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1. INTRODUCTION

The main advantage of particle filters is their versatility,because they can be used even
for cases, where all other methods fail. The three differentmethods have been presented in
this paper to show, what is the impact of parameter values on estimation quality.

In the next Section the particle filter principle of operation has been described. In the
third and fourth Sections the Population Monte Carlo and Adaptive Importance Sampling
algorithms have been presented. The obtained results have been shown in fifth Section.

2. PARTICLE FILTER

Particle filter (PF) principle of operation is based on the Bayes filtration [2]
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wherex(k) is a state vector ink-th time step,z(k) is a measurement vector ink-th time step,
andZ(k) is a set of all measurement vectors from first tok-th time step

Z(k) =
{

z(1) z(2) . . . z(k)
}

. (2)

Both vectors,x(k) andz(k), should be considered as the representations of the random
variables X and Z, with specified probability density functions (PDFs) [7]:

x(k) ∼ p(x(k)|x(k−1)) , (3)

z(k) ∼ p(z(k)|x(k)) , (4)

where the first conditional PDF is the transition model, and the second – measurement model.
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PF is one of the possible implementations of the Bayes filter,in which the posterior PDF is
modelled not by the continuous function, but by a set of particles. It is assumed that eachi-th
particle contains some valuexi,(k) (state vector) and a weightqi,(k). Particles with higher
weights have higher chance that their state vector (value) is close to the real state vector.
Hence, the posterior PDF estimated by PF can be written by

p̂(x(k)|Z(k)) =

N∑

i=1

qi,(k)δD

(

x(k) − xi,(k)
)

, (5)

and, based on the strong law of large numbers, one can say thatinformation contained in
estimated posterior PDF, when a number of particles tends toinfinity, is the same as in the
continuous PDF

p(x(k)|Z(k))
N→∞

= p̂(x(k)|Z(k)) . (6)

The operation principle of a general particle filter has beenpresented in Algorithm 1.

Algorithm 1 – Generic Particle Filter

1. Initialization. DrawN particles from initial PDFxi,(0) ∼ p(x(0)), set initial values of
particle weightsqi,(0) = 1

N , set the time stepk = 1.

2. Prediction. Draw N new particles from the importance function
xi,(k) ∼ g(x(k)|xi,(k−1), z(k)).

3. Update. Calculate particle weights based on the measurement model, the transition
model and the importance function

qi,(k) ∝ qi,(k−1) p(z(k)|xi,(k))p(xi,(k)|xi,(k−1))

g(xi,(k)|xi,(k−1), z(k))
. (7)

4. Normalization. Normalize weights so that their sum is equal to1.

5. Check the condition for resampling. If not met, go to the step 7.

6. Resampling. DrawN new particles based on the posterior PDF obtained in the previ-
ous steps, set new values of particle weightsqi,(k) = 1

N .

7. Calculate the estimated value, increase the time stepk = k + 1, go to the step 2.

The first PF was proposed by Gordon, Salmond and Smith [5] in 1993, and was called
Bootstrap filter. It is the specific case of Algorithm 1, in which 2 assumptions have been made,
i.e. the resampling is performed in each time step, and the importance function is equal to the
transition modelg(x(k)|x(k−1), z(k)) = p(x(k)|x(k−1)). Thanks to this, equation (7) can be
simplified to the form presented in Algorithm 2.
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Algorithm 2 – Bootstrap Filter

1. Initialization. DrawN particles from the initial PDFxi,(0) ∼ p(x(0)), set the time step
k = 1.

2. Prediction. DrawN new particles from the transition modelxi,(k) ∼ p(x(k)|xi,(k−1)).

3. Update. Calculate particle weights based on the measurement model

qi,(k) ∝ p(z(k)|xi,(k)) . (8)

4. Normalization. Normalize weights so that their sum is equal to1.

5. Resampling. DrawN new particles based on the posterior PDF obtained in the previ-
ous steps.

6. Calculate the estimated value, increase the time stepk = k + 1, go to the step 2.

The resampling step can be compared to the part of evolutionary algorithm, because par-
ticles with higher weights have higher chance for replication, whereas particles with lower
weights probably will not be copied to the next time step [9].

The systematic resampling has been chosen by the author, andhas been described below.

Algorithm 3 – Systematic Resampling

1. Initialization. Setj = 1 andS = q1,(k); draw one random value from uniform distri-
butionu ∼ U

[
0, 1

N

)

2. Fori = 1..N do

3. WhileS < u do

4. j = j + 1

5. S = S + qj,(k)

6. Choose valuexj,(k) for replication

7. u = u + 1
N

8. Set chosen particles as a current set

9. Set new particle weightsqi,(k) = 1
N

There are many others resampling methods, which have been described and compared in
[6].

For more information about particle filtering, references [1, 2, 4] are recommended.
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3. POPULATION MONTE CARLO

The method presented in Algorithm 2 is very easy to implement, however is not optimal,
because the information about measurements is not taken into account. Hence the optimal
choice of the importance function is [4]

g(x(k)|x(k−1), z(k)) ∝ p(z(k)|x(k))p(x(k)|x(k−1)) . (9)

However, presented PDF can be analytically calculated onlyfor specific and relatively
easy cases. In general, the importance function (9) can not be calculated. There are few
methods to draw particles from PDF similar to the optimal one, and Population Monte Carlo
(PMC) is one of them.

The main assumption of PMC is that different particles can bedrawn from different im-
portance functions [3]. This causes that there may be many different PMC algorithms. The
method proposed by the author has been presented below.

Algorithm 4 – Population Monte Carlo

1. Forp = 1..Pn perform steps 2–13

2. If p = 1 then

3. µ[0] = x̂(k−1), σ[0] = σx

4. Else

5. µ[p−1] =
∑N/Pn

i=1 q
i,(k)
[p−1] · x

i,(k)
[p−1]

6. Σ[p−1] =
∑N/Pn

i=1 q
i,(k)
[p−1] ·

(

x
i,(k)
[p−1] − µ[p−1]

)2

7. σ[p−1] =
√

Σ[p−1]

8. If σ[p−1] <
σ[p−2]

Td

9. σ[p−1] =
σ[p−2]

Td

10. Fori = 1.. N
Pn

perform steps 11–13

11. x
i,(k)
[p] ∼ g

(

x
(k)
[p] |µ[p−1], σ

2
[p−1]

)

= N
(

µ[p−1], σ
2
[p−1]

)

12. q
i,(k)
[p] =

p(z(k)|x
i,(k)

[p]
)p(x

i,(k)

[p]
|xi,(k−1))

g
(

x
i,(k)

[p]
|µ[p−1],σ

2
[p−1]

)

13. Remember particle for further calculationsxN(p−1)/Pn+i,(k) = x
i,(k)
[p]

All particles have been divided intoPn parts (populations) and the particles in each pop-
ulation have been drawn from another importance function. Additional assumption has been
made that standard deviation inp-th population can be maximumTd times smaller than in
the previous population (see steps 8–9).
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4. ADAPTIVE IMPORTANCE SAMPLING

Some another approach to PMC method has been presented in [8](Example 1), where
each particle has been treated as an another population (number of populations equal to the
number of particlesN ). In addition, the forgetting factorfrg has been proposed (Proposition
2), which causes that old samples have lower weights in comparison to the newest one.

In this article the use ofNf index has been proposed – this is the number of additional
particles, which have been drawn from the initial PDF. Without this the calculations with one
(first) particle causes that the variance is equal to 0. The solution of this problem may be to
set non-zero (but very small) initial values ofW , WX andWXX , but it does not work, when
the first drawn particle has weight smaller than the initial value.

The Algorithm of Adaptive Importance Sampling (AIS) used insimulations, has been
presented below.

Algorithm 5 – Adaptive Importance Sampling

1. µAIS = x̂(k−1), σAIS = σstart

2. W = 0, WX = 0, WXX = 0

3. Fori = 1..N perform steps 4–11

4. xi,(k) ∼ g
(
x(k)|µAIS , σ2

AIS

)
= N

(
µAIS , σ2

AIS

)

5. qi,(k) = p(z(k)|xi,(k))p(xi,(k)|xi,(k−1))

g(xi,(k)|µAIS ,σ2
AIS)

6. W = frg · W + qi,(k)

7. WX = frg · WX + qi,(k) · xi,(k)

8. WXX = frg · WXX + qi,(k) · xi,(k)
(
xi,(k)

)T

9. If i > Nf then

10. µAIS = WX

W

11. σAIS =
√

WXX

W − µAIS · (µAIS)T

The square root in the step 11 means the Cholesky decomposition in a general case.

5. SIMULATION RESULTS

The average root mean square error (aRMSE) has been chosen asthe estimation quality

aRMSE =
1

B

B∑

i=1

RMSEi , (10)

RMSEi =
√

MSEi , (11)
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MSEi =
1

M

M∑

k=1

(

x̂
(k)
i − x

(k)+
i

)2

, (12)

whereB is the number of state variables,M is the simulation length, and the state variables
with hat and plus are the estimated and the real values respectively.

The object used in simulations has been presented below

x(k) = x(k−1) + v(k−1) , (13)

z(k) = x(k) + n(k) , (14)

wherev andn are the Gaussian noises (v ∼ N (0, 1), n ∼ N (0, 1) ). The obtained results
have been presented in Figure 1.
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Fig. 1. Results for object described in (13–14); parameter used in PMC method:Pn = 5; parameters
used in AIS method:frg = 0.98, σstart = 0.1

The impact of the thresholdTd in PMC method and the number of particlesNf in AIS
method have been checked. As one can see, lower value ofTd provides better estimation
quality. The same effect has a greater value ofNf , which have been used in initial calculations
of mean and standard deviation in AIS method.

PMC and AIS methods are particularly useful in cases where measurement model is rel-
atively thin or the measurement redundancy occurs. Therefore another object has been used,
with one state variable and 4 measurements

x(k) = x(k−1) + v(k−1) , (15)

z
(k)
1 = x(k) + n

(k)
1 ,

z
(k)
2 = x(k) + n

(k)
2 ,

z
(k)
3 = x(k) + n

(k)
3 , (16)

z
(k)
4 = x(k) + n

(k)
4 .
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Gaussian noises have been used the same as in (13–14), and theresults have been presented
in the Figure 2.
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Fig. 2. Results for object described in (15–16); parameter used in PMC method:Td = 1.1; parameters
used in AIS method:Nf = 10, σstart = 0.1

As one can see, the higher number of populations in PMC methodresults in the lower
final aRMSE value. Hence the AIS method should provide the best quality of estimation,
what can be met for higher number of particlesN . The best results for AIS method have
been obtained for forgetting factor equal tofrg = 0.97.

If the PMC and AIS methods “look for” the extremes, methods should work well also
in cases, where the information about transition or measurement model is wrong. Therefore
the same model as in the (13)–(14) has been used, but with another noises:v ∼ N (0, 12)
andnm ∼ N (0, 32), but the values in algorithms remained unchanged. Additionally, the
AIS algorithm has been modified, i.e. the initial value of standard deviationσAIS has been
assigned only in the first time step (“old-std”), and not in every time step (“new-std”) as in
the previous simulations. Thanks to this, theσAIS value should be close to the optimal for
most of the particles. The results have been shown in Figure 3.

Based on the obtained results it can be said that for cases, inwhich measurement model
is unknown, the both PMC and AIS methods could provide betterestimation quality than
the simple BF method. It can be seen that proposed modification in AIS algorithm does not
provide better results.

It should be also noted that in this case the best results of PMC method have been obtained
for the highest value of thresholdTd (otherwise than in the first simulations).

6. SUMMARY

The simple particle filter, i.e. Bootstrap Filter method, and two another algorithms have
been presented in this article. Based on the performed simulations one can see that in most
cases the BF method provides the best estimation quality, even for very small number of
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Fig. 3. Results for object described in (15–16), with increased variance of measurement model; param-
eter used in PMC method:Pn = 10; parameters used in AIS method:Nf = 10, σstart = 0.1

particles. So why one should use the other methods? It shouldbe noted that presented results
are related to the object with one state variable. In such case the BF algorithm is sufficient
even for very smallN . However, the number of needed particles grows exponentially with
the object dimension. Therefore, for object with a few or more state variables, one should use
a method different than BF.

In the future, studies will be extended by the multidimensional cases, where the utility of
the presented methods will be especially visible.
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[6] Kozierski P., Lis M., Ziętkiewicz J.,Resampling in Particle Filtering – Comparison, Studia z Au-
tomatyki i Informatyki, Vol. 38, 2013, pp. 35–64.

[7] Schon T. B., Wills A., Ninness B.,System Identification of Nonlinear State-space Models, Auto-
matica, Vol. 47(1), 2011, pp. 39–49.

[8] Šmídl V., Hofman R.,Adaptive Importance Sampling in Particle Filtering, In Information Fusion,
16th International Conference on (FUSION), 2013, pp. 9–16.



PMC AND AIS IN PARTICLE FILTER 41

[9] Thrun S., Burgard W., Fox D.,Probabilistic robotics, MIT Press, Cambridge, MA, 2005, pp. 67–90.

ABSTRACT

Population Monte Carlo and Adaptive Importance Sampling methods have been presented and com-
pared in the paper. The impact of parameters on the estimation quality of the plant also has been
studied.

POPULACJA MONTE CARLO I ADAPTACYJNA FUNKCJA WȦZNOŚCI W FILTRZE
CZĄSTECZKOWYM

Piotr Kozierski

W artykule przedstawiono i porównano metody Populacja Monte Carlo oraz Adaptacyjna Funkcja
Ważnósci. Sprawdzono również wpływ parametrów tych metod na jakość estymacji stanu obiektu.
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