ∈ Z .

The solution of the problem in real numbers isx∗

real = [6011 , 54
11 ]T , f(x∗

real) = − 390
11 , what

violatesx1, x2 ∈ Z .
Having rounded this solution to the nearest neighbour one obtains integer solution̂x =

[5, 5]T , f(x̂) = −35, however this point is infeasible.
Based on the aim function contour lines, the following pointx = [5, 4]T has the optimal

value, i.e.x∗ = [5, 4]T with f(x∗) = −30.
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Fig. 2. Feasibility set

4.2. GOMORY ALGORITHM OF THE BASIC CUTS

The formulated problem can be solved with a standard simplexmethod at first. If the
solution does not violate the integer constraints, it becomes the optimal solution. If not, one
can introduce additional constraints (Gomory cuts), to reduce the initial setΦ, to force the
optimal solution of the new problem to respect the integer constraints. Additional constraints
are cutting hyperplanes, reducing the size of the initial feasible solutions set.

A cutting hyperplane is constructed so that

• a new feasible set is convex,
• cut-off parts of the feasible set do not contain integer solutions.

Introducing consecutive constraints forces one to solve consecutive LP problems having omit-
ted integer requirement.

Let the following LP be given

min
x

cT x

s.t. Ax 6 b ,

x > 0 ,

with b > 0, where using basic and non-basic variables one can transform the constraints into

ABxB + ANxN 6 b .

By changing the order of the variables (B denotes basic andN non-basic variables):

xB = [xn−m+1, xn−m+2, . . . , xn]T ,

xN = [x1, x2, . . . , xn−m]T

thejth constraint can be re-written to the form
n

∑

i=1

aj,ixi 6 bj ,
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with (j = 1, 2, . . . , m)

n−m
∑

i=1

aj,ixi +
n

∑

i=n−m+1

aj,ixi =
n−m
∑

i=1

aj,ixi +
n

∑

i=n−m+1

aj,ixs,i−n+m = bj ,

wherexs,1, xs,2, . . . , xs,m are slack variables.
By solving the following set of equations

n−m
∑

i=1

aj,ixi +
m

∑

i=1

aj,ixs,i = bi ,

one can define the soughtn−m variables as a function ofm slack variables (k = 1, 2, . . . , n−
m)

xk = bj −
m

∑

i=1

aj,ixs,i . (3)

If it holds thatbj , aj,i /∈ Z , one can write them as a sum of integer and real part

bj = b
Z

j + b
R

j , (4)

aj,i = aZ

j,i + aR

j,i , (5)

b
Z

j , aZ

j,i ∈ Z , (6)

0 6 b
R

j , aR

j,i < 1 . (7)

Finally one gets:

xk = b
Z

j + b
R

j −
m

∑

i=1

(

aZ

j,i + aR

j,i

)

xs,i ,

b
R

j −
m

∑

i=1

aR

j,ixs,i = xk − b
Z

j +

m
∑

i=1

aZ

j,ixs,i .

Since the variablesxk i xs,i must have integer values, it holds that:

xk − b
Z

j +

m
∑

i=1

aZ

j,ixs,i ∈ Z ,

b
R

j −
m

∑

i=1

aR

j,ixs,i ∈ Z .

Sinceb
R

j −
∑m

i=1 aR
j,ixs,i ∈ Z is either zero or negative integer,

b
R

j −
m

∑

i=1

aR

j,ixs,i 6 0 . (8)
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Introducing new slack variablexs,m+1 > 0, xs,m+1 ∈ Z to (8) one obtains

xs,m+1 −
m

∑

i=1

aR

j,ixs,i = −b
R

j , (9)

i.e. the cutting hyperplane.
As an example let us consider the following problem

min
x

−3x1 − 7x2

s.t. 3x1 + 8x2 6 24 ,

2x1 + 3x2 6 12 ,

x > 0 ,

x1, x2 ∈ Z

that can be re-written into the form

min
x

−3x1 − 7x2

s.t. 3x1 + 8x2 + x3 = 24 ,

2x1 + 3x2 + x4 = 12 ,

x > 0 ,

x1, x2, x3, x4 ∈ Z ,

Iteration no. 1

The solution of the LP in the real numbers:

x(1) = [3.429, 1.714]
T

violates the integer requirement.
The following Gomory cut

2x1 + 5x2 6 15

is defined.

Iteration no. 2

The new problem becomes

min
x

−3x1 − 7x2

s.t. 3x1 + 8x2 + x3 = 24 ,

2x1 + 3x2 + x4 = 12 ,

2x1 + 5x2 + x5 = 15 ,

x > 0 ,

x1, x2, x3, x4, x5 ∈ Z ,
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and its solution in real numbers:

x(2) = [3.75, 1.50]
T

violates the integer requirement.
The following Gomory cut

x1 + 2x2 6 6

is defined.

Iteration no. 3

The new problem becomes

min
x

−3x1 − 7x2

s.t. 3x1 + 8x2 + x3 = 24 ,

2x1 + 3x2 + x4 = 12 ,

2x1 + 5x2 + x5 = 15 ,

x1 + 2x2 + x6 = 15 ,

x > 0 ,

x1, x2, x3, x4, x5, x6 ∈ Z ,

and its solution in real numbers:

x(3) = [0, 3]
T

satisfies the integer requirement.
The optimal solution to the problem becomesx∗ = [0, 3]

T , f(x∗) = −21.

Tab. 1. Gomory cuts for the given LP problem
iteration xi Gomory cut x(k+1) f(x(k+1))

I x1 = 3.429 − 0.4286x3 2x1 + 5x2 6 15 [3.429, 1.714]T −22.29

II x1 = 3.75 + 1.25x4 x1 + 2x2 6 6 [3.75, 1.5]T −21.75

4.3. BRANCH AND BOUND ALGORITHM FOR INTEGERLPS

Another algorithm that can be used to solve integer LPs is based on branch and bound
approach and presents the given LP as two separate problems [6, p. 59].

Let P0 be the following problem

min
x

f(x)

s.t. Ax = b ,

x > 0 .
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If the solution to P0 satisfiesxi ∈ Z , i ⊂ I ⊆ N = {0, 1, 2, 3, . . .}, then integer so-
lution is found. If P0 is either an infeasible or an unboundedproblem, introducing integer
requirement will not improve the situation.

If the solutionx∗

P0 to the problem violates integer requirement (or any other solution to
the transformed problem), the following approach is adopted:

• if the solution to the subproblem is integer, it becomes candidate solution to the original
problem and becomes a leaf in the tree of possible solutions (and is not taken for
possible branching),

• in the opposite case, the chosen variablexi /∈ Z , xi ∈ [a, a+1] (i ∈ I, a ∈ Z ) located
between two integer numbers, namely,a anda + 1, is used to branch the problem into
two subproblems introducing new bounds, i.e.xi 6 a andxi > a+1 to one of the pair
of the new problems, as in Figure 3.

The above procedure is repeatedly used to build the completebranching tree.

xi a a + 1

Fig. 3. Branching procedure

Let the following problem be given

min
x

−3x1 − 7x2

s.t. 3x1 + 8x2 6 24 ,

2x1 + 3x2 6 12 ,

x > 0 ,

x1, x2 ∈ Z .

Initially,

(P0) min
x

−3x1 − 7x2

s.t. 3x1 + 8x2 6 24 ,

2x1 + 3x2 6 12 ,

x > 0 ,
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has the solutionx∗

P0 = [247 , 12
7 ]T with f(x∗

P0) = − 156
7 ≈ −22.2857. It needs to be divided

into two subproblems:

(P1) min
x

−3x1 − 7x2

s.t. 3x1 + 8x2 6 24 ,

2x1 + 3x2 6 12 ,

x1 6 3 ,

x > 0 ,

(P2) min
x

−3x1 − 7x2

s.t. 3x1 + 8x2 6 24 ,

2x1 + 3x2 6 12 ,

x1 > 4 ,

x > 0 .

The solution to P1 becomesx∗

P1 = [3, 15
8 ]T , f(x∗

P1) = − 177
8 ≈ −22.1250. Sincex2,P1 /∈

Z , the solution is divided again, leading to the following problems:

(P3) min
x

−3x1 − 7x2

s.t. 3x1 + 8x2 6 24 ,

2x1 + 3x2 6 12 ,

x1 6 3 ,

x2 6 1 ,

x > 0 ,

(P4) min
x

−3x1 − 7x2

s.t. 3x1 + 8x2 6 24 ,

2x1 + 3x2 6 12 ,

x1 6 3 ,

x2 > 2 ,

x > 0 .

The solution to P3x∗

P3 = [3, 1]T , f(x∗

P3) = −16 is integer and becomes the leaf. The
solution to P4:x∗

P4 = [83 , 2]T , f(x∗

P4) = −22, x1,P4 /∈ Z , enables one to divide the
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feasibility set again, leading to:

(P5) min
x

−3x1 − 7x2

s.t. 3x1 + 8x2 6 24 ,

2x1 + 3x2 6 12 ,

x1 6 2 ,

x2 > 2 ,

x > 0 ,

(P6) min
x

−3x1 − 7x2

s.t. 3x1 + 8x2 6 24 ,

2x1 + 3x2 6 12 ,

x1 6 3 ,

x1 > 3 (put together asx1 = 3) ,

x2 > 2 ,

x > 0 .

The solution to P5 isx∗

P5 = [2, 9
4 ]T , f(x∗

P5) = − 87
4 = 21.75, x2,P5 /∈ Z , and branching

again:

(P7) min
x

−3x1 − 7x2

s.t. 3x1 + 8x2 6 24 ,

2x1 + 3x2 6 12 ,

x1 6 2 ,

x2 6 2 ,

x2 > 2 (put together asx2 = 2) ,

x > 0 ,

(P8) min
x

−3x1 − 7x2

s.t. 3x1 + 8x2 6 24 ,

2x1 + 3x2 6 12 ,

x1 6 2 ,

x2 > 3 ,

x > 0 .

The solution to P7x∗

P7 = [2, 2]T , f(x∗

P7) = −20 is integer, asx∗

P8 = [0, 3]T , f(x∗

P8) =
−21. The solution to P6 isx∗

P6 = [3, 1]T , f(x∗

P6) = −16, and the solution to P2 becomes
x∗

P2 = [4, 4
3 ]T , f(x∗

P2) = − 64
3 ≈ −21.3333.

Since both solutions to P1 and P2 violate integer requirement, the initial feasible set is
divided into two parts, and since it holds thatf(x∗

P2) > f(x∗

P1), the solution lies in the
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Fig. 4. Branching procedure

branch of P1.
In the Figure 5 successive feasible sets obtained from branch and bound algorithm are

presented, leading to the optimal solution (P0-P1-P4-P5-P8).

5. A COMPARISON OF PERFORMANCE OF THE ALGORITHMS FOR SELECTED

BINARY AND INTEGER LP PROBLEMS

5.1. INTRODUCTION

The benchmark has been divided into two parts. The first part is devoted to binary LPs,
the second concerns integer LPs.

The first part of the test has been very time-consuming, sinceBalas algorithms have ex-
pected computational complexity proportional to2n, on the contrary to partial enumeration
method which is an effective algorithm. For the given combination ofn = 1, , 2 . . . , 11 and
m = 1, 2, . . . , 19, a hundred of random problems have been generated, and for the given
combination ofn = 1, 2 . . . , 15 andm = 1, 2, . . . , 19 a lesser number of random problems
have been generated due to the time needed to solve them. 40 random problems have been
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generated forn = 12, 30 forn = 13, 20 forn = 14, and 10 forn = 15. Separate test have
been carried out for plain Balas method and methods with constant and dynamic filter. It has
taken one month to perform all the computation of this part using 8 PC class computers. Par-
tial enumeration algorithm has been run in parallel with Balas method for the same problems
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Fig. 5. Branch and bound solutions to the given problem : a) P0, b) P1, c) P4, d) P5, e) P8
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generated.
In the second part of the algorithm, the problems for branch and bound method have been

generated in the span ofn = 1, , 2 . . . , 20 andm = 1, 2, . . . , 20, where for each structure
there has been 100 of random problems generated.

5.2. THE RESULTS

In the Table 2, performance evaluation results are presented, expressed as mean relative
number operations per problem for selected sizes of the LPs with binary constraints. The
numbers are given with respect to maximum number of operations to-be-performed, i.e.(m+
1)2n. The results are presented in the range 0–100%. In comparison, Table 3 presents results
for the same problems but for partial enumeration algorithm. In order not to introduce any
distortion to the results, the results for this algorithm are also presented in the same scale,
but instead of presenting the relative number of operationsit refers to the number of main
iterations of the algorithm. Selected cases have been presented in Table 4 and depicted in
Figure 8.

6. SUMMARY

Balas methods have unattractive worst-case computationalcomplexity. The relative com-
putational burden decreases monotonically with increase in size of the task. This is because
there is only a part of the constraints computed during the run of an algorithm. The greater
the numberm of the constraints is, the greater the number of constraintsare omitted in fea-
sibility test. By introduction of the constant filter, the situation slightly improves, what is
especially visible for large number of constraints. It is tobe borne in mind, that still the com-
putational complexity is exponential. On the contrary, partial enumeration method has linear
complexity trend line, increasing with the increase inn.

The branch and bound method has mostly appealing computational complexity, i.e. linear,
strongly connected to numbern of variables, and with little dependence on the numberm of
the constraints.
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Tab. 2. Performance evaluation of a family of Balas methods:a) classical, b) with constant filter, c) with
dynamic filter

a)

m \ n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 90.25 82.01 81.63 77.52 77.99 77.31 76.43 76.81 75.09 76.52 73.86 76.42 78.73 85.20 81.00
2 85.10 81.60 70.50 68.40 70.00 71.60 64.50 55.90 54.90 68.60 57.60 60.78 59.97 59.55 53.50
3 79.10 73.20 68.50 66.60 55.80 53.30 47.40 49.10 45.50 46.20 50.90 49.73 53.20 52.13 43.00
4 77.70 63.10 60.27 50.36 50.71 45.85 44.86 45.00 43.43 41.83 40.82 40.32 36.33 40.40 37.70
5 79.20 59.20 51.80 55.60 50.80 39.30 48.00 33.00 33.00 36.40 35.20 36.30 38.30 34.63 34.90
6 77.10 53.10 38.10 49.00 39.20 42.50 31.90 34.50 39.00 34.80 32.60 30.55 31.83 30.10 30.00
7 67.84 53.76 47.24 42.50 37.65 36.37 34.10 32.00 30.23 27.98 30.26 32.34 28.57 26.70 26.20
8 69.32 50.95 44.04 40.12 36.85 35.35 31.21 31.97 29.46 28.22 25.78 27.40 24.70 26.25 31.80
9 65.45 53.16 42.43 37.33 33.54 29.88 29.38 26.16 25.95 25.99 24.95 23.93 20.30 22.80 23.00
10 66.76 49.35 41.77 35.44 33.03 30.23 27.15 26.61 24.18 25.06 24.04 22.51 24.30 21.30 21.60
11 63.40 50.04 39.02 34.29 30.04 27.20 25.79 24.20 22.97 22.22 22.13 20.90 22.63 18.70 18.10
12 65.14 46.58 37.64 32.93 28.74 27.19 24.27 23.43 22.76 21.69 21.83 20.45 20.97 19.90 15.70
13 63.82 43.72 34.56 31.87 26.77 26.75 24.50 20.94 21.46 20.91 19.85 19.59 16.53 18.15 16.00
14 63.24 45.84 33.69 28.04 24.24 22.64 21.78 20.64 20.96 18.01 19.11 18.17 18.60 15.50 17.80
15 59.71 44.18 33.39 28.03 25.02 23.68 20.70 19.93 18.98 18.67 18.69 17.98 18.43 16.70 18.90
16 62.34 40.90 33.14 29.04 24.08 21.67 20.33 20.23 19.42 18.89 17.57 17.94 16.83 14.45 15.50
17 60.30 40.89 33.10 25.63 23.03 21.71 18.73 18.40 17.52 18.05 17.27 16.25 15.17 16.85 12.40
18 59.17 40.48 30.68 23.73 23.36 21.00 19.25 17.49 19.09 15.43 15.21 15.37 16.87 14.95 11.20
19 59.69 41.56 30.40 24.74 21.68 19.10 18.48 17.35 16.94 15.94 15.06 15.46 14.86 14.35 12.90

b)

m \ n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 93.75 85.76 92.10 86.27 87.10 87.31 87.92 91.30 85.44 92.17 93.26 95.65 93.50 83.97 92.85
2 83.60 79.90 70.10 62.30 76.50 58.60 61.00 57.80 66.40 69.20 65.50 67.58 69.60 65.15 61.60
3 82.90 75.20 69.50 57.30 47.20 53.10 49.00 45.60 54.30 48.70 53.50 51.08 53.28 51.80 46.85
4 74.10 60.70 54.77 48.14 45.61 43.01 43.43 41.94 40.93 41.02 42.90 38.95 36.10 34.60 41.80
5 72.40 54.80 43.50 54.30 51.20 38.10 47.20 31.90 32.40 35.10 36.40 36.28 35.28 34.30 33.95
6 73.40 54.00 39.40 47.10 35.60 40.50 30.40 32.40 34.10 32.90 31.10 29.03 31.53 26.25 29.40
7 64.37 51.02 42.32 37.91 34.08 32.17 30.75 30.02 27.97 27.37 27.25 26.53 28.05 25.07 25.00
8 66.96 49.46 40.37 35.60 33.44 30.75 28.21 29.60 27.91 26.04 24.85 24.68 25.30 21.75 24.60
9 64.60 47.31 39.59 32.74 30.77 27.37 27.15 24.52 25.03 24.00 23.84 24.18 22.95 22.93 22.00
10 64.72 45.44 37.34 31.26 28.91 25.69 24.30 23.78 21.34 22.82 20.90 19.58 22.00 20.50 20.40
11 62.48 47.03 34.77 29.64 26.92 24.38 22.39 21.83 21.18 21.43 19.76 21.08 20.13 17.40 21.00
12 62.48 47.03 34.77 29.64 26.92 24.38 22.39 21.83 21.18 21.43 19.76 21.08 20.13 17.40 21.00
13 61.87 42.53 31.65 29.01 25.09 22.32 20.90 18.40 19.21 18.80 19.12 21.60 19.63 15.53 17.85
14 62.68 43.48 30.48 25.44 21.54 20.77 19.52 18.51 18.59 15.95 17.36 16.33 16.97 14.10 15.00
15 58.80 42.15 31.18 24.47 23.27 20.61 18.60 17.77 17.52 16.74 16.83 18.20 17.23 15.33 13.20
16 60.56 39.04 30.70 25.70 21.26 19.57 18.44 17.62 17.42 15.65 16.09 15.80 14.67 14.95 11.20
17 58.89 39.32 31.03 23.30 19.93 19.26 16.79 17.03 16.26 16.26 14.90 8.65 7.93 13.40 11.15
18 57.56 38.63 27.80 21.62 20.82 17.66 17.20 15.84 16.35 13.22 14.20 14.38 13.90 14.10 11.50
19 58.90 39.77 27.57 22.15 19.09 17.86 16.07 15.23 14.05 14.07 13.67 14.50 13.95 13.00 11.90

c)

m \ n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 93.75 82.02 81.60 68.88 65.29 60.78 58.39 56.22 54.94 53.60 53.50 52.68 53.45 50.40 50.25
2 83.60 77.40 67.60 53.60 54.80 43.20 41.10 40.40 42.20 35.40 35.30 36.78 36.40 34.15 34.70
3 82.90 70.20 64.60 50.20 41.40 40.70 37.90 34.60 34.70 33.20 29.10 30.23 30.00 28.50 27.80
4 74.10 59.40 51.46 42.50 38.76 36.45 33.41 30.39 29.71 27.51 26.88 23.60 25.40 21.55 22.90
5 72.40 54.40 43.10 46.50 46.70 34.30 29.40 25.00 27.30 27.30 25.00 22.90 21.43 20.70 20.45
6 73.40 54.00 39.10 46.00 32.90 33.40 28.60 22.40 26.60 24.20 20.10 20.70 22.40 17.80 17.70
7 64.37 50.48 41.67 36.94 32.40 29.19 27.00 25.80 23.69 21.94 18.90 19.18 18.75 18.00 15.13
8 66.96 49.46 39.98 34.13 31.19 28.01 25.56 25.48 23.06 21.27 19.44 18.10 19.33 17.25 13.20
9 64.60 47.31 39.22 32.03 29.44 25.86 25.16 23.01 22.28 19.82 19.58 19.63 19.15 16.30 11.25
10 64.72 45.42 37.25 30.59 28.20 24.2 22.26 21.85 19.19 19.94 17.95 15.65 17.83 16.05 12.60
11 62.48 46.99 34.61 29.28 25.87 23.28 21.04 20.75 18.94 18.74 17.97 18.90 18.15 14.23 15.25
12 63.30 44.03 33.05 28.45 25.17 23.96 20.83 20.27 18.12 17.67 16.89 15.38 16.30 15.90 14.50
13 61.87 42.53 31.57 28.67 24.91 21.62 20.30 17.79 18.12 17.15 17.44 19.53 17.28 12.07 16.00
14 62.68 43.48 30.33 25.22 21.00 20.54 19.14 17.70 17.15 15.09 16.03 15.30 13.70 13.10 13.30
15 58.80 42.12 31.18 24.38 22.60 20.25 18.24 17.38 16.65 16.17 15.78 16.15 16.00 12.83 12.00
16 60.56 39.04 30.61 25.57 21.08 19.35 17.90 17.42 16.48 14.79 15.10 14.18 12.87 13.70 10.30
17 58.89 39.32 30.93 23.19 19.85 19.09 16.48 16.41 15.87 15.55 14.17 7.15 7.45 12.07 9.25
18 57.56 38.63 27.80 21.62 20.81 17.45 16.98 15.56 15.36 12.75 13.81 13.60 12.73 13.40 10.25
19 58.90 39.77 27.57 22.13 19.01 17.74 15.91 15.01 13.85 13.71 13.15 13.525 12.50 11.90 10.95
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Tab. 3. Performance evaluation of the partial enumeration algorithm

m \ n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 1.40 1.96 2.20 2.64 2.78 3.06 3.14 3.52 4.22 4.08 4.70 5.00 5.27 4.30 5.60
2 1.20 1.80 2.80 2.20 3.60 3.40 6.80 7.80 5.20 3.00 6.20 8.10 7.87 7.00 7.60
3 2.00 1.60 3.60 4.40 5.40 4.40 7.00 9.20 9.00 11.00 9.00 9.80 10.80 10.40 13.00
4 1.74 2.82 3.18 4.18 5.18 6.66 7.72 8.68 9.52 10.88 11.78 11.02 14.27 12.50 14.00
5 1.80 2.40 2.80 4.20 6.40 7.20 6.60 10.20 10.20 12.20 13.00 14.30 12.40 16.40 15.90
6 1.40 3.00 4.20 5.80 5.40 8.00 10.40 10.60 8.60 13.60 12.20 14.95 18.73 18.50 18.60
7 1.82 2.88 3.82 4.82 6.04 7.30 9.10 10.66 12.36 14.36 13.66 17.22 17.60 21.50 19.00
8 1.98 3.26 4.06 4.80 6.20 7.12 9.64 10.98 12.40 14.06 16.26 17.72 19.87 17.30 19.60
9 1.92 2.76 4.18 4.84 6.40 7.88 9.46 11.54 13.20 13.68 15.92 18.18 19.33 20.80 24.40
10 2.06 2.70 4.20 5.22 6.78 7.24 9.42 11.30 14.08 15.56 16.18 17.74 19.93 20.50 23.40
11 2.04 2.96 3.94 5.22 6.58 7.90 9.08 11.22 13.80 15.32 16.32 19.76 21.60 21.70 23.00
12 2.00 3.14 3.86 5.04 6.40 8.26 9.94 12.14 13.04 15.74 16.68 19.02 20.53 23.50 23.00
13 1.94 3.14 4.20 5.36 7.04 8.08 9.62 11.92 13.16 15.40 17.98 19.14 22.20 23.50 27.00
14 2.02 2.94 3.86 5.30 6.46 8.36 9.62 11.46 13.96 15.44 17.46 19.94 20.00 23.30 22.60
15 1.90 3.06 4.30 5.14 6.48 8.24 9.74 11.50 13.02 16.02 17.70 19.84 21.60 22.00 26.60
16 1.88 3.06 4.00 5.16 7.06 8.44 9.52 11.40 13.76 14.32 17.28 19.52 21.13 24.90 26.60
17 2.04 3.04 4.02 5.34 7.00 7.86 9.56 11.64 13.86 16.40 17.30 19.90 21.53 25.80 27.20
18 1.90 2.96 4.00 5.32 6.62 8.02 9.36 12.08 13.52 14.40 18.44 19.96 20.87 24.40 24.80
19 1.96 3.38 4.06 5.16 6.26 8.12 9.80 11.04 12.88 14.96 17.80 20.20 22.16 24.16 26.40
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Tab. 4. Comparison of performance of algorithms for binary LPs a)m

n
= 1, b) m

n
= 2, c) m

n
= 0.5

a)

m n Balas Balas with constant filterBalas with dynamic filterPartial enumeration
1 1 90.25 93.75 93.75 1.40
2 2 81.60 79.90 77.40 1.80
3 3 68.50 69.50 64.60 3.60
4 4 50.36 48.14 42.50 4.18
5 5 50.80 51.20 46.70 6.40
6 6 42.50 40.50 33.40 8.00
7 7 34.10 30.75 27.00 9.10
8 8 31.97 29.60 25.48 10.98
9 9 25.95 25.03 22.28 13.20
10 10 25.06 22.82 19.94 15.56
11 11 22.13 19.76 17.97 16.32
12 12 20.45 21.08 15.38 19.02
13 13 16.53 19.63 17.28 22.20
14 14 15.50 14.10 13.10 23.30
15 15 18.90 13.20 12.00 26.60

b)

m n Balas Balas with constant filterBalas with dynamic filterPartial enumeration
2 1 85.10 83.60 83.60 1.20
4 2 63.10 60.70 59.40 2.82
6 3 38.10 39.40 39.10 4.20
8 4 40.12 35.60 34.13 4.80
10 5 33.03 28.91 28.20 6.78
12 6 27.19 24.38 23.96 8.26
14 7 21.78 19.52 19.14 9.62
16 8 20.23 17.62 17.42 11.40
18 9 19.09 16.35 15.36 13.52

c)

m n Balas Balas with constant filterBalas with dynamic filterPartial enumeration
1 2 82.01 85.76 82.02 1.96
2 4 68.40 62.30 53.60 2.20
3 6 53.30 53.10 40.70 4.40
4 8 45.00 41.94 30.39 8.68
5 10 36.40 35.10 27.30 12.20
6 12 30.55 29.03 20.70 14.95
7 14 26.70 25.07 18.00 21.50
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Tab. 5. Comparison of computational burden of algorithms for binary LPs a)m

n
= 1, b) m

n
= 2, c)

m

n
= 0.5

a)

m n Balas Balas with constant filterBalas with dynamic filter
1 1 3.61 3.75 3.75
2 2 9.79 9.59 9.29
3 3 21.92 22.24 20.67
4 4 40.29 38.51 34.00
5 5 97.54 98.30 89.66
6 6 190.40 181.44 149.63
7 7 349.18 314.88 276.48
8 8 736.59 681.98 587.06
9 9 1.328.64 1.281.54 1.140.74
10 10 2.822.76 2.570.44 2.246.04
11 11 5.438.67 4.856.22 4.416.31
12 12 10.889.22 11.222.02 8.186.88
13 13 18.961.75 22.507.52 19.812.35
14 14 38.092.80 34.652.16 32.194.56
15 15 99.090.43 80.600.50 62.914.56

b)

m n Balas Balas with constant filterBalas with dynamic filter
2 1 5.11 5.02 5.02
4 2 12.62 12.14 11.88
6 3 21.34 22.06 21.90
8 4 57.77 51.26 49.15
10 5 116.27 101.76 99.26
12 6 226.22 202.84 199.35
14 7 418.18 374.78 367.49
16 8 880.41 766.82 758.12
18 9 1.857.08 1.590.53 1.494.22

c)

m n Balas Balas with constant filterBalas with dynamic filter
1 2 7.52 7.45 6.69
2 4 31.15 30.53 26.33
3 6 128.87 125.06 103.61
4 8 533.17 512.26 407.74
5 10 2.205.78 2.098.20 1.604.59
6 12 9.125.58 8.594.14 6.314.65
7 14 37.753.61 35.201.24 24.850.38
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Tab. 6. Performance evaluation of the branch and bound method for integer LPs

m \ n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 1.2 1.3 1.9 1.6 2.5 2.6 3.3 4.1 4.0 4.0 4.8 5.8 5.6 5.5 5.5 6.7 5.9 7.5 8.1 8.1
2 1.0 1.4 1.9 2.3 2.4 3.0 3.0 3.4 6.0 4.9 6.0 5.5 5.6 6.0 5.4 6.9 6.2 6.8 7.2 8.3
3 1.0 1.6 1.8 3.5 2.5 3.3 4.1 4.5 4.7 5.7 5.2 6.6 7.1 7.4 8.0 8.5 8.3 9.7 10.6 10.6
4 1.0 1.5 2.1 2.3 3.1 4.3 5.3 5.2 5.1 6.4 6.5 7.2 7.8 8.7 9.3 9.6 10.2 11.0 10.2 10.8
5 1.0 1.3 1.9 2.5 3.0 3.9 4.7 4.9 7.2 6.4 7.8 7.5 8.6 10.1 9.3 9.5 9.5 11.8 12.3 12.1
6 1.0 1.3 1.7 2.5 2.8 4.4 4.9 4.8 6.5 6.9 7.4 8.6 8.3 8.5 10.8 11.0 10.6 11.1 12.1 13.9
7 1.0 1.3 1.8 2.7 3.3 4.5 4.7 5.3 5.5 7.8 7.2 8.2 8.5 10.1 9.3 12.8 12.3 12.0 13.9 13.3
8 1.0 1.3 1.9 2.7 2.9 3.9 4.8 5.5 5.6 6.4 8.0 8.8 8.2 11.2 11.2 11.6 12.9 12.4 14.2 14.4
9 1.0 1.2 1.8 2.9 3.0 4.3 4.0 5.0 5.7 7.1 7.6 7.2 9.3 10.4 10.3 10.1 12.8 11.8 12.2 14.0
10 1.0 1.2 1.6 2.2 2.8 3.8 3.9 5.3 6.3 6.7 6.7 7.9 8.6 9.4 10.7 11.4 12.3 13.6 13.4 14.2
11 1.0 1.2 1.6 2.3 2.7 3.3 4.1 5.5 5.4 6.5 7.4 9.6 9.4 9.9 10.1 10.8 12.5 12.3 12.4 15.6
12 1.0 1.2 1.7 2.1 2.6 3.6 4.4 4.7 6.1 6.3 7.2 7.7 9.5 10.5 11.0 10.2 11.3 12.7 12.7 14.1
13 1.0 1.2 1.5 2.1 2.5 3.5 4.2 4.2 5.2 6.2 7.1 8.0 8.8 9.5 9.8 10.5 12.6 12.1 13.9 14.0
14 1.0 1.2 1.8 2.1 2.6 3.5 4.1 4.8 5.5 7.1 6.7 7.4 9.0 9.3 10.5 11.2 12.6 12.6 12.7 14.0
15 1.0 1.2 1.6 2.0 2.5 3.5 3.9 4.2 5.6 6.4 6.3 6.8 8.8 9.4 9.5 10.0 10.8 11.9 12.8 13.9
16 1.0 1.1 1.5 2.4 2.3 3.7 3.5 4.5 5.5 6.2 6.4 8.0 8.5 9.4 8.7 10.4 11.0 11.4 12.9 14.1
17 1.0 1.1 1.5 1.9 2.4 3.0 3.9 4.7 4.8 5.7 6.4 7.1 8.7 9.0 9.5 9.6 11.4 12.3 12.9 12.9
18 1.0 1.1 1.5 1.8 2.5 3.0 3.4 4.4 5.1 5.8 5.9 7.2 7.8 8.9 9.4 9.3 11.3 11.3 11.6 13.5
19 1.0 1.2 1.3 1.8 2.4 2.9 3.2 4.0 4.5 5.6 6.4 7.2 7.4 8.7 8.5 9.5 10.7 11.0 12.5 11.7
20 1.0 1.1 1.4 2.0 2.5 2.9 3.8 4.3 4.5 5.2 5.8 6.7 7.1 8.7 8.8 9.5 9.8 11.1 10.8 11.3

Tab. 7. Performance evaluation for integer LPs a)m

n
= 1, b) m

n
= 2, c) m

n
= 0.5

a)

m n m + n iterations
1 1 2 1.2
2 2 4 1.4
3 3 6 1.8
4 4 8 2.3
5 5 10 3.0
6 6 12 4.4
7 7 14 4.7
8 8 16 5.5
9 9 18 5.7
10 10 20 6.7
11 11 22 7.4
12 12 24 7.7
13 13 26 8.8
14 14 28 9.3
15 15 30 9.5
16 16 32 10.4
17 17 34 11.4
18 18 36 11.3
19 19 38 12.5
20 20 40 11.3

b)

m n m + n iterations
2 1 3 1.0
4 2 6 1.5
6 3 9 1.7
8 4 12 2.7
10 5 15 2.8
12 6 18 3.6
14 7 21 4.1
16 8 24 4.5
18 9 27 5.1
20 10 30 5.2

c)

m n m + n iterations
1 2 3 1.3
2 4 6 2.3
3 6 9 3.3
4 8 12 5.2
5 10 15 6.4
6 12 18 8.6
7 14 21 10.1
8 16 24 11.6
9 18 27 11.8
10 20 30 14.2
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[9] Vanderbei R.J.,Linear Programming: Foundations and Extensions, 2nd ed, Springer 2001.
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ABSTRACT

The paper considers performance issues of a class of iterative minimization methods of binary and
linear programs. Problem structures that assure superior performance of a specific method have been
stipulated with appropriate conclusions drawn.

OCENA SZYBKOŚCI DZIAŁANIA METOD MINIMALIZACJI DLA ZADA Ń
PROGRAMOWANIA LINIOWEGO W ZBIORACH DYSKRETNYCH

Paweł Kaden, Dariusz Horla

W artykule poruszono zagadnienie szybkości działania metod minimalizacji w zbiorach dyskretnych
(binarne i całkowitoliczbowe) dla zadań programowania liniowego. Wskazano przypadki, dla których
konkretna metoda działa szybciej niż pozostałe oraz wyciągnięto wnioski odnośnie takiego stanu rzeczy.
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