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1. INTRODUCTION

There is a vast number of decision-making problems thaftrasinteger optimization
problems which is a great challenge because of its well-knexponential worst-case com-
putational complexity. In recent years, the main develapmtrivethe field took place in binary
linear programming (LP).

The paper aims to evaluate the performance of selectedytamalinteger programming
algorithms dedicated to solving LPs [2,3,4,9]. The wodecassumption concerning the
computational complexity should not be applied here, beeaf many improvements orig-
inating from observations of the characteristics of givptirnization problems, resulting in
speeding up the algorithms.

The paper is composed of two parts, concerning binary, aribegjuently, integer LPs,
followed by the Section presenting the results. The laterlme used to select the most ap-
propriate algorithm for the encountered optimization peais, and does not result from pure
mathematical inference concerning the structure of thelpm, but is based on generating
random problems and trying to solve them.

2. LINEAR PROGRAMMING IN INTEGER SETS

Linear programs have an optimal point in the convex polybedrhere decision variables
from the vector: can have any values, as far as the solution is in the feasbiie §he only
case on the contrary to the former is the degenerate sojutitgre the seb contains a single
point only.

In many practical problems, however, it is desired that thenaal solution should be
contained in a discrete-set, i.e. thashould have a limited number of possible values.

The discrete set usually includes specified elements, atwral numbers. The linear
program of the following type:

*Pozna University of Technology, Institute of Control and Infoation Engineering, Department of Control and
Robotics, Piotrowo 3a Str., 60-965 Poana-mail:Dar i usz. Hor | a@ut . poznan. pl



8 Pawet Kaden, Dariusz Horla

min ng

x

s.t. Az =0,
z2>0,

pweZiclICc A/ ={0,1,23, ...},

where somel C 4") or all (I = .#") components; of the vector of decision variables
are natural numbers, is called a discrete linear program.
A general division of linear programs in discrete sets isodlews:

e binary programming problems (0-1),
e integer programming problems.

3. BINARY PROGRAMS
3.1. INTRODUCTION

Apart from standard linear programming constraints, thegien variables may be re-
quired to take on valuesor 1 only, in binary programming problems, what may be treated
as logical true of false, and the mathematical problem imtdated as follows:

min ng
x

s.t. Ax =0,
:vi:Oor:vizl(izl,Q,...,n).

As it can be seem, variables of the linear program may have two values onlys the number
of all possible solutions is limited and not greater tR&n

By systematic enumeration of the possible solutions, omevesify if the constraints
are violated and compute the value of the aim functfén) = ¢”'z, and find the solution
in a finite time by choosing solutions that abide constraémd for which the aim function
decreases. Such a task is not computationally demandingube one only needs addition
and multiplication operations.

3.2. LEXICOGRAPHIC ORDER METHOD[7]

In the algorithm that performs systematic enumeration effiasible points from the set
®, consecutive solutions are verified. There is a need, haw&vavoid losing any point.
As an example, there is a simple lexicographic order searebepted in the Figure 1 for
x = [z1, T2, xs]T

The computational burden of such an algorithm can be redbgeadcorporating new,
artificial constraints, into the problem, related to thereat value of the aim function, what
is the basis of the presented algorithms.
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0,1 1
0,1 0,1 T2
0,1 0,1 0,1 0,1 T3

Fig. 1. A lexicographic order example

3.3. BaLAsS METHOD [1,7,10]

The algorithm is expected to perform exhaustive search bynemnating all possible solu-
tions to the problem, and each candidate solution must aflide constraints 4 € 2™*™).

In order to find the optimal solution one needs to perform fra@¥ to (m + 1)2" opera-
tions, assuming that all points satisfy the constraintsthadim function is to be computed at
all times. The optimization problem with largerequires many calculations to find the opti-
mal solution, thus it is often appealing to introduce, as# heen initially written, additional
constraints to their matrix representatidnin the form of static or dynamic filter.

Static filter approach allows one to introduce a single aofuil constraint once the first
feasible solutiori is found in the lexicographic order, in the forhz < ¢’'z, allowing to
reject all feasible points with no improvement to the idigiaint.

Dynamic filter version of the algorithm updates the filterrgstéme an improved solution
is found, substituting: with it. In the both cases, the additional filtering consttés placed at
the top of the constraints (in the first row df) to improve the performance of the algorithm.

As an example, let us define the following binary programnpiraplem:

min 9z + 2x9 4+ 8x3 + 814

s.t. 4xq — 9z — 203 — 64 < —6, (1)
421 — 1029 4+ 10x3 + 224 > —9, (2)
—4x1 — 1029 + 623 — Txg < 2, (3)

z;=00rz;=1(i=1,2,...,n).
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In the table below the basic Balas algorithm using lexicpgi@method solution is presented

T1 T2 T3 T4 (1) (2) (3) f@)
00 0 0|-—

0 00 1|4+ + +]| 8
0 01 0f-—
001 1+ + +] 16
010 0+ —
010 1{+ + 4] 10
0110+ + +]10
01 1 1{4+ + 4+ 18
1 0 0 00—

1 0 0 1]-—

1 01 00—

1 01 1]-—
11 0 0|—
110 1|+ 4+ +1]19
111 0|+ 4+ +1]19
1 11 1|+ 4+ +|27

with 41 calculations performed out of 64 in maximum. Usingfistfilter approach an addi-
tional constrain{0) may be defined as below

T1 T2 T3 X4 (0) (1) (2) (3) f(&)
0 0 0O —

0 0 0 1 + 4+ +| 8
001 0|4+ -

0 01 1|-— ’
010 0]+ + -—

01 0 1

01 10

what allows one to reject solutions with no improvement befevaluating their feasibility,
where the additional filtering constraint becomes

921 4 229 + 8x3 + 8z4 <8 (0).

Even in comparison with dynamic filter method, additiongbnevement can be observed
if order in variables’ values are changed, i.e. having sbtite vector of decision variables
for lexicographic order with respect to increasing absouaiues of elements of

3.4. ALGORITHM FOR BINARY PROGRAMMING WITH PARTIAL ENUMERATION

This algorithm finds the optimal solution among subse&'aflement set of possible can-
didate solutions, generating consecutive partial sahstlwy prescribing 0/1 values to decision
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variables and checking for possible violation of the caists. For the partial solution, that
is feasible, some variables have fixed binary values andingéngapossible solutions result
by choosing free variables’ values.

For the problem of the form

min QTQ
z

s.t. Ax =0,
xi:OOrxizl(z'zl, 2,...,7’L)

jth constraint can be re-written ag€ 1, 2, ..., m)

n
E Q5,54 g bj .
=1

Let the index: belong to the set of indexes that can be decomposed into the s&
fixed decision variables and the Sebf variables with values to-be-chosen. In order to find
a partial solution thgth constraint must be transformed into

Z ajit; + Z ajiz; < by,

P€EX =

with

Z aj.iT5 g bj — Z ;.35 . (1)

P€EX =

The condition (1) is used to check if the candidate solutsoieasible, and its negation

Z Qa; iTi > bj — Z ajiTq

1€ED =

is used to eliminate the candidate solution from furtherstaeration.
By choosing an improved partial solution, the solutions tltenot assure an improvement
in the aim function are eliminated, i.e. for théh improved partial solution it must hold that

(k) (k—1)

Z Cixi + Z Ci%i < Z X + Z CiT; . (2

i€X i€ 1€X i€x

The condition (2) allows one to improve the solution and aepl worse solutions from
further considerations.

In the algorithm that is given below, vectardefines the state of the variables for the
partial solution. There are three possible states, narfigd, with already considered com-
plement, and with variable complement. If the variable igdibut its complement has not
been already considered then the index of this variableclsdied intou. If the complement
has been already considered, then the index with negatjmdssincluded inta.. If the vari-
able has no fixed value the zero value is included int®he order in which the variables are
fixed is important in the algorithm.
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The algorithm for the problem in the form

min QTQ
z

s.t. Ax <D,
z; €{0,1} (i=0,1,...,n).

can be described as follows:

1) Initialization step

Verify if b > 0. If so, the optimal solution: = 0 has been found. In the opposite case, set
the optimal value off,,,;, as sufficiently large number and proceed to step 2.

2) Compute
yi =bi — Zaij%‘ ;
jeJ
where.J includes the indexes of non-fixed variables (initially= 0).
Compute
Ymin = | min Yi,
i=1,...,m

and check the following conditiongi,;, > 0 andf < frminy wheref is the aim function
value for the solution under considerationif the latter conditions hold, than, ;, = z,

fmin = f, and proceed to step 6.

3) Create the séf comprising free (non-fixed) variables, such that:
T = {j S f+ ¢j < fmin, a;; < 0for i satisfyingy; < O} .

If it holds thatT" = (), proceed to step 6, in the opposite case proceed to step 4.

4) Infeasibility test — if there is an indédxthat it holds that

Yk — Zmin((), ag,;) < 0withy, <0,
JeT

proceed do step 6, in the opposite case, proceed to step 5.
5) Choosing a free variable to fix — for free variables crelagesiets
MjeJ:{z’:yi—aij <0}.

If all the sets are empty, proceed to step 6. In the oppos#e cempute

VjeJ = Z (yi — aij) .

i€ M

If it holds that)M; = (), assumey; = 0. Fix a free variable value related to maximum
(assume that; = 1), and proceed to step 2.
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6) For the fixed variable; that refers to positive index in vectar choose the zero value
(consider its complement). Change the sign of the lastigesitdex in vector, and fix
all its right-hand side variables (with respect to the zdreariable). If all complements
have already been considered, uadoes not contain positive values, stop the algorithm.
The optimal solution is defined by the paif,;,,, fmin- If fmin iS atits initial large value,
the problem is infeasible.

As an example, let us define the following binary programnpiraplem:

min 3x1 + 2z + x3 + 824
x

st. —x1+xo+6x3+ x4 <5,

—X1 —2I2+3I3—ZC4 § —3,

2x1 + 220 — x3 — 81y < —6,

z;=00rz; =1 (izl, 2, ,n)
Iteration no. 1
2) yi = [5, =3, —6], ymin = —6. Since it holds thal,i, < 00r f > fumin, We proceed

to step 3.

3) A setT is created for free variables, namely, xo, x5, x4, T = {1, 2, 3, 4}.

4) The current solutiom = [0, 0, 0, 0], f(x) = 0 is infeasible.

5) Minimum violation of the constraints testd/; = {2, 3}, My = {2, 3}, M3 =
{1, 2, 3}, My = {2}, v;1 = =10, vo = =9, v3 = —12, v4 = —2, with the largest
v; for j = 4. Fix the value ofr4 = 1.

Iteration no. 2

2) yi = [4, =2, 2], ymin = —2. Since it holds thag,i, < 0 0r f > fiin, We proceed
to step 3.

3) AsetT is created for free variables, namely, zo, z3,, T = {1, 2}.
4) The current solutiom = [0, 0, 0, 1], f(z) = 1 is infeasible.

5) Minimum violation of the constraints testf; = {1}, My = 0, M3 = {1, 2}, v, =
—1, vy = 0, v3 = —7, with the largest; for j = 2. Fix the value ofz; = 1.

Iteration no. 3

2) yi = [3, 0, 017, ymin = 0. Since it holds thap,i, > 0 andf < fui, the improved
solution is found, namely = [0, 1, 0, 17, f(z) = 3.

6) Consider the complementary valuexgf namelyxz, = 0.

Iteration no. 4

2) yi = [4, =2, 2], ymin = —2. Since it holds thag,i, < 0 0r f > fiin, We proceed
to step 3.
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3) AsetT is created for free variables, namely, zs,, T = ().

6) Consider the complementary valueaxgf namelyx, = 0.

Iteration no. 5

2) yi =[5, =3, —=6]7, ymin = —6. Since it holds thal,i, < 00r f > fiin, We proceed
to step 3.

3) AsetT is created for free variables, namely, x3,, T = {3}.
4) The current solutiom = [0, 0, 0, 0], f(x) = 0 is feasible.

6) All the remaining complements have been considered, aadlgorithm may stop.
The optimal solution is

z*=10010 1"  f(z)=3.

4. INTEGER PROGRAMMING PROBLEMS
4.1. FORMULATION OF THE PROBLEM

In integer LPs, in comparison with standard LP problemggtligan additional require-
ment that decision variables must have integer values, isladpractical value. The feasible
set contains in the specific case a set of points. The probtemever, becomes answering
the question if the point is feasible or infeasible.

If the feasible solution set is compact and contains a lidnitember of points, one can per-
form exhaustive search to systematically reject worseiswls, what can be time-consuming.
If we, however, reject the integer requirement, the solutian be found via, e.g. a simplex
algorithm, and rounded towards the nearest integer neighBais may lead to infeasibility
of the solution, as depicted in Figure 2.

Let the following problem be given

min —2x7 — 5T9

z

st. 21 —x9 26,
T, — 6y > —24
x>0,
T, To € Z.

3

The dashed line in Figure 2 denotes the feasible solutionradting the last constraint.
The large black dots are possible feasible solutions withz, € 2.

The solution of the problem in real numbersis,, = [&, 2|7, f(2%..)
violatesz, x5 € Z.

Having rounded this solution to the nearest neighbour oneimbinteger solutiod =
[5, 5]7, f(2) = —35, however this point is infeasible.

Based on the aim function contour lines, the following paint [5, 4]7 has the optimal
value, i.ex* = [5, 47 with f(z*) = —30.

— 390

= —T,What
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2

21 —x9 =26
r1 — 6y > —24

z
°

Fig. 2. Feasibility set

4.2. GOMORY ALGORITHM OF THE BASIC CUTS

The formulated problem can be solved with a standard simplethod at first. If the
solution does not violate the integer constraints, it beeothe optimal solution. If not, one
can introduce additional constraints (Gomory cuts), taicecthe initial setb, to force the
optimal solution of the new problem to respect the integeistaints. Additional constraints
are cutting hyperplanes, reducing the size of the initiasfiele solutions set.

A cutting hyperplane is constructed so that

e anew feasible set is convex,
o cut-off parts of the feasible set do not contain integertsahs.

Introducing consecutive constraints forces one to solmseoutive LP problems having omit-
ted integer requirement.
Let the following LP be given

min QTQ
x
st. Az <b,
z20,

with b > 0, where using basic and non-basic variables one can transfiar constraints into

ABQB‘FANEN <b

By changing the order of the variableB (lenotes basic anf non-basic variables):

Lp = [xn—m+1, Tp—m42y +« - :En]T
]T

)

rn = [Ila T2y vvvy Tn—m

the jth constraint can be re-written to the form

n
E a;T; < by,
i=1
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with(j =1, 2, ..., m)

n—m n n—m n
E a5 Tq + E ajiTq = E a5 Tq + E AjiTsi—ntm = bj,
i=1 i=1

1=n—m-+1 1=n—m-+1

wherez; 1, z52, ..., Tsn, are slack variables.
By solving the following set of equations

n—m m
E a;;T; + E a;iTs; = b;,
i=1 i=1

one can define the sought-m variables as a function of. slack variables§ = 1, 2, ..., n—
m)
Kk =1bj — Zaj,ﬂs,i . 3)
i=1
If it holds thatb;, @;; ¢ 2, one can write them as a sum of integer and real part
- -7 %
bj =b; +b;, 4)
ajq = E;{ + Ejﬂz ) (5)
_g@(’ _or
b, a5, € Z, (6)
< % _g
O\bj,a/jﬂ' <1. (7)

Finally one gets:

m
7% | 3% —¥ | -7
T =b; +b; - Z (@ +a%) wsi,
=1
74 Ui % Ui
T — R X P
by — Z TjiTsi =Tk —b; + Z UjiTs,i -
i=1 =1

Since the variables;, i z; ; must have integer values, it holds that:

m
_gr o
T —b; + Zaﬁxm e Z,
i=1

m
b; — E a;;%s,i € z.
i=1
Si F% moaZ Z is eith tive int
inceb; —>'" @z, € Z is either zero or negative integer,

3

5~ > @l <0. 8)
=1
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Introducing new slack variable; ,,,+1 > 0, z5 41 € 2 to (8) one obtains

m %
§ —R A

Tsm+1 — aj,ixs,i - _bj B
i=1

i.e. the cutting hyperplane.
As an example let us consider the following problem

min —3xr] — 7Tz
z

s.t. 3z 4+ 8xe < 24,
2z1 + 322 < 12,
x>0,

T, Lo € X

that can be re-written into the form

min —3x; — TTo

18

s.t. 3z1 +8xy + 123 =24,
201 +3x2 + x4 =12,
z20,

T1, T2, T3, T4 € D@Pa

Iteration no. 1

The solution of the LP in the real numbers:
2V = [3.429, 1.714]"

violates the integer requirement.
The following Gomory cut
2x1 + 5262 < 15

is defined.
Iteration no. 2

The new problem becomes

min —3x1 — Txs
z

s.t. 3z1+8xs +1x3 =24,
221 + 320 + x4 = 12,
2x1 + dx9 + x5 = 15,
20,

T1, T2, T3, T4, T5 € D@Pa

(9)
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and its solution in real numbers:
z® = [3.75, 1.50]"

violates the integer requirement.
The following Gomory cut
T1 4+ 225 < 6

is defined.
Iteration no. 3

The new problem becomes
min —3x1 — Txo
z

s.t. 3z1 +8xy +1x3 =24,
21 4+ 3x0 + 14 =12,
2x1 4+ 5x9 + 25 = 15,
T, 4 229 + 26 = 15,
20,

Ty, T2, 3, T4, Ts5, Tp € gv
and its solution in real numbers:
«® = 1o, 3]"

satisfies the integer requirement.
The optimal solution to the problem becomes= [0, 3], f(z*) = —21.

Tab. 1. Gomory cuts for the given LP problem
iteratior] ; Gomorycut | a*) | f(ak+D)

I 71 = 3.429 — 0.428673|271 + Sxe < 15([3.429, 1.714]7| —22.29

I 21 =375+ 1.25m, | o1 4222 <6 | [3.75, 1.5]7 | —21.75

4.3. BRANCH AND BOUND ALGORITHM FOR INTEGERLPS

Another algorithm that can be used to solve integer LPs isdas branch and bound
approach and presents the given LP as two separate protBem<5p].
Let PO be the following problem

min  f(z)

st. A

|8
Il
IS

I8
VIR
1o
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If the solution to PO satisfies; € 2°,i c I C 4 = {0, 1, 2, 3, ...}, then integer so-
lution is found. If PO is either an infeasible or an unboungeablem, introducing integer
requirement will not improve the situation.

If the solutionz™;, to the problem violates integer requirement (or any othéutism to
the transformed problem), the following approach is addpte

e ifthe solution to the subproblem is integer, it becomes @hatd solution to the original
problem and becomes a leaf in the tree of possible solutiand {s not taken for
possible branching),

e inthe opposite case, the chosen variahl¢ %, z; € [a, a+1] (i € I,a € Z)located
between two integer numbers, namelynda + 1, is used to branch the problem into
two subproblems introducing new bounds, e < a andz; > a + 1 to one of the pair
of the new problems, as in Figure 3.

The above procedure is repeatedly used to build the complatehing tree.

x; a a-+1

Fig. 3. Branching procedure

Let the following problem be given

min —3x1 — Tz
z

s.t. 3x1 + 8z <
2z1 + 322 <
z2=0,

T, o € Z.

24,
12

3

Initially,

(PO) min —3z; — Tx2

18

s.t. 3x1 + 8o
2x1 + 3o
z2>0,

NN
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has the solution},, = [2, 2] with f(z%,) = —12% ~ —22.2857. It needs to be divided

into two subproblems:

(P1) min —3z; — Tx2

s.t. 3x1 + 8o

The solution to P1 becomes,; = [3, 217, f(z},) = —1 ~ —22.1250. Sincexy p1 ¢

%, the solution is divided again, leading to the following Ipiems:

(P3) min —3x; — Tx2

|8

s.t. 3z + 8xe < 24,
2z1 + 322 < 12,
x1 <3,
o <1
z 20,
(P4) min —3x — Tx2

)

s.t. 3z + 8xe < 24,
2z1 + 322 < 12,
1 <3,
To = 2

z2>0.

)

The solution to PX%, = [3, 17, f(z%;) = —16 is integer and becomes the leaf. The
solution to P4:z%, = [5, 2|7, f(zh,) = —22, z1p4 ¢ Z, enables one to divide the
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feasibility set again, leading to:

(P5) min —3z; — Ty

s.t. 3z +8xy < 24,
2z; 4+ 39 < 12,
x1 <2,

222

20,

8

3

5]

(P6) min —3z; — 722

s.t. 3x1 + 8xs

<24,
2x1 +3x2 < 1

2,

(put together as; = 3),

The solution to P5 igh, = [2, 317, f(z%s) = —3T = 21.75, z5,p5 ¢ 2, and branching
again:

(P7) min —3x1 — Txo

I8

s.t. 3x1 + 8xs

(P8) min —3z; — Ty

s.t. 3z +8xy < 24,
2z1 4+ 39 < 12,
x1 <2,

2 23,

=20.

8

5]

The solution to PZ%, = [2, 2|7, f(z%,) = —20 is integer, ag%g = [0, 317, f(z%hs) =
—21. The solution to P6 ig% = [3, 1], f(z%s) = —16, and the solution to P2 becomes
2y =4, 37, f(@hy) = — % ~ —21.3333.

Since both solutions to P1 and P2 violate integer requiréntiea initial feasible set is
divided into two parts, and since it holds thétz},) > f(2%,), the solution lies in the
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PO
a1 =3,z =2
fa) = 12
1 < 3/ \xl >4
P1 P2
m1—3,m2=1§ m1=4,x2:%
fl@)=—-1F fl@)=-%
\w2 22 x2< 1/

P3 P4 P9

zy =3, x2=1 =5, 22=2 x1 =5, 22=1 infeasible

flz) =—22 fl@)=-%
x1<2/ \x1>3 x1<4/ \x1>5

P5 P6 P11 P12

:(:1—2,962:% r1 =3, z2=1 1 =4, x2 = r1 =05, 10 =%

fl@)=-% f(z) =—16 f(z)=-19 fl@)=-%
T2 L2 2 23 z2 <0 z2 21

P7 P8 P13 P14

1 =2, 10 = 2 z1=0,220 =3 r1=6,22=0 infeasible

fz) =-20 fl@)=-21 f(z) =-18
Fig. 4. Branching procedure
branch of P1.

In the Figure 5 successive feasible sets obtained from hrand bound algorithm are
presented, leading to the optimal solution (P0-P1-P4-85-P

5. ACOMPARISON OF PERFORMANCE OF THE ALGORITHMS FOR SELECTED
BINARY AND INTEGER LP PROBLEMS

5.1. INTRODUCTION

The benchmark has been divided into two parts. The first patévoted to binary LPs,
the second concerns integer LPs.

The first part of the test has been very time-consuming, ddatas algorithms have ex-
pected computational complexity proportionabty, on the contrary to partial enumeration
method which is an effective algorithm. For the given comabiom ofn = 1,,2 ..., 11 and
m = 1,2, ..., 19, a hundred of random problems have been generated, andefgivibn
combinationofr = 1,2 ..., 15andm =1, 2, ..., 19 alesser number of random problems
have been generated due to the time needed to solve themnd@maroblems have been
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generated fon = 12, 30 forn = 13, 20 forn = 14, and 10 forn = 15. Separate test have
been carried out for plain Balas method and methods withtaohand dynamic filter. It has
taken one month to perform all the computation of this part@i8 PC class computers. Par-
tial enumeration algorithm has been run in parallel withaBahethod for the same problems

a)

2x1 + 3x2 < 12

3x1 + 8x2 <24

b)

d)

Fig. 5. Branch and bound solutions to the given problem : apPP1, c) P4, d) P5, e) P8
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generated.
In the second part of the algorithm, the problems for bramehimund method have been
generated in the spanaf=1,,2 ..., 20andm =1, 2, ..., 20, where for each structure

there has been 100 of random problems generated.
5.2. THE RESULTS

In the Table 2, performance evaluation results are predeakpressed as mean relative
number operations per problem for selected sizes of the LifPshinary constraints. The
numbers are given with respect to maximum number of operatm-be-performed, i.¢m +
1)2™. The results are presented in the range 0-100%. In compafiable 3 presents results
for the same problems but for partial enumeration algorithimorder not to introduce any
distortion to the results, the results for this algorithra atso presented in the same scale,
but instead of presenting the relative number of operatibrefers to the number of main
iterations of the algorithm. Selected cases have beenmngegsen Table 4 and depicted in
Figure 8.

6. SUMMARY

Balas methods have unattractive worst-case computationgblexity. The relative com-
putational burden decreases monotonically with increaséize of the task. This is because
there is only a part of the constraints computed during tineofian algorithm. The greater
the numbern of the constraints is, the greater the number of constramt®mitted in fea-
sibility test. By introduction of the constant filter, theugtion slightly improves, what is
especially visible for large number of constraints. It ib&borne in mind, that still the com-
putational complexity is exponential. On the contrarytiphenumeration method has linear
complexity trend line, increasing with the increaseiin

The branch and bound method has mostly appealing compmahtiomplexity, i.e. linear,
strongly connected to numberof variables, and with little dependence on the numhenf
the constraints.
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Tab. 2. Performance evaluation of a family of Balas methafislassical, b) with constant filter, c) with

dynamic filter

m\ n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 90.25 82.01 81.63 77.52 77.99 77.31 76.43 76.81 75.09 76.52 73.86 76.42 78.73 85.20 81.00
2 85.10 81.60 70.50 68.40 70.00 71.60 64.50 55.90 54.90 68.60 57.60 60.78 59.97 59.55 53.50
3 79.10 73.20 68.50 66.60 55.80 53.30 47.40 49.10 45.50 46.20 50.90 49.73 53.20 52.13 43.00
4 77.70 63.10 60.27 50.36 50.71 45.85 44.86 45.00 43.43 41.83 40.82 40.32 36.33 40.40 37.70
5 79.20 59.20 51.80 55.60 50.80 39.30 48.00 33.00 33.00 36.40 35.20 36.30 38.30 34.63 34.90
6

7

8

9

77.10 53.10 38.10 49.00 39.20 42.50 31.90 34.50 39.00 34.80 32.60 30.55 31.83 30.10 30.00
67.84 53.76 47.24 42.50 37.65 36.37 34.10 32.00 30.23 27.98 30.26 32.34 28.57 26.70 26.20
69.32 50.95 44.04 40.12 36.85 35.35 31.21 31.97 29.46 28.22 25.78 27.40 24.70 26.25 31.80
a) 65.45 53.16 42.43 37.33 33.54 29.88 29.38 26.16 25.95 25.99 24.95 23.93 20.30 22.80 23.00
10 66.76 49.35 41.77 35.44 33.03 30.23 27.15 26.61 24.18 25.06 24.04 22.51 24.30 21.30 21.60
11 63.40 50.04 39.02 34.29 30.04 27.20 25.79 24.20 22.97 22.22 22.13 20.90 22.63 18.70 18.10
12 65.14 46.58 37.64 32.93 28.74 27.19 24.27 23.43 22.76 21.69 21.83 20.45 20.97 19.90 15.70
13 63.82 43.72 34.56 31.87 26.77 26.75 24.50 20.94 21.46 20.91 19.85 19.59 16.53 18.15 16.00
14 63.24 45.84 33.69 28.04 24.24 22.64 21.78 20.64 20.96 18.01 19.11 18.17 18.60 15.50 17.80
15 59.71 44.18 33.39 28.03 25.02 23.68 20.70 19.93 18.98 18.67 18.69 17.98 18.43 16.70 18.90
16 62.34 40.90 33.14 29.04 24.08 21.67 20.33 20.23 19.42 18.89 17.57 17.94 16.83 14.45 15.50
17 60.30 40.89 33.10 25.63 23.03 21.71 18.73 18.40 17.52 18.05 17.27 16.25 15.17 16.85 12.40
18 59.17 40.48 30.68 23.73 23.36 21.00 19.25 17.49 19.09 15.43 15.21 15.37 16.87 14.95 11.20
19 59.69 41.56 30.40 24.74 21.68 19.10 18.48 17.35 16.94 15.94 15.06 15.46 14.86 14.35 12.90

\ 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 93.75 85.76 92.10 86.27 87.10 87.31 87.92 91.30 85.44 92.17 93.26 95.65 93.50 83.97 92.85
2 83.60 79.90 70.10 62.30 76.50 58.60 61.00 57.80 66.40 69.20 65.50 67.58 69.60 65.15 61.60
3 82.90 75.20 69.50 57.30 47.20 53.10 49.00 45.60 54.30 48.70 53.50 51.08 53.28 51.80 46.85
4 74.10 60.70 54.77 48.14 45.61 43.01 43.43 41.94 40.93 41.02 42.90 38.95 36.10 34.60 41.80
5 72.40 54.80 43.50 54.30 51.20 38.10 47.20 31.90 32.40 35.10 36.40 36.28 35.28 34.30 33.95
6

7

8

9

3

73.40 54.00 39.40 47.10 35.60 40.50 30.40 32.40 34.10 32.90 31.10 29.03 31.53 26.25 29.40
64.37 51.02 42.32 37.91 34.08 32.17 30.75 30.02 27.97 27.37 27.25 26.53 28.05 25.07 25.00
66.96 49.46 40.37 35.60 33.44 30.75 28.21 29.60 27.91 26.04 24.85 24.68 25.30 21.75 24.60
64.60 47.31 39.59 32.74 30.77 27.37 27.15 24.52 25.03 24.00 23.84 24.18 22.95 22.93 22.00
10 64.72 45.44 37.34 31.26 28.91 25.69 24.30 23.78 21.34 22.82 20.90 19.58 22.00 20.50 20.40
11 62.48 47.03 34.77 29.64 26.92 24.38 22.39 21.83 21.18 21.43 19.76 21.08 20.13 17.40 21.00
12 62.48 47.03 34.77 29.64 26.92 24.38 22.39 21.83 21.18 21.43 19.76 21.08 20.13 17.40 21.00
13 61.87 42.53 31.65 29.01 25.09 22.32 20.90 18.40 19.21 18.80 19.12 21.60 19.63 15.53 17.85
14 62.68 43.48 30.48 25.44 21.54 20.77 19.52 18.51 18.59 15.95 17.36 16.33 16.97 14.10 15.00
15 58.80 42.15 31.18 24.47 23.27 20.61 18.60 17.77 17.52 16.74 16.83 18.20 17.23 15.33 13.20
16 60.56 39.04 30.70 25.70 21.26 19.57 18.44 17.62 17.42 15.65 16.09 15.80 14.67 14.95 11.20
17 58.89 39.32 31.03 23.30 19.93 19.26 16.79 17.03 16.26 16.26 14.90 8.65 7.93 13.40 11.15
18 57.56 38.63 27.80 21.62 20.82 17.66 17.20 15.84 16.35 13.22 14.20 14.38 13.90 14.10 11.50
19 58.90 39.77 27.57 22.15 19.09 17.86 16.07 15.23 14.05 14.07 13.67 14.50 13.95 13.00 11.90

\ 10 11 12 13 14 15
1 93.75 82.02 81.60 68.88 65.29 60.78 58.39 56.22 54.94 53.60 53.50 52.68 53.45 50.40 50.25
2 83.60 77.40 67.60 53.60 54.80 43.20 41.10 40.40 42.20 35.40 35.30 36.78 36.40 34.15 34.70
3 82.90 70.20 64.60 50.20 41.40 40.70 37.90 34.60 34.70 33.20 29.10 30.23 30.00 28.50 27.80
4 74.10 59.40 51.46 42.50 38.76 36.45 33.41 30.39 29.71 27.51 26.88 23.60 25.40 21.55 22.90
5

6

7

8

9

3
3
-
M
w
-
w
(=}
~
0
©

72.40 54.40 43.10 46.50 46.70 34.30 29.40 25.00 27.30 27.30 25.00 22.90 21.43 20.70 20.45
73.40 54.00 39.10 46.00 32.90 33.40 28.60 22.40 26.60 24.20 20.10 20.70 22.40 17.80 17.70
64.37 50.48 41.67 36.94 32.40 29.19 27.00 25.80 23.69 21.94 18.90 19.18 18.75 18.00 15.13
66.96 49.46 39.98 34.13 31.19 28.01 25.56 25.48 23.06 21.27 19.44 18.10 19.33 17.25 13.20
) 64.60 47.31 39.22 32.03 29.44 25.86 25.16 23.01 22.28 19.82 19.58 19.63 19.15 16.30 11.25
10 64.72 45.42 37.25 30.59 28.20 24.2 22.26 21.85 19.19 19.94 17.95 15.65 17.83 16.05 12.60
11 62.48 46.99 34.61 29.28 25.87 23.28 21.04 20.75 18.94 18.74 17.97 18.90 18.15 14.23 15.25
12 63.30 44.03 33.05 28.45 25.17 23.96 20.83 20.27 18.12 17.67 16.89 15.38 16.30 15.90 14.50
13 61.87 42.53 31.57 28.67 24.91 21.62 20.30 17.79 18.12 17.15 17.44 19.53 17.28 12.07 16.00
14 62.68 43.48 30.33 25.22 21.00 20.54 19.14 17.70 17.15 15.09 16.03 15.30 13.70 13.10 13.30
15 58.80 42.12 31.18 24.38 22.60 20.25 18.24 17.38 16.65 16.17 15.78 16.15 16.00 12.83 12.00
16 60.56 39.04 30.61 25.57 21.08 19.35 17.90 17.42 16.48 14.79 15.10 14.18 12.87 13.70 10.30
17 58.89 39.32 30.93 23.19 19.85 19.09 16.48 16.41 15.87 15.55 14.17 7.15 7.45 12.07 9.25
18 57.56 38.63 27.80 21.62 20.81 17.45 16.98 15.56 15.36 12.75 13.81 13.60 12.73 13.40 10.25
19 58.90 39.77 27.57 22.13 19.01 17.74 15.91 15.01 13.85 13.71 13.15 13.525 12.50 11.90 10.95
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=2
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Tab. 3. Performance evaluation of the partial enumeratigorithm

1 2 3

4

5

6

7

8

9

10

11

12

13 14 15

© 00~ U W N |

= R e e e e e e
© 00O Ttk W+ O

1.40 1.96 2.20
1.20 1.80 2.80
2.00 1.60 3.60
1.74 2.82 3.18
1.80 2.40 2.80
1.40 3.00 4.20
1.82 2.88 3.82
1.98 3.26 4.06
1.92 2.76 4.18
2.06 2.70 4.20
2.04 2.96 3.94
2.00 3.14 3.86
1.94 3.14 4.20
2.02 2.94 3.86
1.90 3.06 4.30
1.88 3.06 4.00
2.04 3.04 4.02
1.90 2.96 4.00
1.96 3.38 4.06

2.64
2.20
4.40
4.18
4.20
5.80
4.82
4.80
4.84
5.22
5.22
5.04
5.36
5.30
5.14
5.16
5.34
5.32
5.16

2.78
3.60
5.40
5.18
6.40
5.40
6.04
6.20
6.40
6.78
6.58
6.40
7.04
6.46
6.48
7.06
7.00
6.62
6.26

3.06
3.40
4.40
6.66
7.20
8.00
7.30
7.12
7.88
7.24
7.90
8.26
8.08
8.36
8.24
8.44
7.86
8.02
8.12

3.14
6.80
7.00
7.72
6.60
10.40
9.10
9.64
9.46
9.42
9.08
9.94
9.62
9.62
9.74
9.52
9.56
9.36
9.80

3.52

7.80

9.20

8.68

10.20
10.60
10.66
10.98
11.54
11.30
11.22
12.14
11.92
11.46
11.50
11.40
11.64
12.08
11.04

4.22 4.08 4.70 5.00 5.27 4.30 5.60
3.00 6.20 8.10

5.20

9.00

9.52

10.20
8.60

12.36
12.40
13.20
14.08
13.80
13.04
13.16
13.96
13.02
13.76
13.86
13.52
12.88

11.00
10.88
12.20
13.60
14.36
14.06
13.68
15.56
15.32
15.74
15.40
15.44
16.02
14.32
16.40
14.40
14.96

9.00
11.78
13.00
12.20
13.66
16.26
15.92
16.18
16.32
16.68
17.98
17.46
17.70
17.28
17.30
18.44
17.80

9.80
11.02
14.30
14.95
17.22
17.72
18.18
17.74
19.76
19.02
19.14
19.94
19.84
19.52
19.90
19.96
20.20

7.87 7.00 7.60
10.80 10.40 13.00
14.27 12.50 14.00
12.40 16.40 15.90
18.73 18.50 18.60
17.60 21.50 19.00
19.87 17.30 19.60
19.33 20.80 24.40
19.93 20.50 23.40
21.60 21.70 23.00
20.53 23.50 23.00
22.20 23.50 27.00
20.00 23.30 22.60
21.60 22.00 26.60
21.13 24.90 26.60
21.53 25.80 27.20
20.87 24.40 24.80
22.16 24.16 26.40
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m

Tab. 4. Comparison of performance of algorithms for binaPgla)™ = 1, b) = = 2,¢) = = 0.5

m | n || Balag Balas with constant filteBalas with dynamic filtefPartial enumeration
11 90.25 93.75 93.75 1.40
212|81.60 79.90 77.40 1.80
313 168.50 69.50 64.60 3.60
414 |/50.36 48.14 42.50 4.18
515 |50.80 51.20 46.70 6.40
6| 6(42.50 40.50 33.40 8.00
771 34.10 30.75 27.00 9.10
8183197 29.60 25.48 10.98
91912595 25.03 22.28 13.20
10110(|25.06 22.82 19.94 15.56
11(11](22.13 19.76 17.97 16.32
12{12|20.45 21.08 15.38 19.02
13|13(]16.53 19.63 17.28 22.20
14(14](15.50 14.10 13.10 23.30
15|15(]18.90 13.20 12.00 26.60
m |n || Balas Balas with constant filteBalas with dynamic filtefPartial enumeration
2 11/|85.10 83.60 83.60 1.20
412(/63.10 60.70 59.40 2.82
6 |3]/38.10 39.40 39.10 4.20
8 141(40.12 35.60 34.13 4.80
10|5(({33.03 28.91 28.20 6.78
12|61(27.19 24.38 23.96 8.26
14|7(]21.78 19.52 19.14 9.62
16(81|20.23 17.62 17.42 11.40
1819(/19.09 16.35 15.36 13.52
m| n || Balas|Balas with constant filteBalas with dynamic filtefPartial enumeration
1128201 85.76 82.02 1.96
2|4 168.40 62.30 53.60 2.20
316 (53.30 53.10 40.70 4.40
418 {/45.00 41.94 30.39 8.68
51101/36.40 35.10 27.30 12.20
6 |121/30.55 29.03 20.70 14.95
7114(/26.70 25.07 18.00 21.50
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Tab. 5. Comparison of computational burden of algorithmisbinary LPs a)= = 1, b) & = 2, ¢)

=05
min Balas |Balas with constant filteBalas with dynamic filter
1)1 3.61 3.75 3.75
212 9.79 9.59 9.29
313 21.92 22.24 20.67
44 40.29 38.51 34.00
515 97.54 98.30 89.66
6|6 190.40 181.44 149.63
a) 77 349.18 314.88 276.48
88| 736.59 681.98 587.06
919 | 1.328.64 1.281.54 1.140.74
10(10|| 2.822.76 2.570.44 2.246.04
11{11{ 5.438.67 4.856.22 4.416.31
12(12/10.889.22 11.222.02 8.186.88
13|131(/18.961.75 22.507.52 19.812.35
14114/ 38.092.80 34.652.16 32.194.56
15/15(/99.090.43 80.600.50 62.914.56
m|n|| Balas |Balas with constant filteBalas with dynamic filter
21 5.11 5.02 5.02
412]| 12.62 12.14 11.88
63| 21.34 22.06 21.90
b) 8 4| 57.77 51.26 49.15
10|5]| 116.27 101.76 99.26
12]6|| 226.22 202.84 199.35
14(7| 418.18 374.78 367.49
16|81 880.41 766.82 758.12
18{91/1.857.08 1.590.53 1.494.22
m|n Balas |Balas with constant filteBalas with dynamic filter
1|2 7.52 7.45 6.69
214 31.15 30.53 26.33
0) 3|6 128.87 125.06 103.61
4|81 533.17 512.26 407.74
5 (10| 2.205.78 2.098.20 1.604.59
6(12]] 9.125.58 8.594.14 6.314.65
7114(|37.753.61 35.201.24 24.850.38
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3

3
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Tab.

6. Performance evaluation of the branch and bound mdtinanteger LPs

3 4

5

6 7 8 9 10 11

12

13

14

15 16

17

18

19

20

© 00O U W N |

I R e i e W S SR Ty
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1.2
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0
1.0

1.3
1.4
1.6
1.5
1.3
1.3
1.3
1.3
1.2
1.2
1.2
1.2
1.2
1.2
1.2
1.1
1.1
1.1
1.2
1.1

19 1.6
19 2.3
1.8 3.5
2.1 2.3
1.9 2.5
1.7 2.5
1.8 2.7
1.9 2.7
1.8 2.9
1.6 2.2
1.6 2.3
1.7 2.1
1.5 2.1
1.8 2.1
1.6 2.0
1.5 24
1.5 19
1.5 1.8
1.3 18
1.4 2.0

2.5
2.4
2.5
3.1
3.0
2.8
3.3
2.9
3.0
2.8
2.7
2.6
2.5
2.6
2.5
2.3
2.4
2.5
2.4
2.5

2.6 3.3 4.1 4.0 4.0 4.8
3.0 3.0 3.4 6.0 4.9 6.0
3.3 4145 475752
4.3 5352516465
394749726478
4449486569 74
4.5 4.7 53 55 7.8 7.2
3.9 48 5.5 5.6 6.4 8.0
4.3 4.050577176
3.8 3.9 5.3 6.3 6.7 6.7
3.34155546574
3.6 44476.16.3 7.2
354242526271
3.5 414855 716.7
3.5 394256 64 6.3
3.7 3.545 55 6.2 64
3.0 39 47 48 5.7 64
3.0 3444515859
2.9 3.2 40 4.5 5.6 64
2.9 3.8 43 455258

5.8
5.5
6.6
7.2
7.5
8.6
8.2
8.8
7.2
7.9
9.6
7.7
8.0
7.4
6.8
8.0
7.1
7.2
7.2
6.7

5.6
5.6
7.1
7.8
8.6
8.3
8.5
8.2
9.3
8.6
9.4
9.5
8.8
9.0
8.8
8.5
8.7
7.8
7.4
7.1

5.5
6.0
7.4
8.7
10.1
8.5
10.1
11.2
10.4
9.4
9.9
10.5
9.5
9.3
9.4
9.4
9.0
8.9
8.7
8.7

55 6.7
54 6.9
8.0 8.5
9.3 9.6
9.3 9.5
10.8 11.0
9.3 12.8
11.2 11.6
10.3 10.1
10.7 11.4
10.1 10.8
11.0 10.2
9.8 10.5
10.5 11.2
9.5 10.0
8.7 10.4
9.5 9.6
9.4 9.3
85 9.5

5.9

6.2

8.3

10.2
9.5

10.6
12.3
12.9
12.8
12.3
12.5
11.3
12.6
12.6
10.8
11.0
11.4
11.3
10.7

7.5

6.8

9.7

11.0
11.8
11.1
12.0
12.4
11.8
13.6
12.3
12.7
12.1
12.6
11.9
11.4
12.3
11.3
11.0

8.8 9.5 98 11.1

Tab. 7. Performance evaluation for integer LP$aj= 1, b) == = 2, ¢) = = 0.5
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1.2
1.4
1.8
2.3

m-+n

iterations

m-+n

8.1
7.2
10.6
10.2
12.3
12.1
13.9
14.2
12.2
13.4
12.4
12.7
13.9
12.7
12.8
12.9
12.9
11.6
12.5
10.8

iterations

12
15
18
21
24

30

1.0
1.5
1.7
2.7
2.8
3.6
4.1
4.5
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20

12
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2.3
3.3
5.2
6.4
8.6
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8.3
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12.1
13.9
13.3
14.4
14.0
14.2
15.6
14.1
14.0
14.0
13.9
14.1
12.9
13.5
11.7
11.3
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ABSTRACT

The paper considers performance issues of a class of vienainimization methods of binary and
linear programs. Problem structures that assure supegiformance of a specific method have been
stipulated with appropriate conclusions drawn.

OCENA SZYBKOSCI DZIALANIA METOD MINIMALIZACJI DLA ZADA N
PROGRAMOWANIA LINIOWEGO W ZBIORACH DYSKRETNYCH

Pawet Kaden, Dariusz Horla
W artykule poruszono zagadnienie szyb&iodziatania metod minimalizacji w zbiorach dyskretnych

(binarne i catkowitoliczbowe) dla zatlprogramowania liniowego. Wskazano przypadki, dla ktbryc
konkretna metoda dziata szybciepmiozostate oraz wyciagnigto wnioski odmie takiego stanu rzeczy.
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