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ABSTRACT 
The work shows the principle of generalized linear model, point estimation, which can 
be used as a basis for determining the status of movements and deformations of 
engineering objects. The structural model can be put on any boundary conditions, for 
example, to ensure the continuity of the deformations. Estimation by the method of least 
squares was carried out taking into account the terms and conditions of the Gauss-
Markov for quadratic forms stored using Lagrange function. The original solution is 
removal of the generalized inverse of block matrix according to the designs of the fourth 
degree.  
Keywords: generalized linear model, point estimate, block matrixes, deformation, 
displacement.

INTRODUCTION 
Geodetic issues often have a problem with understanding the results of measurements, 
which are functional associated with each other and with parameters describing the 
studied phenomenon [1], [4]. If the observation vector is denoted by Li , random 
deviations by iδ  and parameters by jΘ , then the function compounds between these 
vectors can be written as: 

( ) ( ) ( )njniyLx ...,,2,1,...,,2,1, ===Θ− jii δ (1) 

The separation of variables on the nature of the random variables that are parameters of 
the model is very important. Appropriate choice depends on how the data acquisition 
and the nature of the phenomena concerned. If between the selected variables will 
determine the function conditions, but the values of variables can be specified only by a 
method of successive approximations, you will want to consider whether these variables 
should not be treated as parameters of the model. Similarly, if the variables occurring in 
relationships have, on the basis of the assigned function, the values of a small precision, 
whether to treat them as random variables? [2]. 
A variable of a random can be assigned two values: observed and model. For the 
parameters, especially in engineering, additional restrictions may be imposed. The 
relationship between these values is determined by the random displacement δ , that is 

( ) LLELL ˆˆ =⇒+= δ . From this it follows that the function key (1) in terms of 
random variables is the value model. 

GENERALIZED LINEAR MODEL 
Any system of linear equations can be written in matrix form [6] 
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gzF =  (2) 

where: 

F – the coefficients matrix representing the value of the first derivative for the 
approximate values of the estimated parameters of the model, with dimensions 

);( unm +×  
z – the array of unknowns, representing the random deviation or increases to the 

approximate values of the estimated parameters of the model, with dimensions 
);1( ×+ un  

g – the residues vector, resulting from the observed values of variables random and 
approximate values of the estimated parameters of the model, with dimensions 

).1( ×m  

Equation (2) can be solved for a variety of conditions arising from the specific 
boundary phenomenon [3], [7]. Boundary conditions will lead to a vertical or a 
horizontal division of equation (2), and to systems of equations.  
Vertical partition (2) arises from the imposition on the part of unknown condition – 
while Markov Gauss treat the rest of the unknowns as parameters of the model. Such 
equations can be written in the form of a block:  

[ ] u
x
v

CA =






  (3) 

What is equivalent to an equation 

uxACv =+  (4) 
while 
v  -  vector of random deviations, 
 x - vector of parameters of the model. 
For horizontal distribution of equations (2) we will use the form (3), in which the model 
parameter values impose restrictions wxB = . Having regard to this condition, the 
system of equations (3) can be written in the form of block: 









=
















w
u

x
v

B0
AC

 (5) 

Horizontal Division equations (2), (5), may result boundary condition in which the 
upper part of the equations must meet probabilistic model, and the lower part of the 
equations should comply with the deterministic. 
Determination of matrix in equation (5):  

( )nw,
C  – the matrix coefficients of the vector of random deviations ;v  

( )1,w
v  – the vector of random deviations for probability model; 

( )pw,
A  – the matrix coefficients by estimated vector of model parameters (x) in a 

probability part; 

( )1,p
x  – the vector of unknowns, i.e., the estimated parameters (increases to the 

approximate values of the estimated parameters), occurring in the probabilistic 
model and the deterministic model;  
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( )1,w
u  – residual vector in parts of a probability model; 

( )pr ,
B  – the matrix coefficients of the vector x in the deterministic model parameter 

deterministic; 

( )1,r
w  – residual vector in the model deterministic. 

In accordance with the principle of the method of least squares unencumbered 
estimators system  equations (5) have to fulfill Gauss–Markov conditions  arising from 
the square forms stored using Lagrange 

( ) ( ) ( )[ ]{ }uAxttCktttCovtt
wBxw

−+−+−−=Ψ −

=∩
ˆ2ˆ)(ˆ T1T

ˆ

2 min   (6) 

Quadratic form (6) can be written in as 

( ) ( ) min=−+−++=Ψ wBxjuxACvkvPv TTT2 22  (7) 

In these forms, there are the following designations: 

t – random variable vector, which is the size of the observed );1( ×n  

t̂  – Vector of model value of vector t )1( ×n  about expected value ;)ˆ(E ww =  

v  – random probabilistic model for vector )1( ×n  associated with explanatory 
variable, that is, from observations w and their exemplary values t̂  the 
equation for the ttv ˆ−= , about expected value 0;)(E =v  

)(tCov  – covariance matrix for the values observed );( nn×  

P  – weight matrix with determinant factor for different from zero ),( nn×  
corresponding to the inverse of the covariance matrix, which is 

;)( 1−= tCovP  

j, k – Lagrange coefficient vectors; 

C – the matrix coefficients of the vector a random variable, the resulting from 
the conditions imposed on the observation vector t; 

x – the estimated model parameters vector, in part of a probability and 
deterministic );1( ×u  

A – the matrix coefficients )( um ×  by estimated vector parameters x (in 
probability), resulting from the binding function observation vector t with 
model parameters x taking into account the C matrix; 

u – the value defining the function conditions ( ) AxttC +− ˆ  imposed on the 
vector t; 

B – the matrix of coefficients of the function conditions imposed only on the 
parameters x (that is, resulting from the nature of the phenomenon, such as 
deformation compatibility conditions); 

w – The rest vector in deterministic part ).1( ×r  
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The value of the observed should be linked to estimated parameters functional 
conditions, which can be written in the form in general: uAxttC =+− )ˆ( . 

Model (7) may include not only observed the value t and estimated data parameters x, 
but, for example, parameters changing in time (speed). Hence the additional conditions 
should be met, for example the conditions of geometric figures, in case of a geodetic 
network model analysis. Let's show those conditions by using a vector of random 
deviations v, which represents increases to the value of the model size of the watch, in 
other words ttv ˆ−= . 

After applying the above view, the form of square (6) is minimised to a random vector v 
and the function terms with do not include a random component.  

wBx =  (8) 
Matrix C can arise from the conditions imposed by the figures on the value of the 
random variable vector model t. Parameters vector x can describe a vector of 
coefficients field movements. It's worth pointing out that approximate values of 
parameters x, describing investigated this phenomenon, are not generally well 
known, hence the functions (7) with respect to these parameters should be in the 
form of liner. 
The matrix A is determined by the coefficients estimated the parameters x, but taking 
into account the additional conditions, for example the conditions of figure, which is 
included in matrix C. If matrix function expressions occurring in (7), but containing 
only variables 321 ,, xxx  i t, we shall arrange in the form of a matrix ,0A  then 

0CAA = . 
Functional conditions (8) in respect of which follows the minimization of quadratic forms 
(6), due to the nature of the phenomenon. In the analysis of deformations of object-
matching conditions of deformation, i.e. with fixed binding components of deformation 
tensor. 
 
POINT ESTIMATION MODEL OF GENERALIZED 
 
A prerequisite for the existence of a minimum of Lagrange function (7) is to reset the 
first vector derivatives, but sufficient one (subject to necessary) is to positively referred 
to matrices resulting from the second derivatives [5]. The necessary conditions shall 
therefore: 
 

( )

( ) 0wBx
j

0uxACv
k

0jBkA
x

0kCvP
v

=−=
Ψ

=−+=
Ψ

=+=
Ψ

=+=
Ψ

2

2

22

22

TT

T

∂
∂
∂
∂
∂
∂
∂
∂
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which leads to the four matrix equations:  

wxB

uxAvC

0jBkA

0kCvP

=

=+

=+

=+
TT

T

 (9) 

Equations (9) written by using block-matrix takes the form  
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TT
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 (10) 

Sufficient conditions for the existence of a minimum of proper are met, because the 
matrices TTTT ,, , CCBBAPACCP  resulting from the second partial derivatives are 
positively identified, provided that they are not peculiar. If any of these matrix 
determinant is equal zero, there are infinitely many solutions. By imposing 
additional conditions on the estimated data parameters shall be unambiguous 
solution (minimum). 
The solution of the system (10) will be brought to determinate the generalized  inverse 
of the main block matrix made by 1644 =× sub-matrixes. Because the main block 
matrix is symmetric, it is also her generalized inverse of block matrix will be 
symmetric, i.e. 
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which is equal to what is written below: 
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00CP

               11) 

where hI  the unit is an Hertmitian matrix. 

The degree of the individual matrix 
),( rpwnrpwn ++++++

Q  according to equations (10). 

On the basis of the agreement (11) we obtain sixteen equations about ten unknowns  
h

T
2

T
1 IQCQP =+  (12) 
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 5
T

2 0QCQP =+  (13) 
 6

T
3 0QCQP =+  (14) 

 7
T

4 0QCQP =+  (15) 
 T

31 0QAQC =+  (16) 
 h

T
62 IQAQC =+  (17) 

 83 0QAQC =+  (18) 
 T

4
TT

2
T 0QBQA =+  (19) 

 94 0QAQC =+  (20) 
 T

7
T

5
T 0QBQA =+  (21) 

 h
T
9

T
6

T IQBQA =+  (22) 
 10

T
7

T 0QBQA =+  (23) 
 T

3 0QB =  (24) 
 T

6 0QB =  (25) 
 8 0QB =  (26) 

h9 IQB =  (27) 

At first they were matrices 10974 ,,, QQQQ , on the basis of the equations (15), (20), 
(23) i (27). Comments Were Received: 

( )
( )( )

( )( ) .

,

,

,

TT1T
10

10
TT1T

9

9
T1

7

7
T1

4

−−−−

−−−

−−

−







−=

−=

=

−=

BACPCABQ

QBACPCAQ

QACPCQ

QCPQ

  

Based on equation (14), (18) and (22) they were matrices: 

( )
( )( ) ( ).

,

,

T
9

T
h

T1T
8

8
T1

6

6
T1

3.

QBIACCPAQ

QACCPQ

QCPQ

−=

=

−=

−−−

−−

−

  

Another matrix equations (13) and (17) allows the calculation of:  

( ) ( ).
,

T
6

T1
5

5
T1

2

QAICPCQ

QCPQ

−−=

−=
−−

−

  

Matrix 1Q  was established on the basis of the equation (12): 

( ).T
2

T
h

1
1 QCIPQ −= −   

After the introduction of the determinations: 
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Above sub matrixes iQ  satisfy the equations (12-27).  

Seeking solutions matrix of the system (10) can be expressed as the product of the 
following block matrix  
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Free estimates given the uncertainties of the general model are:  

wQuQv 42 +=ˆ   
wQuQx 9

T
6 +=ˆ   

Vectors of coefficients can be calculated according to the Lagrange: 

wQuQk 75 +=ˆ   

wQuQj 10
T
7 +=ˆ   

An estimate of the size of the model t̂  is designated according to the formula: 
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( )wQuQwvwt 42ˆˆ +−=−=  

Unladed variance estimator is given by equation 

)|(R)(R
ˆ

T1

T
2

BACCP
vPv
−

=
−

σ

Covariance matrices, vectors v ,x ˆˆ  express the following dependencies: 

1Q)vCov( 2ˆˆ σ=

8Q)xCov( 2ˆˆ σ=

Estimators xv ˆˆ i  can be written in the form: 

ba
o

422ˆ vvvBxQAxQCvQv ∆+∆+=++=

ba
o

9
T
6

T
6 Cˆ xxxBxQAxQvQx ∆+∆+=++=

Vectors aa i xv ∆∆  resulting from the adoption of unknowns for the model parameters, 
vectors bb i xv ∆∆  due to the restrictions imposed on the parameters of the model. If all 
the unknowns may enforce Gauss Markov-condition, then 0.i0 aa =∆=∆ xv  If not, 
then the boundary conditions are 0.i0 bb =∆=∆ xv  

On the basis of the presented solutions to equations (9) can be used to analyze specific 
cases of linear models, which arise from the observation conditions and the nature of the 
phenomenon. 
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