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I. INTRODUCTION

The density functional theory (DFT) has emerged as a powerful and efficient methodology

for studying chemical systems since Hohenberg and Kohn 1 laid out the milestone founding

theorems of the theory and came up with the ingenious idea on how to put them to work, back

in the 1960s.2 The plethora of approximations to the exchange-correlation (xc) functional,

the crucial ingredient of the DFT, has been proposed and thoroughly benchmarked (as a

recent example, see Ref. 3 and the Refs. therein).

On the one hand, the density functional approximations perform satisfactorily for the

determination of geometries, energetics, and static properties of the chemical systems, as

well as the interaction energies of hydrogen bonds and electrostatically-bound complexes.4,5

On the other hand, the existing xc functionals fail spectacularly to describe the dispersion

interactions.6,7 The local (in case of local spin-density approximations), or semi-local (for

generalized gradient approximations) character of current xc functionals makes them un-

able to describe the long-range intermonomer correlation effects manifesting themselves as

the dispersion interaction.8,9 Up to now several approximate non-local functionals seam-

lessly incorporating dispersion forces have been proposed.10–12 Other approaches for solv-

ing the dispersion problem within DFT are generally attempts to model the dispersion

energy separately. The most successful examples are dispersion-corrected atom-centered

potentials,13 DFT+dispersion method,14,15 exchange hole dipole model,16 and DFT-based

symmetry adapted perturbation theory (SAPT).17,18 See Ref. 19 for a recent comprehensive

review of the DFT-based dispersion approaches.

For DFT-based dispersion models to be successful, the proper description of the dispersion-

free interaction energy is necessary. In the above-mentioned approaches (with the exception

of SAPT) dispersion-free energy is obtained in a supermolecular fashion. Such an energy,

however, already includes some fraction of correlation effects which can become doubly

counted upon combining with dispersion correction. Moreover, the exchange contribution

must be compatible with dispersion correction in the regions important for the interaction

energy.20 These issues have motivated a few groups to design the DFT method that would

rigorously exclude the dispersion interaction. The examples are:

• The dispersionless functional of Pernal et al. 21 The xc functional is constructed

through the fitting to the set of interaction energies from which the dispersion energy
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is subtracted.

• The Pauli blockade (PB) method described in Refs. 22,23. The aims of the method

are

– to include the intramonomer correlation,

– to rigorously exclude the intermonomer correlation.

The former goal is accomplished by the KS description of the interacting monomers

while the latter is achieved by the use of the HF exchange between the monomers.

Consequently, the PB energy is dispersion-free.

• A long-range correction scheme for the exchange functional24–28 which was proven

to correct the inaccuracies of local exchange potentials in regions of large reduced

density gradients, important for intermolecular interactions.20 Such calculations lead

to energies which can be supplied with a proper dispersion contribution, as was first

shown by Kamiya, Tsuneda, and Hirao 20 (see also Ref. 29).

Below we will focus entirely on the PB approach. Our previous works on the subject

did not include any calculations performed within a systematic set of noncovalently bound

systems. For this reason, no definite conclusions could be made to date on the general

performance of the PB method. In this work, we perform calculations for the well-established

test suite of noncovalently bound systems,30,31 which will help identify systems for which

the PB method performs satisfactorily, and to find the systems for which it should not be

applied. Additionally, an efficient algorithm for converging main equation of the PB method

is presented. The new algorithm corrects divergent and oscillatory behavior of the previously

used penalty function method.32

II. PAULI BLOCKADE FORMALISM

In what follows, i (a) denotes occupied (virtual) molecular orbital (MO). Greek letters, µ,

ν, etc. represent indices of orthogonalized atomic orbitals (OAO) unless indicated otherwise.

All matrices are written in the OAO basis, except in cases where the atomic orbital (AO)

label is present.
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Consider a system of two weakly interacting molecules, A and B, referred to as monomers

later on. Density matrices describing the electronic density localized at the monomers will

be denoted as Dζ , ζ = A,B. These can be used to define the monomer Fζ matrix, which

differs from the isolated monomer Kohn-Sham matrix by the presence of nuclear attraction

operator of the other interacting molecule:

Fζ = F (Dζ) = T + Une
A + Une

B + J (Dζ) + Vxc (Dζ) , (1)

where T is the matrix of the kinetic energy operator, Une
A and Une

B are matrices of the nuclei-

electron attraction operator of monomer A and B, respectively, J is the matrix of the Hartree

potential, and finally, Vxc represents the matrix of the exchange-correlation potential. Using

Eq. (1) we set up a system of equations for interacting monomers:22,23 (FA + ∆Vxc
A + JB)Ci = eiCi, i ∈ A

(FB + ∆Vxc
B + JA)Cj = ejCj, j ∈ B

, (2)

where Ci is a i-th column of the MO coefficients matrix of monomer A, CA, and similarly

for Cj. Eq. (2) is equivalent to a single Kohn-Sham equation for the dimer, provided that

the occupied orbitals are orthogonal:

C†iCi′ = δii′ , i, i′ ∈ AB. (3)

In the A monomer part of Eq. (2), matrix JB describes direct Coulomb interaction with

electrons localized at monomer B. Its matrix element in OAO basis is computed as

JB,µν = 2
∑
τυ

S−1/2
µτ S−1/2

νυ

∑
ρσ

(τυ|ρσ)DAO
B,σρ, (4)

where (τυ|ρσ) denotes a two-electron integral in Mulliken notation and S−1/2
µτ is an element

of inverse square root of the AO overlap matrix. ∆Vxc
A is the matrix of the non-additive

exchange-correlation potential:

∆Vxc
A = Vxc (DAB)− Vxc (DA) , (5)

with the density matrix of dimer AB being

DAB = DA + DB = Cocc,AC†occ,A + Cocc,BC†occ,B. (6)
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By Cocc we denote the matrix of MO coefficients expressed in OAO basis. The orthogonality

of orbitals that belong to different monomers implies idempotency of supermolecule density

matrix:

D2
AB = DAB, (7)

as should be for the solution of the Kohn-Sham equation. We emphasize that Eq. (2) is

equivalent to a single Kohn-Sham equation for the AB supermolecule. However, the separa-

tion into monomer equations is a good starting point for introducing approximations in the

context of intermolecular interactions. This work relies on dispersion-free approximation,22

in which interaction of monomers is treated at the HF exchange-only level, as the exchange-

correlation non-additivity is approximated by the HF exchange matrix:

∆Vxc
A ≈ KB, (8)

where

KB,µν = −
∑
τυ

S−1/2
µτ S−1/2

νυ

∑
ρσ

(τσ|ρυ)DAO
B,σρ. (9)

The dispersion-free energy of the AB system that corresponds to the approximation

of Eq. (8) can be expressed as

EPB
AB = EHF

AB (DAB) +
(
EKS
A (DA)− EHF

A (DA)
)

+
(
EKS
B (DB)− EHF

B (DB)
)
, (10)

where monomers’ density matrices, DA and DB, are obtained by converging Eq. (2). EHF

and EKS are Hartree-Fock and Kohn-Sham energies. The KS energy is evaluated as

EKS
A (DA) = Tr

(
DA

(
2(T + Une

A ) + JA
))

+

∫
R3

εxc

(
ρA(r);

{
∇ρA(r); . . .

})
ρA(r) d3r + Unn

A ,

(11)

where Unn
A denotes the nuclear repulsion energy and εxc is the exchange-correlation energy

density. Substituting Hartree-Fock exchange for the KS exchange-correlation term in the

above expression yields EHF
A .

The solution of Eq. (2) is performed in a freeze-and-thaw manner,33 that is, at a given

step a density of one monomer is optimized with the density of the other monomer frozen.

From the numerical point of view, the difference between our approach and the approach

of Wesołowski and Weber 33 is that we enforce orthogonality of the monomers’ occupied

orbitals, and the potential of non-additive kinetic energy does not appear in our model. In
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order to efficiently converge Eq. (2) in a self-consistent field (SCF) manner, and to minimize

the number of intermediate matrices, the iterative solution of Eq. (2) is carried out with

full non-additivity of the xc potential, i.e. without the approximation of Eq. (8). Thus,

in Eq. (2) the KS matrix of the whole AB system is present in each of two monomers’

equations and Eq. (2) becomes a mere rearrangement of the KS equation for the dimer. The

rationale behind such a procedure is as follows. If we start the freeze-and-thaw iterations

from isolated monomers’ densities slightly changed due to initial symmetric orthogonal-

ization of the occupied orbitals, and then continuously deform each monomer’s density in

the field of its partner (keeping the orthogonality constraint), we converge to the orbitals

which are well localized on the respective monomer. They can be interpreted as orbitals

distorted by the intermolecular interaction. The above scheme is essentially identical to the

Hartree-Fock Pauli blockade approach of Gutowski and Piela,32 who used equation analo-

gous to Eq. (2) (with the dimer Fock matrix present in each of the monomer equations)

to meaningfully decompose the interaction energy. In our scheme, upon convergence, the

localized orbitals are utilized in Eq. (10) to yield dispersion-free energy of the dimer. As

the dispersion-free energy of Eq. (10) is not invariant with respect to the unitary transfor-

mation mixing A and B orbitals, the localization of orbitals on monomers is indispensable

in our approach. In principle, post-SCF localization methods34,35 could be used, however,

the conceptual simplicity and computational scaling favors our approach of converging or-

bitals while keeping them localized on the monomers. Finally, the total interaction energy

is obtained by combining EPB
AB with the dispersion contribution:

EPB+d
int = EPB

AB − EKS
A − EKS

B + Edisp = (12)

= EPB
int + Edisp, (13)

where EKS
A and EKS

B are KS energies of isolated monomers.

III. ALGORITHMIC DETAILS

In this Section we derive and discuss an algorithm that solves Eq. (2). The new scheme

alleviates the convergence problems of previously reported penalty function approach.22,23,32

In our experience the original penalty function approach to PB method suffers from a di-

vergent and oscillatory behavior of the SCF iterations in many cases, e.g., for most of the
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dipole-interaction and charge transfer complexes reported in this work. The new algorithm

presented below has convergence properties similar to those of standard single point Kohn-

Sham calculations for the AB dimer.

In order to optimize occupied orbitals of one monomer in the presence of its counterpart,

we adopt an exponential ansatz of orbital rotation,

Cρ,new = exp (−XA)Cρ. (14)

Anti-symmetric matrix XA is defined as

XA =
∑
i∈A
a

XA
ia

(
CiC†a − CaC†i

)
, (15)

where i and a denote occupied and virtual orbitals, respectively. It follows from Eq. (14)

that XA
ia values determine the change of the occupied orbitals of monomer A due to inter-

action with monomer B. In the following, we will focus on how to obtain Xζ
ia parameters

variationally. As occupied orbitals localized at monomer B are excluded from summation in

Eq. (15), the orthogonality between the occupied orbitals of A and B is maintained through

the orbital rotation after it has been established in the zeroth iteration of Eq. (2). An

iterative solution of Eq. (2) may proceed as follows:

1. Generate a set of orthogonal occupied orbitals by symmetric orthogonalization of con-

verged occupied MO vectors of isolated monomers. Compute virtual orbitals as a

complement to the occupied space.

2. Perform several microiterations to optimize occupied orbitals of monomer A interacting

with monomer B. Rotate virtual orbitals of the whole system along with the occupied

orbitals:

Cocc,A,new = exp (−XA)Cocc,A, (16)

C′virt,new = exp (−XA)Cvirt. (17)

3. Analogously to the above, optimize occupied orbitals of monomer B interacting with

monomer A:

Cocc,B,new = exp (−XB)Cocc,B, (18)

Cvirt,new = exp (−XB)C′virt,new. (19)
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4. Go to step 2 if convergence is not achieved. Exit the loop if the density matrix error

is acceptable.

Variational parameters contained in the Xζ matrix are determined iteratively through the

Kohn-Sham total energy (EKS) minimization. We cast the augmented Roothaan-Hall master

equation36,37 for the monomer A,

(
F̃vvn − F̃oon

)
X + X

(
F̃vvn − F̃oon

)
+

n−1∑
ij

(
F̃ovin − F̃voin

)
T−1
ij Tr (Djn [Dn,X]) = F̃von − F̃ovn , (20)

in a form that is suitable for restricting the variational space:

∂EKS (X)

∂Xia

= 0 = 4
(
F̃n
)
ia

+ 4Xia (ea − ei) + 8
n−1∑
kl

(
F̃kn
)
ia
T−1
kl

∑
i′a′

Xi′a′ (Dl)i′a′ , (21)

where (22)

F̃ = FA + ∆Vxc
A + JB (23)

F̃kl = F̃k − F̃l (24)

Tkl = Tr
(
D†knDln

)
(25)

For clarity, we drop the A index at F̃, D, and X. The notation introduced in Ref. 37 is used

in Eq. (20). Here, F̃k and Dk are Kohn-Sham and the density matrices, respectively, from

the k-th iteration. Eq. (21) is written in the basis in which occupied-occupied and virtual-

virtual blocks of the F̃ matrix are diagonal. Such vectors can be computed by solving a pair

of eigenvalue problems for occupied-occupied and virtual-virtual blocks of the KS matrix,(
C†occ,nF̃nCocc,n

)
C̃i = eiC̃i (i ∈ A), (26)(

C†virt,nF̃nCvirt,n

)
C̃a = eaC̃a (27)

and transforming eigenvectors to the OAO basis:

Ci = Cocc,nC̃i, (28)

Ca = Cvirt,nC̃a. (29)

During the microiterations optimizing the A monomer orbitals we solve Eq. (21) with the

condition Xia = 0 for i ∈ B, that is, we substitute the matrix of Eq. (15). This is necessary

to prevent the orbitals of monomer A from mixing with the occupied orbitals of monomer B.
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To facilitate solving Eq. (21), we define the intermediates:

X
(0)
ia = −

(
F̃n
)
ia

ea − ei
, (30)

σl (X) = −2
∑
ia

Xia (Dl)ia . (31)

With the new definitions, Eq. (21) can be reformulated as

Xia = X
(0)
ia +

1

ea − ei

(∑
kl

(
F̃kn
)
ia
T−1
kl σl (X)

)
. (32)

We can determine σl (X) on the RHS of Eq. (32) if both sides of Eq. (32) are multiplied by

−2 (Dm)ia and summed over i, a:

σm (X) = σm
(
X(0)

)
+
∑
kl

τkmT
−1
kl σl (X) , (33)

τkm = −
∑
ia

2

ea − ei

(
F̃kn
)
ia

(Dm)ia . (34)

Eq. (33) can be rearranged into the form of a (n− 1)× (n− 1) linear equation:∑
l

Ωmlσl (X) = σm
(
X(0)

)
(m = 1, . . . , n− 1), (35)

Ωml = δml −
∑
k

τkmT
−1
kl . (36)

In our implementation the maximum value of n equals 8. Matrix exponential in Eq. (14)

can be conveniently computed by squaring and scaling method:

exp (A) ≈
[
Tk
(
A/2j

)]2j
, (37)

Tk (A) =
k∑
i=0

Ai/i! (38)

Optimal (j, k) pairs for a given norm of matrix A were tabulated by Moler and Van Loan.38

IV. RESULTS AND DISCUSSION

In order to assess the applicability of the dispersion-free approximation within the PB

framework and to compare its results with the currently available benchmarks, we employed

the database of noncovalent dimers of Zhao and Truhlar 30,31 . Their database gathers inter-

acting molecules in subsets according to the dominant character of the interaction. For the
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cases in which the relative discrepancy between the PB+dispersion and CCSD(T) results is

noticeable, we additionally performed the symmetry-adapted perturbation theory (SAPT)

calculations. All SAPT calculations reported in this work are accurate through the second

order in the intermolecular interaction operator [see Eq. (39)]. They were performed with

the Molpro package.39 Subroutines to carry out the PB calculations can be obtained directly

from the authors.

A. SAPT Overview

The SAPT method allows one to represent the interaction energy as the sum of physically

meaningful terms of the intermolecular perturbation theory:40

ESAPT
int = E

(1)
elst + E

(1)
exch + E

(2)
ind + E

(2)
exch-ind + E

(2)
disp + E

(2)
exch-disp. (39)

The first-order terms on the RHS of Eq. (39) are the electrostatic and exchange energies,

and the second-order contributions include induction, exchange-induction, dispersion, and

exchange-dispersion energies, respectively. The method basically comes in two variants.

In the Hartree-Fock SAPT [SAPT(HF)] the monomers are described by uncorrelated HF

orbitals, i.e., at the zeroth-order with respect to the intramonomer correlation operator.

This is denoted customarily by introducing the second superscript at the contributions to

interaction energy, e.g. E(20)
disp .

In the DFT-based SAPT [SAPT(DFT)],17,41,42 the monomers are described by the KS

orbitals which are presumed to include the intramonomer correlation. The second-order

terms are obtained from the coupled KS (CKS) theory. The SAPT(DFT) interaction energy

of Eq. (39) is often augmented by the residual HF term defined as

δHF = EHF
int −

(
E

(10)
elst + E

(10)
exch + E

(20)
ind + E

(20)
exch-ind

)
, (40)

with EHF
int being the supermolecular HF interaction energy. The purpose of the δHF term is

to account for higher-order induction effects and other residual terms necessary to obtain a

convergent result. Thus, the full SAPT(DFT) interaction energy is

E
SAPT(DFT)δ
int = E

SAPT(DFT)
int + δHF. (41)
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B. Computational Details

Both PB and the cited reference calculations were performed with with counterpoise

correction. The interaction energies do not include contributions from deformation of

monomers. Reference CCSD(T) interaction energies and SAPT(DFT) dispersion contri-

butions,

E
SAPT(DFT)
disp = E

(2)
disp + E

(2)
exch−disp, (42)

are taken from Ref. 21. They were computed using the aug-cc-pVTZ basis set with midbond

functions. The dispersion energy in Eq. (13) is either taken from SAPT(DFT):

EPB+d
int = EPB

int + E
SAPT(DFT)
disp , (43)

or from the numerical fit to the dispersion and exchange-dispersion terms of Ref. 43,

EPB+df
int = EPB

int + Efit
disp. (44)

EKS
int stands for the supermolecular KS interaction energy.

The SAPT values in Table VI are computed in aug-cc-pVTZ basis set with the asymptotically-

corrected PBE0 functional. SAPT(DFT)δ interaction energies include δHF which is also

listed separately.

C. Noncovalent interactions database

1. HB6/04

The results for six complexes form the HB6/04 database are presented in Table I. In

the assessment of the dispersion-free approach
(
EPB

int

)
in combination with two formulations

of dispersion energy (see Sec. IVB) is compared with the supermolecular interaction ener-

gies EKS
int and E

CCSD(T)
int . The EPB

int values show practically no dependence on the basis set,

aug-cc-pVDZ vs. aug-cc-pVTZ and only a weak dependence on the type of the hybrid func-

tional, PBE0 vs. B3LYP. The difference between EKS
int and EPB

int arises from the different xc

potential acting between the interacting monomers: the same as the intramonomer potential

in the former and the exact exchange in the latter. The differences between the two quan-

tities are considerable and roughly similar (but not equal) to the dispersion energy. For the

11



first four complexes PB+d or PB+df are in excellent agreement with the CCSD(T) bench-

mark. For the more strongly-bound complexes with double hydrogen bonds as (HCOOH)2
the agreement deteriorates to the 20% overbinding.

2. CT7/04

The group of charge-transfer complexes consists of donor-acceptor pairs ordered according

to increasing strength of interaction. The dispersion-free energies, EPB
int , are always above the

total reference interaction energies. However, after the addition of dispersion contribution,

severe overbinding is present except for the weak complexes involving F2.

For the complexes of ClF (particularly NH3···ClF) the discrepancy between PB+d

(PB+df) and CCSD(T) reaches 55% (B3LYP) to over 70% (PBE0). The question is

whether the reason for this behavior is the failure of the PB method for strongly overlapping

monomers, or the problem with xc potentials which fail to properly match the donor-acceptor

properties of subsystems. This isse is discussed in more detail below in Sec. IVC7.

3. DI6/04

The group of molecular complexes in this database is primarily bound by the dispersion

energy as EPB
int represents only a fraction of the total interaction energy. The PB+d(df)

treatment faithfully represents the bonding trends of this group as compared to CCSD(T)

with a slight overbinding of about 10—15% (with one outlier, CH3SH···HCl, with 25%

overbinding).

4. WI7/05

In this group of van der Waals complexes EPB
int predicts all interactions to be repulsive in

both functionals. This is correct behavior expected from a dispersion-free approximation. In

combination with the dispersion energy, the PB+d(df) approach yields the interaction ener-

gies in excellent agreement with CCSD(T). It should be pointed out that the supermolecular

EKS
int results obtained in PBE0 and B3LYP show trends that are opposite to one another.

This is in striking contrast to EPB
int which remains virtually independent of the functional.

12



T
A

B
LE

I.
C

om
pa

ri
so

n
of

in
te

ra
ct

io
n

en
er

gi
es

fo
r

th
e

co
m

pl
ex

es
fr

om
H

B
6/

04
da

ta
ba

se
.

A
ll

va
lu

es
ar

e
in

kc
al

/m
ol

.

Sy
st

em
P

B
E

0
/

au
g-

cc
-p

V
T

Z
P

B
E

0
/

au
g-

cc
-p

V
D

Z
B

3L
Y

P
/

au
g-

cc
-p

V
D

Z
E

C
C

S
D

(T
)

in
t

E
K

S
in

t
EP

B
in

t
E

P
B

+
d

in
t

E
P

B
+

d
f

in
t

E
K

S
in

t
EP

B
in

t
E

P
B

+
d

in
t

E
P

B
+

d
f

in
t

E
K

S
in

t
EP

B
in

t
E

P
B

+
d

in
t

E
P

B
+

d
f

in
t

N
H
3·
··N

H
3

−
3
.0
−

1
.4

−
3.

5
−

3
.2
−

2
.9
−

1
.3

−
3
.4

−
3.

1
−

2
.4
−

1
.2

−
3
.4

−
3.

1
−

3
.1

H
F
···

H
F

−
4
.6
−

3
.1

−
4.

8
−

4
.7
−

4
.6
−

3
.0

−
4
.7

−
4.

7
−

4
.3
−

2
.9

−
4
.6

−
4.

5
−

4
.5

H
2O
···

H
2O

−
4
.9
−

3
.1

−
5.

4
−

5
.2
−

4
.9
−

3
.0

−
5
.3

−
5.

2
−

4
.5
−

2
.9

−
5
.2

−
5.

0
−

4
.9

N
H
3·
··H

2O
−

6
.7
−

4
.2

−
7.

2
−

6
.9
−

6
.6
−

4
.1

−
7
.1

−
6.

8
−

6
.0
−

3
.8

−
6
.8

−
6.

6
−

6
.4

(H
C

O
N

H
2)

2
−

15
.2
−

10
.1

−
1
7.

5
−

17
.4
−

15
.2
−

9
.9

−
17
.4

−
17
.2
−

13
.8
−

9
.4

−
1
6.

8
−

1
6.

7
−

1
5.

4

(H
C

O
O

H
) 2
−

18
.4
−

12
.4

−
2
1.

2
−

21
.1
−

18
.1
−

12
.0

−
20
.8

−
20
.8
−

16
.6
−

1
1.

1
−

1
9.

9
−

1
9.

9
−

1
7.

6

13



T
A

B
LE

II
.C

om
pa

ri
so

n
of

in
te

ra
ct

io
n

en
er

gi
es

fo
r

th
e

co
m

pl
ex

es
fr

om
C

T
7/

04
da

ta
ba

se
.

A
ll

va
lu

es
ar

e
in

kc
al

/m
ol

.

Sy
st

em
P

B
E

0
/

au
g-

cc
-p

V
T

Z
P

B
E

0
/

au
g-

cc
-p

V
D

Z
B

3L
Y

P
/

au
g-

cc
-p

V
D

Z
E

C
C

S
D

(T
)

in
t

E
K

S
in

t
EP

B
in

t
E

P
B

+
d

in
t

E
P

B
+

d
f

in
t

E
K

S
in

t
EP

B
in

t
E

P
B

+
d

in
t

E
P

B
+

d
f

in
t

E
K

S
in

t
EP

B
in

t
E

P
B

+
d

in
t

E
P

B
+

d
f

in
t

C
2H

4·
··F

2
−

1.
4

0
.8

−
0.

8
−

0
.8
−

1.
5

0.
7

−
0.

9
−

0
.9
−

1
.4

1.
4

−
0
.2

−
0.

2
−

1
.1

N
H
3·
··F

2
−

2.
6
−

0.
1

−
1.

9
−

1
.6
−

3.
0
−

0
.3

−
2.

1
−

1
.9
−

3
.0

0.
5

−
1
.3

−
1.

1
−

1
.8

C
2H

2·
··C

lF
−

4.
7
−

0.
2

−
5.

2
−

5
.3
−

4.
6
−

0
.1

−
5.

1
−

5
.2
−

3
.5

0.
3

−
4
.7

−
4.

8
−

3
.8

H
C

N
···

C
lF

−
4.

8
−

1.
6

−
5.

8
−

6
.0
−

4.
8
−

1
.6

−
5.

8
−

6
.0
−

4
.2
−

1
.7

−
5
.8

−
6.

0
−

4
.8

N
H
3·
··C

l 2
−

6.
0
−

2.
0

−
6.

7
−

6
.1
−

6.
5
−

2
.5

−
7.

2
−

6
.6
−

5
.5
−

2
.1

−
6
.8

−
6.

2
−

4
.9

H
2O
···

C
lF

−
5.

8
−

2.
4

−
6.

5
−

5
.8
−

5.
9
−

2
.6

−
6.

6
−

5
.9
−

5
.2
−

2
.4

−
6
.4

−
5.

7
−

5
.2

N
H
3·
··C

lF
−

1
4.

8
−

1
0.

1
−

19
.2

−
19
.3
−

14
.6
−

9
.8

−
18
.9

−
19
.0
−

12
.7
−

8
.3

−
1
7.

4
−

1
7.

5
−

1
1.

2

14



T
A

B
LE

II
I.

C
om

pa
ri

so
n

of
in

te
ra

ct
io

n
en

er
gi

es
fo

r
th

e
co

m
pl

ex
es

fr
om

D
I6

/0
4

da
ta

ba
se

.
A

ll
va

lu
es

ar
e

in
kc

al
/m

ol
.

Sy
st

em
P

B
E

0
/

au
g-

cc
-p

V
T

Z
P

B
E

0
/

au
g-

cc
-p

V
D

Z
B

3L
Y

P
/

au
g-

cc
-p

V
D

Z
E

C
C

S
D

(T
)

in
t

E
K

S
in

t
EP

B
in

t
E

P
B

+
d

in
t

E
P

B
+

d
f

in
t

E
K

S
in

t
EP

B
in

t
E

P
B

+
d

in
t

E
P

B
+

d
f

in
t

E
K

S
in

t
EP

B
in

t
E

P
B

+
d

in
t

E
P

B
+

d
f

in
t

H
2S
···

H
2S

−
1.

4
0.

1
−

2.
0

−
1
.9
−

1.
5

0.
0

−
2.

1
−

1
.9
−

0
.8

0.
1

−
2
.0

−
1.

9
−

1
.6

H
C

l··
·H

C
l

−
1.

7
−

0.
2

−
2.

2
−

2
.1
−

1.
7
−

0
.2

−
2.

2
−

2
.1
−

1
.2
−

0
.1

−
2
.2

−
2.

0
−

1
.9

H
C

l··
·H

2S
−

3.
6
−

1.
1

−
4.

0
−

3
.7
−

3.
7
−

1
.1

−
4.

1
−

3
.8
−

2
.8
−

0
.9

−
3
.8

−
3.

6
−

3
.3

C
H
3C

l··
·H

C
l

−
3.

0
−

0.
5

−
4.

1
−

3
.9
−

3.
0
−

0
.4

−
4.

1
−

3
.9
−

2
.0
−

0
.3

−
3
.9

−
3.

8
−

3
.4

C
H
3S

H
···

H
C

N
−

3.
4
−

1.
3

−
4.

0
−

3
.9
−

3.
3
−

1
.3

−
4.

0
−

3
.8
−

2
.5
−

1
.1

−
3
.8

−
3.

7
−

3
.6

C
H
3S

H
···

H
C

l
−

4.
9
−

1.
4

−
6.

0
−

5
.9
−

5.
0
−

1
.5

−
6.

1
−

6
.0
−

3
.8
−

1
.1

−
5
.7

−
5.

6
−

4
.7

15



We note that similar behavior of the dispersion-free energy with respect to the functional

was observed by Kamiya, Tsuneda, and Hirao 20 .

5. PPS5/05

This database contains representative π-stacking complexes. The dispersion free approx-

imation yields strongly repulsive interaction energies for all but one of the complexes. The

repulsive interactions for the three conformers of benzene dimer show consistency between

two functionals PBE0 and B3LYP and two different basis sets: two stacking configurations,

sandwich and displaced have equal interactions and the T-shaped one is less repulsive. When

combined with the dispersion energy, PB+d(df) follows closely the CCSD(T) benchmarks.

The slight overbinding of about 10 % still persists. Unlike for the HB6/04 complexes the

EKS
int interaction energies are in poor agreement with both PB+d(df) and the benchmarks.

The ordering of the three conformers of the benzene dimer is wrong in both functionals.

6. Comparison with SAPT and DFT-based approaches

In Table VI the results of the PB+d approach are compared with two versions of

the second-order SAPT: one based on the HF description of monomers [SAPT(HF)] and

one based on the DFT monomer description [SAPT(DFT)δ]. As described in Sec. IVA,

SAPT(DFT)δ incorporates the HF-derived residual term, δHF, into the interaction energy.

For the comparison we chose three problematic cases discussed above (HCOOH)2, NH3···ClF,

CH3SH···HCl, as well as Ne2 and T-shaped (C6H6)2 which are notoriously difficult for the-

ory. At the first glance SAPT(DFT)δ appears to provide much better agreement with the

CCSD(T) benchmarks than PB+d for (HCOOH)2, NH3···ClF, CH3SH···HCl. However, this

agreement is contingent on including the δHF term in the interaction energy. In these three

complexes the δHF is very large in magnitude and in NH3···ClF it is responsible for the

entire binding effect in SAPT(DFT)δ. The large δHF is in itself and indicator that the

convergence of SAPT is problematic.44,45 In Ne2 and T-shaped benzene dimer the PB+d

approach is closer to CCSD(T). The performance of SAPT(HF) appears to be erratic. On

the one hand, in (HCOOH)2 it agrees reasonably well with CCSD(T); on the other hand,

in both NH3···ClF and in CH3SH···HCl it severely underbinds.
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TABLE VI. Comparison of the PB+d approach with SAPT(HF) and SAPT(DFT). The PB+d

values are obtained with intramonomer functional PBE0 while SAPT(DFT) terms are obtained

with asymptotically corrected variant of PBE0, PBE0AC. δHF denotes the residual HF terms (see

the text). All values are in kcal/mol.

Molecule E
SAPT(HF)
int E

SAPT(DFT)δ
int δHF EPB+d

int E
CCSD(T)
int

(HCOOH)2 −16.35 −16.72 −6.47 −21.17 −17.60

NH3···ClF −3.55 −9.93 −9.81 −19.2 −11.17

Ne2 −0.05 −0.07 −0.002 −0.07 −0.09

CH3SH···HCl −2.82 −5.21 −2.48 −6.04 −4.74

T-shaped (C6H6)2 −2.46 −2.38 −0.31 −2.88 −2.63
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In Tables VII the PB+d/PBE0 method is compared against other DFT approaches specif-

ically tailored for intermolecular interactions. Clearly, PB+d approach achieves high accu-

racy in WI7/05 and PPS5/05 sets when compared to other approximate methods, notably

without additional parametrization. Its performance with respect to dispersion-dominated

complexes is comparable to that of dlDF+D and B97-D methods, which probably represent

the best of what the contemporary well-parametrized functionals can achieve for these in-

teractions. However, inspecting first three columns of data in Tables VII and VIII reveals

that the PB+d approximation worsens the results of the underlying functional (PBE0) and

performs poorly compared to other approaches for the hydrogen-bonded and dipole-bound

complexes. For the charge-transfer group all the approaches, except for dlDF+D, appear to

have problems.

7. Charge-transfer interactions

Let us examine more closely the case of charge-transfer interactions. Fig. 1 shows the

dependence of EPB
int and EPB+d

int in NH3···ClF on the intersystem distance and the comparison

with CCSD(T) as well as with the supermolecular EKS
int term. The PB interaction energy

curve has a well depth of about 10 kcal/mol, which is ca. 5 kcal/mol less than the EKS
int curve

and about 4 kcal/mol more than the EHF
int curve. However, when combined with the disper-

sion energy from SAPT, PB+d descends rapidly. Clearly, these two terms are incompatible.

There are two reasons for this. First, because of a short intersystem distance, the PB ap-

proach already includes some dispersion effect (i.e. no longer serves as a dispersion-free

approximation) and combining it with the SAPT-based dispersion leads to double counting.

Second, EKS
int /PBE0 calculations (and to a lesser extent with B3LYP, see Table II) lead to a

considerable overbinding, as evidenced by a 4 kcal/mol overestimation of the well depth of

EKS
int compared to CCSD(T) in Fig. 1.

We will demonstrate below, using PBE0 as an example, that this overbinding can be

traced, at least partially, to the tendency of these functionals to make the donor molecule

too good a donor and the acceptor molecule too good an acceptor of electrons. This problem

has long been attributed51 to the mismatch between the HOMO energy of the donor and

the LUMO energy of the acceptor leading to a too narrow fundamental gap in some hybrid

functionals. Alternatively, this problem can be related to the delocatization error in the
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FIG. 1. The interaction energy curves for the NH3···ClF complex. R denotes the distance between

N and Cl. The PB and KS interaction energies are computed with the PBE0 functional and

aug-cc-pVTZ basis set. The HF and CCSD(T) terms are computed with the aug-cc-pVQZ basis

set.

approximate xc functionals.9 To detect the presence of the delocalization error we inspect

the behavior of the total energy between the integer values of electron numbers. In the

exact functional this dependence should be linear from the cation to the neutral and from

the neutral to the anion, showing a discontinuity in the first derivative at the neutral.52

Departures from the linear behavior with respect to fractional electron numbers indicate

the presence of the delocalization error.9,53,54 For the two constituent molecules ClF and

NH3 we performed calculations of energy as a function of fractional electron numbers with

the PBE0 functional. The calculations were performed with NWChem package.55 The long-

range corrected PBE0 (LC-PBE0) is included for comparison. The results in Fig. 2 and 3

demonstrate that LC-PBE0 yields a linear relationship of the total energy with fractional

electron numbers for both ClF and NH3, i.e., it behaves as the exact functional. For NH3

a positive slope of neutral-to-anion curve indicates that NH3 does not form a negative ion,

unlike ClF which does. By contrast, PBE0 alone leads to convex dependence of energy

with respect to fractional electron numbers for both molecules. This means that in the

PBE0 functional ClF becomes more prone to accepting a fractional charge compared to the

21



TABLE VII. Mean unsigned percentage error of DFT-based approaches. All results were obtained

with aug-cc-pVTZ basis set. Results other than PB+d or supermolecular PBE0 were taken from

Ref. 43

HB6/04 CT7/04 DI6/04 WI7/05 PPS5/05

PB+d/PBE0 12.5 31.4 20.4 9.4 12.2

PBE046 2.9 23.7 8.6 54.6 101.3

M06-2X47 4.3 12.5 5.3 90.4 22.9

HFD43,48,49 24.9 25.2 20.7 24.1 18.2

dlDF+D21 4.5 1.7 5.5 12.9 11.4

B97-D50 7.2 59.7 6.1 36.0 3.1

TABLE VIII. Mean unsigned error in kcal/mol. All results were obtained with aug-cc-pVTZ basis

set. Results other than PB+d or supermolecular PBE0 were taken from Ref. 43

HB6/04 CT7/04 DI6/04 WI7/05 PPS5/05

PB+d/PBE0 1.3 2.0 0.6 0.03 0.23

PBE0 0.3 1.1 0.2 0.17 2.04

M06-2X 0.4 0.5 0.1 0.11 0.45

HFD 2.4 1.4 0.7 0.05 0.30

dlDF+D 0.2 0.1 0.1 0.02 0.21

B97-D 0.5 1.6 0.2 0.04 0.06
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FIG. 2. Energy of ClF as a function of fractional electron number ∆n relative to the neutral system

(∆n = 0). The LC-PBE0 functional employs the range separation parameter 0.3, a portion of 0.25

HF exchange in the short range, and 1.0 HF exchange in the long range. All calculations are

performed in aug-cc-pVDZ basis set.

exact functional. Similarly, NH3 is also more prone to loose a fractional charge compared

to the exact functional. Since a CT complex NH3···ClF involves partial donation of electron

charge from NH3 to ClF, the PBE0 functional’s delocalization error artificially enhances

both the ability of NH3 to donate and of ClF to accept the electron density. These enhanced

donor-acceptor abilities are not correctable by the Pauli Blockade. They can be remedied

by employing functionals which accurately describe fundamental gaps as well as show the

correct linear dependence of total energy on fractional electron numbers.

V. CONCLUSIONS

In this work we presented comprehensive tests of recently-developed dispersion-free func-

tional approach.

Except for dispersion-dominated complexes for which PB+d yields excellent results, sys-

tematic overbinding has been observed. This error is most severe for strongly bound dimers

with short intersystem distances where the distinction between the intrasystem and in-

tersystem correlation effects becomes problematic. In these complexes combining the PB
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FIG. 3. Energy of NH3 as a function of fractional electron number ∆n relative to the neutral

system (∆n = 0). The LC-PBE0 functional employs the range separation parameter 0.3, a portion

of 0.25 HF exchange in the short range, and 1.0 HF exchange in the long range. All calculations

are performed in aug-cc-pVDZ basis set.

interaction with the SAPT-based dispersion is bound to fail. In case of charge-transfer com-

plexes, the systematic error of PB+d methods adds to the same-sign error of the underlying

functional. The analysis of the delocalization error of the PBE0 functional have indicated

that the overbinding of charge-transfer complexes can be partially attributed to the erratic

behavior of the approximate functional used in conjunction with PB+d method.

The new iterative procedure for the solution of PB equations has been presented. It

converges smoothly for cases where the originally proposed algorithm was not able to yield

a converged solution. An exponential parametrization of monomer density matrices and

their optimization with the algorithm of quadratic convergence allowed us to sidestep the

poor convergence properties of penalty function of the original PB method.
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