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19. Resampling — essence of particle filter
Piotr Kozierskt, Marcin Lis”, Andrzej KrélikowsKi, Adam Gulczgski®

19.1. Introduction

Particle Filter (PF) based on the Monte Carlo meth® sometimes called
Sequential Monte Carlo method (SMC). However [Daudehansen 2009] notes that
SMC is the wider topic than PF. Particle predictaomd particle smoothing are another
algorithms belonging to SMC. In smoothing, to estienvalue of state variable,

measurements from further time stejg, are used. Whereas in prediction based on
measurements to the current tirde the future value of state variabje,, is estimated.

In filtering estimation of state variable value hased on measurements in the same
momentY, . This chapter is dedicated to filtering.

Particle Filter history dates back to the mid-tvietht century, when Norbert
Wiener proposed something similar to particle filtbut only in the 80's computing
power has enabled for further work in this diresti@imon 2006]. The breakthrough
came in 1993, when Gordon, Salmond and Smith pexpds [Gordon et al. 1993]
algorithm, which has been devoid the biggest flavdegeneration (the algorithm is
described in subchapter “Bootstrap Filter”). Theéqueness of this algorithm is due the
use of resampling.

19.2. Sequential Bayesian Filter
The operation principle of PF is based on Bayesrdma
p(B)
i.e. on the theorem on conditional probability gability of the event A, given the event
B), where A and B are some random variables. TdBases theorem, state variables and
measurements must be taken as random variablesevitirete probability densities:

X ~ dxk |Xk—1) 2
Yo ~ dyk |Xk) 3

Expression (2) means that state variable is a randwriable with conditional probability
density function (PDF), whercap(xk |xk_1) is the transition model. Measurement also is

random variable with conditional PDF, Whepéyk |xk) means measurement model.

With these assumptions one can write Bayes thedmnstate variables and
measurements

RN CS)
X, Y, )= kDK (4)
p( el k) F(Yk)
where it was assumed that
X, ={X %0 X } (5)
Y ={¥ VoY) (6)

Equation (4) concerns joint density function, hoamin practice more often
marginal densityd& |Yk) is estimated. It is also assumed that system msdeHidden

Markov Model (HMM) — it means that values of statgiables depends only on values of
state variables in previous time step and valuenedsurements depends only on values
of state variables in current time step
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X = fk(xk—l ’Vk—l) Q)
Y = hk(xk 1nk) (8)
wherey, , is a process noise, whereqs is a measurement noise. It is assumed that PDF

of all noises are known. System model (7-8) alsajiien. It should be noted that
knowledge about system and measurements model}y iR-8quivalent to knowledge
about expressions (7-8).

Using above assumptions one can obtain equaticeridiz® Sequential Bayesian
Filter (SBF)

F(yk |Xk) F()& |Yk—)
1Y, )= 1 9)
b M= )
The main task of filter (9) is posterior PDI-E()g( |Yk) estimation. There are also

likelinood p(y, | ). prior PDF g(x |Y,,) and evidence dy, |Y,,) (normalizing

coefficient).
Prior can be written as integral

A% [Yr) :j P0% %) P%cr [ )X (10)
in which p(xk_l |Yk_1) is a posterior from previous time step, and Plp(—'xk |xk_1) is
given by transition model (2). Since the evidersca humber, equation (9) can be written

as
F()& |Yk) O p(yk |Xk) F()& |Yk—1) (11)
where symbol t1” means “directly proportional”.

In Sequential Bayesian Filter (9) there are 2 nsé@ps. First it must be calculated
prior PDF (10) — this is prediction step. In secatep there is calculated the posterior
PDF (11) — this is update step.

Presented derivation is strongly condensed — &irilvdtion can be found in [Candy
2009] and [Kozierski, Lis 2012].

19.3. Particle filter
Particle filter principle of operation is the saa® SBF. Difference between them
lies only in the posterior representation — in PB & set of particles, which are composed

of values x,i( and weights qL. With this approach calculations can be separately

performed for each sample. This provides opponuwiimplement parallel computations
and speeds up algorithms (see [Mountney et al. 2Bdtharsan et al. 2012]).

Particle filter is used in many different areas;tsas robotics (robot localization
problem [Thrun 2002, Woo et al. 2006]), image pssieg (object tracking [Chang et al.
2005]) and identification (estimation of systemaaeters [Poyiadjis et al. 2005, Schoén
et al. 2011)).

PF algorithm based on Importance Sampling (I1S) oethS assums that there are
two probability density functions:

o fg(x) — from which should be draw, but this is diffic(tir impossible),

0 g,(x) - fromwhich it is easy to draw.
PDF g, (x) is used to draw samples, and by assigning wetightise values, one
can obtain PDFflS(x) properties. Weights should be proportional tortite

w, O s (12)
gis (X
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so that more often drawn values fragy, (x) have respectively less weights. Operation of
method is shown in Fig.1.
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Fig.1. Principle of Importance Sampling method agien

19.3.1. Sequential Importance Sampling

Sequential Importance Sampling (SIS) method is chasiriation of PF, but
unfortunately resampling absence causes thatdrgpletely useless.

Using the importance sampling method (12) and SB}F dne can derived
expression for particle weight values (derivatiérexpression was abandoned, however it
can be found in many articles, e.g. [Arulampalarale2002, Kozierski, Lis 2012]).

q:( |:| qli(71 F{yk ,l ?(k) FI{XK | )skfl) (13)
ol% [%1.¥i)
where qL is weight of i-th particle in time steh, g([) is a PDF used to draw (as in IS
method). The algorithm of the SIS method is prestbelow.

Algorithm 1 (SIS method)
1. Draw N particles from initial PDFx ~ p(x, ), set initial weightsg) =,
set time stefk =1.
2. Draw N particles from proposed importance dens{Ey—- g(xk |xL71,yk).
3. Calculate weights according to formula

oo X)X X))
=q LEh VA \ (14)
L AR
4. Normalize weights .
o = G (15)

N —_~
ZQkJ
=

5. Increase time steg = k +1, go to 2nd algorithm step.
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Note that importance densitg(x‘k |x,i(71,yk) may be dependent on state variable

value from previous stepx:(_l, and also on measurement valye. However, it does not

mean that this PDF must depend on both of thesesalmportance density may depend
only on one of these values (this case was usdglowotstrap Filter), and can also be
completely independent (but then algorithm perfarogawill be much worse).

The biggest disadvantage of SIS is that after fme steps degeneration occurs. In
this case, all particle weights, except one, halaes close to zero — see Fig.2.

0.14

i
K Step k

Fig.2. SIS degeneration — first 6 steps evaluatfasgorithm 1

The main problem results from expression (14) incihweights depends on
weights from previous step. If particle weight fual to zero, in all subsequent steps it
will also be zero, so the particle will be usele$s. continue to use it, the “reset” is
required, e.g. using resampling.

19.3.2. Sequential Importance Resampling

Sequential Importance Resampling method (SIR) hagnbextended, in
comparison to the SIS, by only two steps — onehieck that if resampling is necessary,
second is execution of resampling. SIR principlepération is shown in Algorithm 2.

Algorithm 2 (general SIR method)
1. Draw N particles from initial PDFx| ~ p(x, ), set initial weights equal to

q =&, settime stefk =1.

Draw N particles from proposed importance densify~ g(xk |x‘k71,yk).

Calculate particle weights according to equatiof).(1

Normalize weights according to (15).

Check condition of resampling — if not satisfiedtgstep 7 of algorithm.
Do resampling.

Increase time steg =k +1, go to step 2 of algorithm.

Nouo,rw N

More information about resampling and conditiorregampling will be presented
later in this chapter.
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The task of particle filter is posterior estimatidtowever, using PF as observer,
more needed is state variable estimation — usoallgined by calculating expected value
of posterior PDF [Ziefiski 2007]

N N

% = Elx]= Y% Dplx) =Y % (16)
i=1 i=1

It should be found between the steps 6 and 7 obritlym 2.

It was assumed that algorithms with resampling inctuded in family of SIR
methods, and algorithms without resampling — faroflysIS methods. Therefore, the vast
majority of PF based on SIR method, although opmrairinciple of some PF algorithms
may differ from Algorithm 2. Examples of such filgeare Auxiliary PF [Pitt, Shephard
1999], Rao-Blackwellised PF [Doucet et al. 2000nthzby et al. 2010], Distributed PF
[Bashi et al. 2003], Gaussian PF [Kotecha, @j#003], Unscented PF [Merwe et al.
2000], Linearized PF [Candy 2009], Multiple Moddf FDoucet et al. 2001] and many
others.

19.3.3. Bootstrap Filter

Bootstrap Filter (BF) is one of the standard SIRet&es. Was proposed in 1993 by
Gordon, Salmond and Smith [Gordon et al. 1993].n3iteon model is proposed as
importance density in this method

g(xk |Xk—1!yk) = p(xk |Xk—1) 17
This choice is the best, if one takes into accdhatminimization of conditional
weight variance [Brzozowska-Rup, Dawidowicz 2008].also causes simplification
formula (14), which takes the form
. = oy 0ol 1) (18)
However assumption (17) also causes negative sffeetause transition model is
independent from measurements, which may resullack of resistance to outliers
[Brzozowska-Rup, Dawidowicz 2009].
The second assumption in BF algorithm is abandobm&resampling condition
(step 5 of Algorithm 2). Additionally, after eacasampling all weights of new particles
are set tol, and since all weights are equal, equation (18) beawritten as

G = ply %) (19)
BF algorithm is shown below.

Algorithm 3 (Bootstrap Filter)

1. Draw N particles from initial PDFx ~ p(x,), set initial weight values
equal tog, =1, set initial time stefk =1.
Draw N new particles from proposed importance denthy~ p(xk |xf<_1).

Calculate particle weights in accordance with (19).
Normalize weights (15).

Resampling

Increase time step = k +1, go to step 2 of algorithm.

oukrw D

19.4. Resampling

As has been shown, PF needs resampling to worlefdyoegeneration does not
occur, because particles with low weights are alawith others (with higher weights).
Thrun rightly pointed out that the resampling cam bompared to probabilistic
implementation of Darwin's theory of evolution bgtaral selection [Woo et al. 2006].
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But resampling also introduces few disadvantages,adter this step of algorithm
particles are not independent any more. The seportilem is related to the computation
time — resampling is the most complex step in dllgor (all other steps are linearly
dependent on the number of particles). Thus, temtdn will be given to computational
complexity of individual resampling methods.

The purpose of resampling is random selection of set of particles based on the

current posterior — the greater particle weighthg, more likely that this particle value

will be drawn. All new particles are assigned ag,heiqj( =+
To determine whether resampling is required, oraulshfind Effective Sample

Size (ESS). However accurate value can not be leddcuso expression for estimated

value is used [Doucet et al. 2000]
Nlpeg =t (20)

ESS™ N

i \2
> (o)
i=1
ESS can be interpreted as minimum particles numkeded to submit posterior PDF.

Therefore if a lot of particle weights are close zero, then NESS value decreases

(particles with low weights can be omitted:)l.ESS ranges from 1 (one particle has weight

equal to 1, and all others particle weights areabtnu0) to N (after resampling, when all
weights are equal).
It should be taken a certain threshold valMg. If ESS is less tharN,, then

resampling is required. Typically the thresholdés at half of particles numbeN, =1
[Doucet, Johansen 2009].

19.4.1. Multinomial resampling
In multinomial resampling N particles should be wdnafrom posterior PDF

assuming that chance to choice the va;h;eis exactlyqj( (weights are normalized, and
so their sum is 1). This algorithm is simple andstruften cited in the literature.

Algorithm 4 (multinomial resampling)
1. Prepare discrete cumulative distribution functi®®Df) S/ based on

particle weights, so the®} = ¢ and S =1.
2. Fori=1,..N perform steps 3-5.
3. Draw value from uniform distributiond ~U(0,1), set variable value
j=1
4. AslongasS/ <d increment variablej = j +1.
5. Remember drawn valug = x; .
6. The old set of samples replace by saved vajjes X, , set new weights for

i=1.,N:qg, =%.

Algorithm 4 is simple to implement, but unforturigteomputational complexity is
O(NZ). This notation applies “asymptotic upper boundd ameans that in the worst case

algorithm execution time is proportional to the aguof particles number [Cormen et al.
2004] (double the number of particles will resuita fourfold increase in computation
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time). Quadratic computational complexity is najaod result, and it is caused by linear
search in step 4 of Algoritm 4. This step can hgased by binary search, which will
speed up resampling and reduce the complexit@(tbl lg N). Multinomial resampling

algorithm with binary search is shown below.

Algorithm 5 (multinomial resampling with binary search)
1. Prepare discrete CDB™ based on particle weights, so thgt= g, and
S =1
2. Fori=1,..N perform steps 3-7.
3. Draw value from uniform distributiord ~U(O,1), set variable values

j=[8]" andr =1
4. As long as(sj < d) or ((] >1)AND(S<j > d)AND(SkJ"l > d)) perform
steps 5-6
5. If S/ <d thenj=[j+r]*™, andif notj =[j - r]".
6. If r>1thenr =4, and if notr =1.
7. Remember drawn valug = x; .
8. The old set of samples replace by saved vajjes X, , set new weights for

i=1..,N:qg, =%.

Steps 3-6 are proposed implementation of binaryckeavithout recurrence
function. Variabler means “move” which will be executed by variabjeand every

iteration this “move” is reduced by half. After theop 4-6 variablej satisfies inequality
St<ds<g.

In [Launay et al. 2012] authors proposed to firstvdall random valuesl,., , then
sort them, and having sorted valugg' one can selecN new values. However the sort
complexity is O(N Ig N), therefore the approach taken in [Launay et al22Mas the
same computational complexity as the Algorithm 5.

19.4.2. Systematic resampling

In this resampling method it is assumed that umifdistribution is divided intdN
equal parts, and from each part there is drawn @nfgndom value. This allows each
successively drawn value to be greater than theique one, and it is possible to

implement resampling with linear complexi@(N). Operation of resampling presents
Algorithm 6.

Algorithm 6 (systematic resampling)
1. Prepare discrete CDB™ based on particle weights, so thgt =g, and

S =1
2. Setinitial variable valug =1.

3. Fori=1,..N perform steps 4-6.

4. Draw random value from partial uniform distributigh~ U (% ,'W)

18C
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5. AslongasS/ <d increase variablg = j +1.
6. Remember drawn valug = x; .
7. The old set of samples replace by saved vajjes X, , set new weights for

i=1..,N:qg =%.

N

19.4.3. Residual resampling
Residual resampling is also called remainder reaghfDouc et al. 2005]. In this
method there is assumed that for all particles Wwhigights are greater thaf, new

particles are arbitrarily “drawn” — the greater gl the more copies of particle. But this
is the way to select only a part of particles, #rerest needs to be drawn using previous
methods (multinomial resampling with binary seawds used). Resampling principle of
operation is shown in Algorithm 7.

Algorithm 7 (residual resampling)
1. Setvalue of variabldN, = N .

2. Fori=1,..N perform steps 3-5.
3. Calculatem =|N[g, |andN, =N, -m.
4. for j=1,.m' add particle to the “drawnk, = lX(XLJ
5. If m' >0, theng, =N [&, -m, and if notq, =q, .
6. Normalize weightsg, = ¢, /> q
7. Prepare discrete CDE" based on particle weights (compute in step 6), so
that S} =g and S =1.
8. For i=1,.N,, using S perform resampling (Algorithm 5) and add
drawn particles tox, .
9. The old set of samples replace by saved vajjes X, , set new weights for

i=1.N:q =1.

One can see that the greater weight values (thesnizsS value), the better for
algorithm, because there will be fewer particlesdtaw with multinomial resampling.
Algorithm 5 was used, so Algorithm also has comipatal complexityO(N Ig N).

19.4.4. Evolutive resampling

The new approach to resampling in this chapterréggg@sed and assumed that
resampling applies only to selected particles viitv or zero weight. One wants to
combine advantages of normal resampling (reseficfetwith low weight) and high
speed method (reducing the number of particles lwiitist be resampled). Operation
principle of this resampling is presented in Algjom 8.

Algorithm 8 (evolutive resampling)
1. Prepare discrete CDB" based on particle weights, so thgt=q. and

S =1, set threshold, , set initial value of variabley, =0
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2. Fori=1..N check if the weight is fewer then threshaQ , and if yes,
then increase variablep, = p,,+1 and add index number to array
Moo = [Foori]-
3. Setvariablej =1.
4. Fori=1,.p,, perform steps 5-7.
5. Draw random value from partial uniform distributigh~ U (i-l i )

1
om ’ Pom

6. AslongasS/ <d increment variablej = j +1.

7. Remember drawn valug = x!, set new weightys = £
8. Normalize weightsg, .

One can see that all these steps are linearly depeon the particles number, so
computational complexity i:D(N). Proposed name refers to the theory of evolutipn b

natural selection, because only particles with Emelghts are subjected to resampling,
therefore particles with the worst adaptation.

19.4.5. Notes

In the literature one can find several other praggo$or resampling, for example,
Local Monte Carlo Resampling [Liu, Chen 1998], 8fied Resampling [Douc et al.
2005], Metropolis Resampling and Rejection Resamgpl{Murray et al. 2013].
Sometimes it is also used so-called MCMC step (a®hain Monte Carlo step), which
is performed after resampling [Launay et al. 2012].

Further acceleration of the Algorithm 8 is possibler example by omitting
weights normalization in step 8. Note that thereated value (16) must be normalized
(divided by the sum of weights). In the next stépyould not be noticeable, because
weights have to be normalized after the calculafibs). This saves time required for
N —1 divisions (in every time step).

19.5. Simulation results
System used for simulation is described by equation

eO.lxk,1

X = 08X, +——— WV, (21a)
k-1

Yi =X+, (21b)

where v and n are random variables normally distributed with iaaces equal
respectively to 0.2 and 0.1. Each simulation wassisted ofM =10000time steps.

Simulation results are shown in Tab.1 and Tab.Z&cHing performance was
evaluated based on Mean Square Error (MSE). Comipoatéime t and resamplings
number R also were measured. In the case of evolutive reagn R, was calculated
as the number of all “small resamplings” (singletioke resamplings) divided biN .

Bootstrap Filter (first row in Tab.1) and SIR (allher results) algorithms were
used in simulations. System model was proposechpgriance density in SIR.

19.6. Conclusions and summary

Comparing results in Tab.1, one can see that icaaes the fastest is systematic
resampling. MSE andR,_ are almost identical for different resamplingsistrone can
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conclude that MSE an@R _ are independent of resampling type, and deperai@gnton
number of particlesN and threshold\; .

Looking for the best value oN, one can see, that fal, = 025N results are

almost the same as for resampling in each time s$iepvever, it should be noted that
although the resampling was performed fewer tirttes calculation time is the same — to

Tab.1. Simulation results for multinomial, systeimaind residual resamplings
with different particle numbeN and threshold\,

Resampling
N =500 N =200
Multinomial Systematic Residual Multinomial Systematic Residual
c each MSE = 0.0915 MSE =0.0913 MSE = 0.0913 MSE =0.1197 MSE = 0.1204 MSE =0.1245
o iteration t=11.38s t=6.14s t=8.01s t=4.63s t=274s t=23.69s
N
D MSE = 0.0930 MSE = 0.0914 MSE =0.0913 MSE =0.1197 MSE =0.1329 MSE =0.1295
| Nr=0.7N Jt=11.50s t=6.36s t=8.26s t=4.60s t=2.87s t=3.83s
T (Res = 9691) (Res = 9692) (Res = 9693) (Res = 9690) (Res = 9690) (Res = 9687)
CI) MSE =0.0916 MSE =0.0917 MSE = 0.0914 MSE =0.1301 MSE =0.1205 MSE =0.1272
N Ny =0.5N Jt=11.27s t=6.25s t=7.99s t=4.62s t=2.82s t=3.73s
(Res = 9316) (Res = 9314) (Res = 9318) (Res = 9312) (Res = 9322) (Res = 9316)
F MSE = 0.0925 MSE = 0.0915 MSE = 0.0923 MSE =0.1299 MSE =0.1239 MSE =1.301
o Nt =0.25N Jt=10.48s t=6.10s t=7.40s t=4.35s t=2.79s t=3.50s
R (Res = 7989) (Res = 7984) (Res = 7991) (Res = 7979) (Res = 7979) (Res = 7980)
R MSE = 0.0965 MSE = 0.0940 MSE = 0.0944 MSE = 0.1591 MSE =0.1703 MSE = 0.1503
E Nr=0.1N Jt=9.07s t=5.83s t=6.58s t=6.25s t=2.67s t=3.13s
s (Res = 5776) (Res = 5768) (Res = 5768) (Res = 5766) (Res = 5762) (Res = 5769)
Q MSE = 0.0999 MSE = 0.0999 MSE = 0.0992 MSE =0.1999 MSE =0.2131 MSE =0.1999
p Nr=0.05N Jt=8.37s t=5.70s t=6.28s t=8.13s t=2.66s t=3.04s
L (Res = 4815) (Res = 4818) (Res = 4811) (Res = 4813) (Res = 4813) (Res = 4819)
| MSE =0.1181 MSE =0.1185 MSE =0.1197 MSE = 0.3726 MSE = 0.3402 MSE =0.3428
N Ny =0.02N Jt=7.71s t=5.57s t=6.01s t=7.81s t=2.59s t=2.94s
G (Res = 3948) (Res = 3947) (Res = 3951) (Res = 3878) (Res = 3878) (Res = 3874)
Tab.2. Simulation results for evolutive resampling
with different particle numbeN and thresholdQ,
Qr=1e4 Qr=1e5 Qr =1e-10 Qr=1e-20 Qr = 1e-50 Qr = 1e-100 Qr=0

MSE = 0.0958 | MSE = 0.0967 | MSE = 0.0989 | MSE = 0.1024 | MSE = 0.1113 | MSE = 0.1225 | MSE = 0.1508
N=500 | t=16.27s t=6.24s t=6.12s t=6.03s t=5.99s t=5.87s t=6.03s

(Res = 6913) | (Res = 6430) | (Res =5224) | (Res = 4147) | (Res = 2864) | (Res = 2105) | (Res = 1227)

MSE = 0.1117 | MSE = 0.1076 | MSE = 0.1106 | MSE = 0.1188 | MSE = 0.1402 | MSE = 0.1635 | MSE = 0.2385
N=200 | t=2.93s t=2.93s t=2.87s t=2.82s t=2.83s t=2.80s t=2.84s

(Res = 6692) | (Res = 6274) | (Res =5149) | (Res =4101) | (Res =2836) | (Res = 2087) | (Res = 1220)

calculate N additional time is required. Further, comparingutes for N = 500 and

N; = 002N with results for N =200 and resampling in each iteration, one can
conclude that it is better to reduce particles nembl, but do resampling in each
iteration, than lower the threshol, .

It is also noted that number of resamplirgg is independent of particles number
N —in the future it will be checked if it is sated also for smaller valu@ .

For N =200 and low thresholdN, values one can see that computation time for
multinomial resampling increase — during calculagithe case when all weights are equal
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to zero occurs. In this case drawing from imporéadensity is repeated, resulting in the
best quality estimation.

Based on these observations one can clearly saysyiséematic resampling is
better then other, therefore evolutive resamplisgcbmpared only to systematic
resampling.

Based on results in Tab.2 and results in Tab.kystematic resampling, one can
see that generally evolutive resampling is worse tfystematic Il = 500). However for
N =200 evolutive obtain similar results as systematic.eQman suppose that for a
smaller number of particles evolutive will be bettegan systematic.

Future research will be focused on testing othéralgorithms and on improving
proposed in this chapter approach — evolutive reiam
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