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19. Resampling – essence of particle filter 
 

Piotr Kozierski1), Marcin Lis2), Andrzej Królikowski3), Adam Gulczyński4) 
 

19.1. Introduction 
Particle Filter (PF) based on the Monte Carlo method is sometimes called 

Sequential Monte Carlo method (SMC). However [Doucet, Johansen 2009] notes that 
SMC is the wider topic than PF. Particle prediction and particle smoothing are another 
algorithms belonging to SMC. In smoothing, to estimate value of state variable kx  

measurements from further time steps KkY +  are used. Whereas in prediction based on 

measurements to the current time kY  the future value of state variable Kkx +  is estimated. 

In filtering estimation of state variable value is based on measurements in the same 
moment kY . This chapter is dedicated to filtering.  

Particle Filter history dates back to the mid-twentieth century, when Norbert 
Wiener proposed something similar to particle filter, but only in the 80`s computing 
power has enabled for further work in this direction [Simon 2006]. The breakthrough 
came in 1993, when Gordon, Salmond and Smith proposed in [Gordon et al. 1993] 
algorithm, which has been devoid the biggest flaw – degeneration (the algorithm is 
described in subchapter “Bootstrap Filter”). The uniqueness of this algorithm is due the 
use of resampling. 
 
19.2. Sequential Bayesian Filter 

The operation principle of PF is based on Bayes theorem 

 ( ) ( ) ( )
( )Bp

ApA|Bp
B|Ap =  (1) 

i.e. on the theorem on conditional probability (probability of the event A, given the event 
B), where A and B are some random variables. To use Bayes theorem, state variables and 
measurements must be taken as random variables with concrete probability densities: 
 ( )1−kkk x|xp~x  (2) 

 ( )kkk x|yp~y  (3) 

Expression (2) means that state variable is a random variable with conditional probability 
density function (PDF), where ( )1−kk x|xp  is the transition model. Measurement also is 

random variable with conditional PDF, where ( )kk x|yp  means measurement model. 

With these assumptions one can write Bayes theorem for state variables and 
measurements 

 ( ) ( ) ( )
( )k

kkk
kk Yp

XpX|Yp
Y|Xp =  (4) 

where it was assumed that 
 { }kk x,...,x,xX 21=  (5) 

 { }kk y,...,y,yY 21=  (6) 

Equation (4) concerns joint density function, however in practice more often 
marginal density ( )kk Y|xp  is estimated. It is also assumed that system model is a Hidden 

Markov Model (HMM) – it means that values of state variables depends only on values of 
state variables in previous time step and values of measurements depends only on values 
of state variables in current time step 
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 ( )11 −−= kkkk v,xfx  (7) 

 ( )kkkk n,xhy =  (8) 

where 1−kv  is a process noise, whereas kn  is a measurement noise. It is assumed that PDF 

of all noises are known. System model (7-8) also is given. It should be noted that 
knowledge about system and measurements models (2-3) is equivalent to knowledge 
about expressions (7-8). 

Using above assumptions one can obtain equation describing Sequential Bayesian 
Filter (SBF) 

 ( ) ( ) ( )
( )1

1

−

−=
kk

kkkk
kk Y|yp

Y|xpx|yp
Y|xp  (9) 

The main task of filter (9) is posterior PDF ( )kk Y|xp  estimation. There are also 

likelihood ( )kk x|yp , prior PDF ( )1−kk Y|xp  and evidence ( )1−kk Y|yp  (normalizing 

coefficient). 
Prior can be written as integral 

 ( ) ( ) ( ) 11111 −−−−− ∫= kkkkkkk dxY|xpx|xpY|xp  (10) 

in which ( )11 −− kk Y|xp  is a posterior from previous time step, and PDF ( )1−kk x|xp  is 

given by transition model (2). Since the evidence is a number, equation (9) can be written 
as 
 ( ) ( ) ( )1−∝ kkkkkk Y|xpx|ypY|xp  (11) 

where symbol “∝ ” means “directly proportional”. 
In Sequential Bayesian Filter (9) there are 2 main steps. First it must be calculated 

prior PDF (10) – this is prediction step. In second step there is calculated the posterior 
PDF (11) – this is update step. 

Presented derivation is strongly condensed – full derivation can be found in [Candy 
2009] and [Kozierski, Lis 2012]. 
 
19.3. Particle filter 

Particle filter principle of operation is the same as SBF. Difference between them 
lies only in the posterior representation – in PF it is a set of particles, which are composed 
of values i

kx  and weights i
kq . With this approach calculations can be separately 

performed for each sample. This provides opportunity to implement parallel computations 
and speeds up algorithms (see [Mountney et al. 2011, Sutharsan et al. 2012]).  

Particle filter is used in many different areas, such as robotics (robot localization 
problem [Thrun 2002, Woo et al. 2006]), image processing (object tracking [Chang et al. 
2005]) and identification (estimation of system parameters [Poyiadjis et al. 2005, Schön  
et al. 2011]). 

PF algorithm based on Importance Sampling (IS) method. IS assums that there are 
two probability density functions: 

o ( )xf IS
 – from which should be draw, but this is difficult (or impossible), 

o ( )xgIS
 – from which it is easy to draw. 

PDF ( )xgIS
 is used to draw samples, and by assigning weights to the values, one 

can obtain PDF ( )xf IS
 properties. Weights should be proportional to the ratio 

 ( )
( )i

IS

i
ISi

IS xg

xf
w ∝  (12) 
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so that more often drawn values from ( )xgIS  have respectively less weights. Operation of 

method is shown in Fig.1. 

 
Fig.1. Principle of Importance Sampling method operation  

 
19.3.1. Sequential Importance Sampling 

Sequential Importance Sampling (SIS) method is basic variation of PF, but 
unfortunately resampling absence causes that it is completely useless. 

Using the importance sampling method (12) and SBF (9) one can derived 
expression for particle weight values (derivation of expression was abandoned, however it 
can be found in many articles, e.g. [Arulampalam et al. 2002, Kozierski, Lis 2012]). 

 ( ) ( )
( )k

i
k

i
k

i
k

i
k

i
kki

k
i
k y,x|xg

x|xpx|yp
qq

1

1
1

−

−
−∝  (13) 

where i
kq  is weight of i-th particle in time step k , ( )⋅g  is a PDF used to draw (as in IS 

method). The algorithm of the SIS method is presented below. 
 
Algorithm 1 (SIS method) 

1. Draw N  particles from initial PDF ( )00 xp~xi , set initial weights 
N

iq 1
0 = , 

set time step 1=k . 
2. Draw N  particles from proposed importance density ( )k

i
kk

i
k y,x|xg~x 1− . 

3. Calculate weights according to formula 

 ( ) ( )
( )k

i
k

i
k

i
k

i
k

i
kki

k
i
k y,x|xg

x|xpx|yp
qq~

1

1
1

−

−
−=  (14) 

4. Normalize weights 

 

∑
=

= N

j

j
k

i
ki

k

q~

q~
q

1

 (15) 

5. Increase time step 1+= kk , go to 2nd algorithm step. 
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Note that importance density ( )k
i
k

i
k y,x|xg 1−  may be dependent on state variable 

value from previous step ikx 1− , and also on measurement value ky . However, it does not 

mean that this PDF must depend on both of these values. Importance density may depend 
only on one of these values (this case was used in Bootstrap Filter), and can also be 
completely independent (but then algorithm performance will be much worse). 

The biggest disadvantage of SIS is that after few time steps degeneration occurs. In 
this case, all particle weights, except one, have values close to zero – see Fig.2. 

 
Fig.2. SIS degeneration – first 6 steps evaluation of algorithm 1 

 
The main problem results from expression (14) in which weights depends on 

weights from previous step. If particle weight is equal to zero, in all subsequent steps it 
will also be zero, so the particle will be useless. To continue to use it, the “reset” is 
required, e.g. using resampling. 
 
19.3.2. Sequential Importance Resampling 

Sequential Importance Resampling method (SIR) has been extended, in 
comparison to the SIS, by only two steps – one is check that if resampling is necessary, 
second is execution of resampling. SIR principle of operation is shown in Algorithm 2. 

 
Algorithm 2 (general SIR method) 

1. Draw N  particles from initial PDF ( )00 xp~xi , set initial weights equal to 

N
iq 1
0 = , set time step 1=k . 

2. Draw N  particles from proposed importance density ( )k
i
kk

i
k y,x|xg~x 1− . 

3. Calculate particle weights according to equation (14). 
4. Normalize weights according to (15). 
5. Check condition of resampling – if not satisfied go to step 7 of algorithm. 
6. Do resampling. 
7. Increase time step 1+= kk , go to step 2 of algorithm. 

 
More information about resampling and condition of resampling will be presented 

later in this chapter. 
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The task of particle filter is posterior estimation. However, using PF as observer, 
more needed is state variable estimation – usually obtained by calculating expected value 
of posterior PDF [Zieliński 2007] 

 [ ] ( ) ∑∑
==

⋅=⋅==
N

i

i
k

i
k

N

i

i
k

i
kkk qxxpxxEx̂

11

 (16) 

It should be found between the steps 6 and 7 of Algorithm 2. 
It was assumed that algorithms with resampling are included in family of SIR 

methods, and algorithms without resampling – family of SIS methods. Therefore, the vast 
majority of PF based on SIR method, although operation principle of some PF algorithms 
may differ from Algorithm 2. Examples of such filters are Auxiliary PF [Pitt, Shephard 
1999], Rao-Blackwellised PF [Doucet et al. 2000, Handeby et al. 2010], Distributed PF 
[Bashi et al. 2003], Gaussian PF [Kotecha, Djurić 2003], Unscented PF [Merwe et al. 
2000], Linearized PF [Candy 2009], Multiple Model PF [Doucet et al. 2001] and many 
others. 
 
19.3.3. Bootstrap Filter 

Bootstrap Filter (BF) is one of the standard SIR varieties. Was proposed in 1993 by 
Gordon, Salmond and Smith [Gordon et al. 1993]. Transition model is proposed as 
importance density in this method 
 ( ) ( )11 −− = kkkkk x|xpy,x|xg  (17) 

This choice is the best, if one takes into account the minimization of conditional 
weight variance [Brzozowska-Rup, Dawidowicz 2009]. It also causes simplification 
formula (14), which takes the form 
 ( )i

kk
i
k

i
k x|ypqq~ ⋅= −1  (18) 

However assumption (17) also causes negative effects, because transition model is 
independent from measurements, which may result in lack of resistance to outliers 
[Brzozowska-Rup, Dawidowicz 2009]. 

The second assumption in BF algorithm is abandonment of resampling condition 
(step 5 of Algorithm 2). Additionally, after each resampling all weights of new particles 
are set to 

N
1 , and since all weights are equal, equation (18) may be written as  

 ( )i
kk

i
k x|ypq~ =  (19) 

BF algorithm is shown below. 
 

Algorithm 3 (Bootstrap Filter) 
1. Draw N  particles from initial PDF ( )00 xp~xi , set initial weight values 

equal to 
N

iq 1
0 = , set initial time step 1=k . 

2. Draw N  new particles from proposed importance density ( )i
kk

i
k x|xp~x 1− . 

3. Calculate particle weights in accordance with (19). 
4. Normalize weights (15). 
5. Resampling 
6. Increase time step 1+= kk , go to step 2 of algorithm. 

 
19.4. Resampling 

As has been shown, PF needs resampling to work properly. Degeneration does not 
occur, because particles with low weights are replaced with others (with higher weights). 
Thrun rightly pointed out that the resampling can be compared to probabilistic 
implementation of Darwin`s theory of evolution by natural selection [Woo et al. 2006]. 
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But resampling also introduces few disadvantages, e.g. after this step of algorithm 
particles are not independent any more. The second problem is related to the computation 
time – resampling is the most complex step in algorithm (all other steps are linearly 
dependent on the number of particles). Thus, the attention will be given to computational 
complexity of individual resampling methods. 

The purpose of resampling is random selection of new set of particles based on the 
current posterior – the greater particle weight is, the more likely that this particle value 
will be drawn. All new particles are assigned a weight 

N
i
kq 1= . 

To determine whether resampling is required, one should find Effective Sample 
Size (ESS). However accurate value can not be calculate, so expression for estimated 
value is used [Doucet et al. 2000] 

 

( )∑
=

= N

i

i
k

ESS

q
N̂

1

2

1  (20) 

ESS can be interpreted as minimum particles number needed to submit posterior PDF. 

Therefore if a lot of particle weights are close to zero, then ESSN̂  value decreases 

(particles with low weights can be omitted). ESSN̂  ranges from 1 (one particle has weight 

equal to 1, and all others particle weights are equal to 0) to N  (after resampling, when all 
weights are equal). 

It should be taken a certain threshold value TN . If ESS is less than TN , then 

resampling is required. Typically the threshold is set at half of particles number 
2
N

TN =  

[Doucet, Johansen 2009]. 
 
19.4.1. Multinomial resampling 

In multinomial resampling N particles should be drawn from posterior PDF 
assuming that chance to choice the value i

kx  is exactly i
kq  (weights are normalized, and 

so their sum is 1). This algorithm is simple and most often cited in the literature. 
 
Algorithm 4 (multinomial resampling) 

1. Prepare discrete cumulative distribution function (CDF) N:
kS1  based on 

particle weights, so that 11
kk qS =  and 1=N

kS . 

2. For N,...i 1=  perform steps 3-5. 
3. Draw value from uniform distribution ( )10,U~d , set variable value 

1=j . 

4. As long as dS j
k <  increment variable 1+= jj . 

5. Remember drawn value j
k

i
k xx =( . 

6. The old set of samples replace by saved values kk xx
(= , set new weights for 

N,...,i 1= : 
N

i
kq 1= . 

 
Algorithm 4 is simple to implement, but unfortunately computational complexity is 

( )2NO . This notation applies “asymptotic upper bound” and means that in the worst case 

algorithm execution time is proportional to the square of particles number [Cormen et al. 
2004] (double the number of particles will result in a fourfold increase in computation 
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time). Quadratic computational complexity is not a good result, and it is caused by linear 
search in step 4 of Algoritm 4. This step can be replaced by binary search, which will 
speed up resampling and reduce the complexity to ( )NlgNO . Multinomial resampling 

algorithm with binary search is shown below. 
 
Algorithm 5 (multinomial resampling with binary search) 

1. Prepare discrete CDF N:
kS1  based on particle weights, so that 11

kk qS =  and 

1=N
kS . 

2. For N,...i 1=  perform steps 3-7. 
3. Draw value from uniform distribution ( )10,U~d , set variable values 

[ ]roundNj 2=  and 
4
Nr = . 

4. As long as ( )dS j
k <  or ( ) ( ) ( )( )dSANDdSANDj j

k
j

k ≥>> −11  perform 

steps 5-6 

5. If dS j
k <  then [ ]roundrjj += , and if not [ ]roundrjj −= . 

6. If 1>r  then 
2
rr = , and if not 1=r . 

7. Remember drawn value j
k

i
k xx =( . 

8. The old set of samples replace by saved values kk xx
(= , set new weights for 

N,...,i 1= : 
N

i
kq 1= . 

 
Steps 3-6 are proposed implementation of binary search without recurrence 

function. Variable r  means “move” which will be executed by variable j  and every 

iteration this “move” is reduced by half. After the loop 4-6 variable j  satisfies inequality 
j

k
j

k SdS ≤<−1 . 

In [Launay et al. 2012] authors proposed to first draw all random values N:d1 , then 

sort them, and having sorted values sort
N:d1  one can select N  new values. However the sort 

complexity is ( )NlgNO , therefore the approach taken in [Launay et al. 2012] has the 

same computational complexity as the Algorithm 5. 
 
19.4.2. Systematic resampling 

In this resampling method it is assumed that uniform distribution is divided into N  
equal parts, and from each part there is drawn only 1 random value. This allows each 
successively drawn value to be greater than the previous one, and it is possible to 
implement resampling with linear complexity ( )NO . Operation of resampling presents 

Algorithm 6. 
 
Algorithm 6 (systematic resampling) 

1. Prepare discrete CDF N:
kS1  based on particle weights, so that 11

kk qS =  and 

1=N
kS . 

2. Set initial variable value 1=j . 

3. For N,...i 1=  perform steps 4-6. 
4. Draw random value from partial uniform distribution ( )N

i
N
i ,U~d 1− . 
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5. As long as dS j
k <  increase variable 1+= jj . 

6. Remember drawn value j
k

i
k xx =( . 

7. The old set of samples replace by saved values kk xx
(= , set new weights for 

N,...,i 1= : 
N

i
kq 1= . 

 
19.4.3. Residual resampling 

Residual resampling is also called remainder resampling [Douc et al. 2005]. In this 
method there is assumed that for all particles which weights are greater than 

N
1 , new 

particles are arbitrarily “drawn” – the greater weight, the more copies of particle. But this 
is the way to select only a part of particles, and the rest needs to be drawn using previous 
methods (multinomial resampling with binary search was used). Resampling principle of 
operation is shown in Algorithm 7. 

 
Algorithm 7 (residual resampling) 

1. Set value of variable NNr = . 

2. For N,...i 1=  perform steps 3-5. 

3. Calculate  i
k

i qNm ⋅=  and i
rr mNN −= . 

4. for im,...j 1=  add particle to the “drawn” [ ]i
kkk x,xx

)) = . 

5. If 0>im , then ii
k

i
k mqNq −⋅=( , and if not i

k
i
k qq =( . 

6. Normalize weights ∑= j
k

i
k

i
k qqq

(()  

7. Prepare discrete CDF N:
kS1  based on particle weights (compute in step 6), so 

that 11
kk qS
)=  and 1=N

kS . 

8. For rN,...i 1= , using N:
kS1  perform resampling (Algorithm 5) and add 

drawn particles to kx
) . 

9. The old set of samples replace by saved values kk xx
)= , set new weights for 

N,...i 1= : 
N

i
kq 1= . 

 
One can see that the greater weight values (the smaller ESS value), the better for 

algorithm, because there will be fewer particles to draw with multinomial resampling. 
Algorithm 5 was used, so Algorithm also has computational complexity ( )NlgNO . 

 
19.4.4. Evolutive resampling 

The new approach to resampling in this chapter is proposed and assumed that 
resampling applies only to selected particles with low or zero weight. One wants to 
combine advantages of normal resampling (reset particles with low weight) and high 
speed method (reducing the number of particles which must be resampled). Operation 
principle of this resampling is presented in Algorithm 8. 

 
Algorithm 8 (evolutive resampling) 

1. Prepare discrete CDF N:
kS1  based on particle weights, so that 11

kk qS =  and 

1=N
kS , set threshold TQ , set initial value of variable 0=omp . 
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2. For N,...i 1=  check if the weight is fewer then threshold TQ , and if yes, 

then increase variable 1+= omom pp  and add index number to array 

[ ]i,rr eses = . 

3. Set variable 1=j . 

4. For omp,...i 1=  perform steps 5-7. 

5. Draw random value from partial uniform distribution ( )
omom p
i

p
i ,U~d 1− . 

6. As long as dS j
k <  increment variable 1+= jj . 

7. Remember drawn value j
k

r
k xx

i
es = , set new weight 

N
r
k

i
esq 1= . 

8. Normalize weights kq . 

 
One can see that all these steps are linearly dependent on the particles number, so 

computational complexity is ( )NO . Proposed name refers to the theory of evolution by 

natural selection, because only particles with small weights are subjected to resampling, 
therefore particles with the worst adaptation. 
 
19.4.5. Notes 

In the literature one can find several other proposals for resampling, for example, 
Local Monte Carlo Resampling [Liu, Chen 1998], Stratified Resampling [Douc et al. 
2005], Metropolis Resampling and Rejection Resampling [Murray et al. 2013]. 
Sometimes it is also used so-called MCMC step (Markov Chain Monte Carlo step), which 
is performed after resampling [Launay et al. 2012]. 

Further acceleration of the Algorithm 8 is possible, for example by omitting 
weights normalization in step 8. Note that the estimated value (16) must be normalized 
(divided by the sum of weights). In the next step, it would not be noticeable, because 
weights have to be normalized after the calculation (15). This saves time required for 

1−N  divisions (in every time step). 
 
19.5. Simulation results 

System used for simulation is described by equations 

 
12

1

10

1 10
80

1

−
−

− ⋅+=
−

k
k

x.

kk v
x.

e
x.x

k

 (21a) 

 kkk nxy +=  (21b) 

where v  and n  are random variables normally distributed with variances equal 
respectively to 0.2 and 0.1. Each simulation was consisted of 10000=M  time steps. 

Simulation results are shown in Tab.1 and Tab.2. Tracking performance was 
evaluated based on Mean Square Error (MSE). Computation time t  and resamplings 
number esR  also were measured. In the case of evolutive resampling esR  was calculated 

as the number of all “small resamplings” (single particle resamplings) divided by N . 
Bootstrap Filter (first row in Tab.1) and SIR (all other results) algorithms were 

used in simulations. System model was proposed as importance density in SIR. 
 

19.6. Conclusions and summary 
Comparing results in Tab.1, one can see that in all cases the fastest is systematic 

resampling. MSE and esR  are almost identical for different resamplings, thus one can 
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conclude that MSE and esR  are independent of resampling type, and dependent only on 

number of particles N  and threshold TN . 

Looking for the best value of TN  one can see, that for N.NT 250=  results are 

almost the same as for resampling in each time step. However, it should be noted that 
although the resampling was performed fewer times, the calculation time is the same – to  
 

Tab.1. Simulation results for multinomial, systematic and residual resamplings  
with different particle number N  and threshold TN  

Resampling 

N = 500 N = 200 

 

Multinomial Systematic Residual Multinomial Systematic Residual 

each 
iteration 

MSE = 0.0915 
t = 11.38s 

MSE = 0.0913 
t = 6.14s 

MSE = 0.0913 
t = 8.01s 

MSE = 0.1197 
t = 4.63s 

MSE = 0.1204 
t = 2.74s 

MSE = 0.1245 
t = 3.69s 

NT = 0.7N 
MSE = 0.0930 
t = 11.50s 
(Res = 9691) 

MSE = 0.0914 
t = 6.36s 
(Res = 9692) 

MSE = 0.0913 
t = 8.26s 
(Res = 9693) 

MSE = 0.1197 
t = 4.60s 
(Res = 9690) 

MSE = 0.1329 
t = 2.87s 
(Res = 9690) 

MSE = 0.1295 
t = 3.83s 
(Res = 9687) 

NT = 0.5N 
MSE = 0.0916 
t = 11.27s 
(Res = 9316) 

MSE = 0.0917 
t = 6.25s 
(Res = 9314) 

MSE = 0.0914 
t = 7.99s 
(Res = 9318) 

MSE = 0.1301 
t = 4.62s 
(Res = 9312) 

MSE = 0.1205 
t = 2.82s 
(Res = 9322) 

MSE = 0.1272 
t = 3.73s 
(Res = 9316) 

NT = 0.25N 
MSE = 0.0925 
t = 10.48s 
(Res = 7989) 

MSE = 0.0915 
t = 6.10s 
(Res = 7984) 

MSE = 0.0923 
t = 7.40s 
(Res = 7991) 

MSE = 0.1299 
t = 4.35s 
(Res = 7979) 

MSE = 0.1239 
t = 2.79s 
(Res = 7979) 

MSE = 1.301 
t = 3.50s 
(Res = 7980) 

NT = 0.1N 
MSE = 0.0965 
t = 9.07s 
(Res = 5776) 

MSE = 0.0940 
t = 5.83s 
(Res = 5768) 

MSE = 0.0944 
t = 6.58s 
(Res = 5768) 

MSE = 0.1591 
t = 6.25s 
(Res = 5766) 

MSE = 0.1703 
t = 2.67s 
(Res = 5762) 

MSE = 0.1503 
t = 3.13s 
(Res = 5769) 

NT = 0.05N 
MSE = 0.0999 
t = 8.37s 
(Res = 4815) 

MSE = 0.0999 
t = 5.70s 
(Res = 4818) 

MSE = 0.0992 
t = 6.28s 
(Res = 4811) 

MSE = 0.1999 
t = 8.13s 
(Res = 4813) 

MSE = 0.2131 
t = 2.66s 
(Res = 4813) 

MSE = 0.1999 
t = 3.04s 
(Res = 4819) 

 
C 
O 
N 
D 
I 
T 
I 
O 
N 
 

F 
O 
R 
 

R 
E 
S 
A 
M 
P 
L 
I 
N 
G 

NT = 0.02N 
MSE = 0.1181 
t = 7.71s 
(Res = 3948) 

MSE = 0.1185 
t = 5.57s 
(Res = 3947) 

MSE = 0.1197 
t = 6.01s 
(Res = 3951) 

MSE = 0.3726 
t = 7.81s 
(Res = 3878) 

MSE = 0.3402 
t = 2.59s 
(Res = 3878) 

MSE = 0.3428 
t = 2.94s 
(Res = 3874) 

 
Tab.2. Simulation results for evolutive resampling  

with different particle number N  and threshold TQ  
 QT = 1e-4 QT = 1e-5 QT = 1e-10 QT = 1e-20 QT = 1e-50 QT = 1e-100 QT = 0 

N=500 
MSE = 0.0958 
t = 6.27s 
(Res = 6913) 

MSE = 0.0967 
t = 6.24s 
(Res = 6430) 

MSE = 0.0989 
t = 6.12s 
(Res = 5224) 

MSE = 0.1024 
t = 6.03s 
(Res = 4147) 

MSE = 0.1113 
t = 5.99s 
(Res = 2864) 

MSE = 0.1225 
t = 5.87s 
(Res = 2105) 

MSE = 0.1508 
t = 6.03s 
(Res = 1227) 

N=200 
MSE = 0.1117 
t = 2.93s 
(Res = 6692) 

MSE = 0.1076 
t = 2.93s 
(Res = 6274) 

MSE = 0.1106 
t = 2.87s 
(Res = 5149) 

MSE = 0.1188 
t = 2.82s 
(Res = 4101) 

MSE = 0.1402 
t = 2.83s 
(Res = 2836) 

MSE = 0.1635 
t = 2.80s 
(Res = 2087) 

MSE = 0.2385 
t = 2.84s 
(Res = 1220) 

 
 

calculate ESSN̂  additional time is required. Further, comparing results for 500=N  and 

N.NT 020=  with results for 200=N  and resampling in each iteration, one can 

conclude that it is better to reduce particles number N , but do resampling in each 
iteration, than lower the threshold TN . 

It is also noted that number of resamplings esR  is independent of particles number 

N  – in the future it will be checked if it is satisfied also for smaller value N . 
For 200=N  and low threshold TN  values one can see that computation time for 

multinomial resampling increase – during calculations the case when all weights are equal 
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to zero occurs. In this case drawing from importance density is repeated, resulting in the 
best quality estimation. 

Based on these observations one can clearly say that systematic resampling is 
better then other, therefore evolutive resampling is compared only to systematic 
resampling.  

Based on results in Tab.2 and results in Tab.1 for systematic resampling, one can 
see that generally evolutive resampling is worse than systematic ( 500=N ). However for 

200=N  evolutive obtain similar results as systematic. One can suppose that for a 
smaller number of particles evolutive will be better than systematic. 

Future research will be focused on testing others PF algorithms and on improving 
proposed in this chapter approach – evolutive resampling. 
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