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1. INTRODUCTION

The main advantage of particle filters is their versatilitgcause they can be used even
for cases, where all other methods fail. The three diffenegithods have been presented in
this paper to show, what is the impact of parameter valuestimation quality.

In the next Section the particle filter principle of operatioas been described. In the
third and fourth Sections the Population Monte Carlo andpiigte Importance Sampling
algorithms have been presented. The obtained results legvedhown in fifth Section.

2. PARTICLE FILTER

Particle filter (PF) principle of operation is based on thg&sfiltration [2]

likelihood prior
posterior
,—(;)T p (z(k) |x(k)) p (X<k>|z<k71>)
p (xMZ®) = , (1)

P (yoe) |z<k—1>)
N———

evidence

wherex(®) is a state vector ik-th time stepz(*) is a measurement vector inth time step,
andZ® is a set of all measurement vectors from firsk:tth time step

VAR {z(l) PSS z(k)} . (2)

Both vectorsx*) andz(*), should be considered as the representations of the random
variables X and Z, with specified probability density fuocis (PDFs) [7]:

x) s p(x W) (3
z®) ~ p(zM[xV)) | (4)

where the first conditional PDF is the transition model, dreddecond — measurement model.
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PF is one of the possible implementations of the Bayes filtevhich the posterior PDF is
modelled not by the continuous function, but by a set of plesi It is assumed that eatth
particle contains some valué-(*) (state vector) and a weight'(*). Particles with higher
weights have higher chance that their state vector (vakie)ose to the real state vector.
Hence, the posterior PDF estimated by PF can be written by

N
px®NZ0) = 3" ¢+ Wy, (xoe) _ xn(k)) , (5)
i=1

and, based on the strong law of large numbers, one can sajntbanation contained in
estimated posterior PDF, when a number of particles tendtitoty, is the same as in the
continuous PDF

N—oo A
p(xF|Z®) T= p(x® |z . (6)
The operation principle of a general particle filter has bg@sented in Algorithm 1.
Algorithm 1 — Generic Particle Filter

1. Initialization. DrawN particles from initial PDFc*(?) ~ p(x(?)), set initial values of
particle weights/(?) = L, set the time step = 1.

2. Prediction. Draw N new particles from the importance function
X’L(k) ~ g(x(k)|xi7(k71)7z(k))_

3. Update. Calculate particle weights based on the measmtemodel, the transition
model and the importance function

(k1) (M) [x () p (x| (k1) 7
GO | b=1)_ gy (7)

¢ ® o g

4. Normalization. Normalize weights so that their sum isado 1.
5. Check the condition for resampling. If not met, go to thepst.

6. Resampling. DrawlN new particles based on the posterior PDF obtained in tha-prev

i i) _ 1
ous steps, set new values of particle weigfitd) = -

7. Calculate the estimated value, increase the timeistepk + 1, go to the step 2.

The first PF was proposed by Gordon, Salmond and Smith [5] @818nd was called
Bootstrap filter. Itis the specific case of Algorithm 1, in whi2 assumptions have been made,
i.e. the resampling is performed in each time step, and tpeitance function is equal to the
transition modely(x® [x#=1) z(*)) = p(x*)|x(*=1)), Thanks to this, equation (7) can be
simplified to the form presented in Algorithm 2.



PMC AND AIS IN PARTICLE FILTER 35

Algorithm 2 — Bootstrap Filter

1. Initialization. DrawN particles from the initial PDE>(9) ~ p(x(?)), set the time step
k=1.

2. Prediction. DrawN new particles from the transition modet®) ~ p(x(®) x> (k=1
3. Update. Calculate particle weights based on the measumtanodel

g™ oc p(z®x()) | ®)

4. Normalization. Normalize weights so that their sum isado 1.

5. Resampling. DrawlN new particles based on the posterior PDF obtained in tha-prev
ous steps.

6. Calculate the estimated value, increase the timeistepk + 1, go to the step 2.

The resampling step can be compared to the part of evolutiagorithm, because par-
ticles with higher weights have higher chance for replaatiwhereas particles with lower
weights probably will not be copied to the next time step [9].

The systematic resampling has been chosen by the authdraarzken described below.

Algorithm 3 — Systematic Resampling

1. Initialization. Setj = 1 andS = ¢"(*); draw one random value from uniform distri-
butionu ~ ¢ [0, %)

2. Fori=1..N do
3. WhileS < u do
4. j=j+1
5 8=8+¢®
6. Choose valug?(¥) for replication
7. u=u+ %
8. Set chosen particles as a current set
9. Set new particle weightg:*) = L
There are many others resampling methods, which have beenlitd and compared in

[6].

For more information about particle filtering, references, 4] are recommended.
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3. POPULATION MONTE CARLO

The method presented in Algorithm 2 is very easy to impletemwever is not optimal,
because the information about measurements is not takemacbunt. Hence the optimal
choice of the importance function is [4]

g(x®x®1, 20 oc p(z [x P )p(x P [x V) ©)

However, presented PDF can be analytically calculated forlgpecific and relatively
easy cases. In general, the importance function (9) can eatlrtulated. There are few
methods to draw particles from PDF similar to the optimal,@m& Population Monte Carlo
(PMC) is one of them.

The main assumption of PMC is that different particles cadtasvn from different im-
portance functions [3]. This causes that there may be mdfereit PMC algorithms. The
method proposed by the author has been presented below.

Algorithm 4 — Population Monte Carlo
1. Forp = 1..P, perform steps 2-13
2. If p=1then

k—1)

3. H[O] :}A(( 5 0'[0] = Ox

4. Else
S ppoq) = S qfﬁi] 'Xfﬁ)l]
6. X1 = ZzN:/lpn qf;’,(,ki] ' (szﬁ)l] - “[P*”)Q
7. 0p-11=/Zp-1
8. If opp_q) < T2

_ 9p—2]
9. op-1) = —F

10. Fori = 1..4- perform steps 11-13

i,(k) (k) 2 _ 2
11. X ™9 (X[p] |N[p71]a‘7[p71]) =N (“[pfl]’a[pfl])

ik PV xp)pe Y |xb D)

- i, (k)
(vl a(xi oo, )

13. Remember particle for further calculatioo®(®—1)/Pn+i.(k) — xf;)ﬁk)

12. ¢

All particles have been divided intB, parts (populations) and the particles in each pop-
ulation have been drawn from another importance functiaddi#ional assumption has been
made that standard deviation jrth population can be maximuffi; times smaller than in
the previous population (see steps 8-9).
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4. ADAPTIVE IMPORTANCE SAMPLING

Some another approach to PMC method has been presented(Exgghple 1), where
each particle has been treated as an another populatiorbérwhpopulations equal to the
number of particlesV). In addition, the forgetting factof,., has been proposed (Proposition
2), which causes that old samples have lower weights in casgrato the newest one.

In this article the use olV; index has been proposed — this is the number of additional
particles, which have been drawn from the initial PDF. Withihis the calculations with one
(first) particle causes that the variance is equal to 0. Theiea of this problem may be to
set non-zero (but very small) initial valuesiéf, W x andW x x, but it does not work, when
the first drawn particle has weight smaller than the initele.

The Algorithm of Adaptive Importance Sampling (AlS) usedsimulations, has been
presented below.

Algorithm 5 — Adaptive Importance Sampling
1opyrg =%x*"V 0415 = Ostars

2.W=0, Wx=0, Wxx=0

3. Fori = 1..N perform steps 4-11

4, xt) ~ g (X(k)luAIS’o'z%lIS) =N (Bars: o%rs)
) 00y p o (9 e (1))

g(xi’(k) ‘“AIS;U?QIS)

5_ qiv(k) — p(z
6. W = ng W + qi,(k)

7. Wy = fryg- Wx + g ()

8. Wxx = frg - Wxx + gt (k) . xi: (k) (xi,(k))T
9. Ifi > Ny then

10. pars = %

11. o415 = \/WWXX —tars (Bars)T

The square root in the step 11 means the Cholesky decongpoisita general case.

5. SMULATION RESULTS

The average root mean square error (aARMSE) has been chadenestimation quality

B
1
aRMSE = — > RMSE; , (10)

i=1

RMSE; = /MSE; , (11)
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IR ACEINCIA
MSE; = MZ(% —; ) ,
k=1
whereB is the number of state variable¥ is the simulation length, and the state variables
with hat and plus are the estimated and the real values risglgc
The object used in simulations has been presented below

(12)

o) = k=1 4y (-1)
NORSNONENON

(13)
(14)

wherev andn are the Gaussian noises ¢~ N(0,1), n ~ N(0,1) ). The obtained results
have been presented in Figure 1.

2

—BF

——PMC, Td:Z'O

o PMC, Td:1'5

-o- PMC, Td:1.2

-%x-PMC, T=1.1

| | I | | I
20 30 50 100 200 300 500
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1000

Fig. 1. Results for object described in (13-14); paramesedun PMC methodP,, = 5; parameters
used in AIS methodj,y = 0.98, ostart = 0.1

The impact of the threshold; in PMC method and the number of particl& in AIS
method have been checked. As one can see, lower valiig pfovides better estimation
quality. The same effect has a greater valu®’ef which have been used in initial calculations
of mean and standard deviation in AIS method.

PMC and AIS methods are particularly useful in cases wher@sorement model is rel-
atively thin or the measurement redundancy occurs. Therefoother object has been used,
with one state variable and 4 measurements

20 = gD (-1 (15)
7 =a® 4l
2" = a® 4l
2 = e 4 nf (16)

Z4 =T

(k) + nflk) .
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Gaussian noises have been used the same as in (13-14), arduli® have been presented
in the Figure 2.

1.6,
—BF
—«—PMC, Pn=3
1.4 s PMC,P =5
’ - PMC, P, =7
-x-PMC, P =10
1.2 AIS, f=0.95
_-AlS, f =0.97
w 0
u _--AIS,f =0.99
= 1 AIS, =100
% ——AIS, f =1

08

0.6

| | I | | |
0'30 30 50 100 200 300 500 1000
Number of particles N

Fig. 2. Results for object described in (15-16); parametediuin PMC method7,; = 1.1; parameters
used in AIS methodN; = 10, ostart = 0.1

As one can see, the higher number of populations in PMC metbsdts in the lower
final aRMSE value. Hence the AIS method should provide the dpeality of estimation,
what can be met for higher number of particl¥s The best results for AIS method have
been obtained for forgetting factor equalftg = 0.97.

If the PMC and AIS methods “look for” the extremes, methodsudth work well also
in cases, where the information about transition or measein¢é model is wrong. Therefore
the same model as in the (13)—(14) has been used, but withemmbisesw ~ A(0, 12)
andn,, ~ N(0,32%), but the values in algorithms remained unchanged. Additignthe
AIS algorithm has been modified, i.e. the initial value ofstard deviatiorr 475 has been
assigned only in the first time step (“old-std”), and not ielvtime step (“new-std”) as in
the previous simulations. Thanks to this, the;s value should be close to the optimal for
most of the particles. The results have been shown in Figure 3

Based on the obtained results it can be said that for cased)iagih measurement model
is unknown, the both PMC and AIS methods could provide betstimation quality than
the simple BF method. It can be seen that proposed modificatidlS algorithm does not
provide better results.

It should be also noted that in this case the best results & Ridthod have been obtained
for the highest value of threshold; (otherwise than in the first simulations).

6. SUMMARY
The simple particle filter, i.e. Bootstrap Filter methodddawo another algorithms have

been presented in this article. Based on the performed ationk one can see that in most
cases the BF method provides the best estimation qualign & very small number of
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Fig. 3. Results for object described in (15-16), with insezhvariance of measurement model; param-

eter used in PMC method?, = 10; parameters used in AIS methaly = 10, ostars = 0.1

particles. So why one should use the other methods? It sheuldted that presented results
are related to the object with one state variable. In such tias BF algorithm is sufficient
even for very smallV. However, the number of needed particles grows expongntiéth
the object dimension. Therefore, for object with a few or estate variables, one should use
a method different than BF.

In the future, studies will be extended by the multidimensiacases, where the utility of

the presented methods will be especially visible.
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ABSTRACT

Population Monte Carlo and Adaptive Importance Samplinghods have been presented and com-
pared in the paper. The impact of parameters on the estimgtiality of the plant also has been
studied.

POPULACJA MONTE CARLO | ADAPTACYJINA FUNKCJA WANOSCI W FILTRZE
CZASTECZKOWYM

Piotr Kozierski

W artykule przedstawiono i poréwnano metody Populacja Mdodarlo oraz Adaptacyjna Funkcja
Wazndsci. Sprawdzono réwniewptyw parametrow tych metod na jeoestymacii stanu obiektu.
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