Analysis of the process of water entry of an amphibious vehicle

Abstract
The paper presents a method of computational and experimental analysis of the process of water entry of an amphibious vehicle. The computational method is based on the Reynolds Averaged Navier-Stokes Equations (RANSE) solver and the experiment was carried out in the towing tank at Ship Design and Research Centre S.A. with the use of a scale model. The analysis was focused on the safety of water entry, i.e. the maximum pitch and roll angles, the maximum acceleration, as well as the occurrence and degree of flooding of bonnet and windscreen. Both the computations and the experiment have revealed that in the case of free water entry, i.e. without braking, the water covers the windscreen even at a moderate slope of the beach (10 [degrees]); however, if braking of the wheels during the water entry process were possible, the flooding of the bonnet and windscreen could be avoided even at a steep slope (30 [degrees]).
Description
Keywords
Citation
Belongs to collection