ROZDZIAŁ 2

WYBRANE SYSTEMY ZWIĄZANE Z JAKOŚCIĄ I BEZPIECZEŃSTWEM ŻYWNOŚCI

2.1. Istota bezpieczeństwa żywności

Obecnie jakość żywności oraz jej bezpieczeństwo z punktu widzenia konsumenta/producenta uważane są za kluczowe cechy produktu żywnościowego. Zapewnienie tych cech nie jest zadaniem łatwym i wymaga ono stosowania szeregu uregulowań prawnych. Pod pojęciem bezpieczeństwa żywności należy rozumieć ochronę zdrowia i interesów konsumentów. Obejmuje ono bezpieczeństwo zdrowotne, wartość odżywczą, jakość sensoryczną i inne atrybuty żywności.

Bezpieczeństwo żywności jest jednym z najważniejszych celów Unii Europejskiej (UE). O bezpieczeństwie żywności traktuje Białą Księga Komisji Europejskiej\(^{50}\), oraz Kodeks Żywnościowy FAO/WHO\(^{51}\). Unormowania te dotyczą strategii zapewnienia wysokiego poziomu bezpieczeństwa produkcji żywności i pasz. W Polsce jedną z najważniejszych ustaw w tym zakresie jest ustawa z 25 sierpnia 2006 r. o bezpieczeństwie żywności i żywienia\(^{52}\).

Zgodnie z tą ustawą żywność bezpieczna definiowana jest jako żywność, która nie zawiera:
1) substancji szkodliwych dla zdrowia człowieka (pozostałości DDT, dioksyn, antybiotyków, szkodliwych barwników itp.),
2) nadmiernej liczby bakterii saprofitycznych,
3) drobnoustrojów chorobotwórczych i ich metabolitów,

\(^{50}\) Biała Księga o bezpieczeństwie żywności z 12 stycznia 2000 r., COM (1999), 719.

\(^{51}\) Codex Alimentarius Commission FAO/WHO.

\(^{52}\) Dz.U. nr 171, poz. 1225, z późn. zm.
4) substancji wykazujących niekorzystne interakcje z innymi komponentami,
5) składników modyfikowanych genetycznie,
6) śladowych ilości materiału pochodzenia biogennego,
7) szkodliwych substancji chemicznych\(^{53}\).

Natomiast bezpieczeństwo żywności\(^{54}\) zapewniane jest, gdy:
1) przestrzeżone są wymagania dotyczące substancji dodatkowych dodawanych podczas ich produkcji, zawartości substancji zanieczyszczających (np. pestycydów);
2) przestrzegane są odpowiednie warunki napromieniania żywności oraz wymagań dotyczące jej cech organoleptycznych;
3) podejmowane są działania w całym łańcuchu żywnościowym, które mają zagwarantować zdrowie i życie człowieka.

Jakość żywności jest to „stopień, w jakim produkty żywnościowe zaspokajają potrzeby konsumentów pod względem zdrowotnym i doznanowym”\(^{55}\). Pierwsza z tych cech określa produkt, który zawiera wartość odżywczą, dietetyczną, kaloryczną oraz zapewnia jego bezpieczeństwo. Potrzeby doznanowe określane są przez odpowiedni wygląd wewnętrzny i zewnętrzny produktu oraz jego walory smakowe, zapachowe i strukturę.

Zagwarantowanie bezpiecznej żywności możliwe jest poprzez zapobieganie powstawaniu zagożeń mikrobiologicznych, chemicznych i fizycznych, dzięki podejściu systemowemu w postępowaniu z żywnością w całym łańcuchu żywnościowym, poczynając od jej wytworzenia, a kończąc na sprzedaży.

Zagrożenia mikrobiologiczne wynikają z obecności w żywności mikroorganizmów chorobotwórczych, toksyn lub pasożytów związanych z nieodpowiednią produkcją, przygotowywaniem lub postępowaniem z żywnością. Zanieczyszczenia chemiczne są konsekwencją stosowania zbyt dużej ilości nawozów sztucznych i pestycydów w produkcji rolnej, niewłaściwej jakości pasz dla zwierząt hodowlanych, zawierającej np. metale ciężkie, antybiotyki, lub są celowym działaniem producentów fałszujących skład niektórych produktów. Zanieczyszczenia fizyczne w żywności mogą wynikać ze złej higieny zarówno pracowników, jak i urzędników biorących bezpośredni udział przy obróbce żywności.

\(^{54}\) Ang. Food safety.

2.2. Programy warunków wstępnych

Zagrożeniom mikrobiologicznym, chemicznym i fizycznym może zapobiegać stosowanie tzw. Dobrych Praktyk\(^{56}\). Są to działania, które powinny być podjęte na wszystkich etapach produkcji żywności i dalszego nią obrotu, tak aby zapewnione było bezpieczeństwo żywności. Rozwój Dobrych Praktyk datuje się od lat 60. XX wieku. Są one często doradzane jako podstawowy warunek konieczny do dalszego procesu wdrażania innych systemów.

Dobre Praktyki zwane są również Programami Warunków Wstępnych (PWW). Wśród tych programów wyróżnia się: Dobrą Praktykę Produkcyjną (GMP\(^{57}\)), Dobrą Praktykę Higieniczną (GHP\(^{58}\)), Dobrą Praktykę Transportową (GTP\(^{59}\)), Dobrą Praktykę Laboratoryijną (GLP\(^{60}\)), Dobrą Praktykę Dystrybucyjną (GDP\(^{61}\)), Dobrą Praktykę Rolniczą (GAP\(^{62}\)), Dobrą Praktykę Weterynaryjną (GVP\(^{63}\)) oraz Dobrą Praktykę Cateringową (GCP\(^{64,65}\)).

Rysunek 2.1. Obszary systemów jakości związanych z bezpieczeństwem żywności

\(^{57}\) Ang. Good Manufacturing Practice.
\(^{58}\) Ang. Good Hygienic Practice.
\(^{59}\) Ang. Good Transport Practice.
\(^{60}\) Ang. Good Laboratory Practice.
\(^{61}\) Ang. Good Distribution Practice.
\(^{62}\) Ang. Good Agricultural Practice.
\(^{63}\) Ang. Good Veterinary Practice.
\(^{64}\) Ang. Good Catering Practice.
Wszystkie te programy powinny być wprowadzone przed innymi systemami bezpieczeństwa żywności, takimi jak HACCP (Analiza Zagrożeń i Krytycznych Punktów Kontroli) i ISO 22000\(^{66}\). Najszerzej obszar działania obejmuje system oparty na wymaganiach normy ISO 22000 (rys. 2.1), który może uzupełniać TQM.

GMP jest najbardziej znanym i stosowanym kodeksem przepisów Dobrej Praktyki. Są to działania, które muszą być podjęte i warunki, które muszą być spełniane, aby produkcja żywności, materiałów i wyrobów przeznaczonych do kontaktu z żywnością odbywała się w sposób zapewniający bezpieczeństwo żywności zgodnie z jej przznaczeniem\(^{67}\).

GMP zawiera wymogi/zasady, które opisują konieczne do spełnienia warunki podczas wytwarzania, transportu oraz przechowywania żywności. Głównym celem GMP jest wyprodukowanie dobrej żywności oraz zapobieganie jej zafałszowaniu przez producenta. Ma ono miejsce, gdy jeden ze składników produktu zastępowany jest innym, zwykle tańszy lub łatwiej dostępnym zamiennikiem.

Działania podjęte w ramach GMP obejmują nadzór całego procesu produkcji żywności. Pozwalają one na niemal całkowite ograniczenie możliwości zanieczyszczenia produktu żywnościowego.

Zasady GMP dotyczą\(^{68}\):
1) oceny poprawności i zgodności stosowanych procesów technologicznych z przyjętymi założeniami i warunkami produkcji;
2) kontroli przestrzegania parametrów procesów mających wpływ na bezpieczeństwo żywności, w tym kontroli stanu zdrowotnego i higieny pracowników oraz stanu sanitarnego urządzeń;
3) bieżącej lub okresowej oceny jakości zdrowotnej surowców, półproduktów, materiałów i wyrobów przeznaczonych do kontaktu z żywnością stosowanych w procesie produkcji;
4) identyfikacji dostawców surowców/półproduktów;
5) kontroli sposobu identyfikacji wyrobów gotowych;
6) okresowej oceny jakości zdrowotnej wyrobów gotowych;
7) kontroli i inspekcji przestrzegania procedur pobierania próbek surowców, półproduktów i wyrobów gotowych do analizy oraz sprzętu i personelu;
8) kontroli przechowywania dokumentacji, w szczególności notatek i protokołów.

\(^{66}\) System zarządzania bezpieczeństwem żywności dla organizacji w łańcuchu żywności (ang. Food safety management systems – Requirements for organizations throughout the food chain).

\(^{67}\) Ustawa z 25 sierpnia 2006 r. o bezpieczeństwie żywności i żywienia, Dz.U. z 2006 r., nr 171, poz. 1225, z późn. zm.

\(^{68}\) B. Jackiewicz, Poradnik opracowywania zasad Dobrej Praktyki Produkcyjnej i Dobrej Praktyki Higienicznej, ODiDK Sp. z o.o., Gdańsk 2013, s. 13.
GHP to działania, które muszą być podjęte i warunki higieniczne, które muszą być spełniane i kontrolowane na wszystkich etapach produkcji lub obrótu, aby zapewnić bezpieczeństwo żywności\(^{69}\).

System GHP\(^{70}\) dotyczy:

1) otoczenia, inaczej lokalizacji zakładu o profilu żywnościowym, w pobliżu, którego nie powinno występować żadne źródła zanieczyszczeń, powodujące niekorzystny wpływ na produkcję żywności (np. nadmierny kurz, smog, odór);

2) stanu technicznego budynków zakładu i jego infrastruktury, które powinny być funkcjonalne, wyposażone wjasne podłogi, ściany i drzwi, w łatwo otwieralne okna z siatkami zabezpieczającymi przed wlotem owadów, w odpowiednią liczbę węzłów sanitarnych oraz w wentylację wprowadzającą czyste powietrze;

3) funkcjonalności i prawidłowości wykorzystania pomieszczeń produkcyjnych, magazynowych i socjalnych zakładu z uwzględnieniem podziału zakładu na strefy zagrożeń bezpieczeństwa produktu gotowego;

4) stanu technicznego i sanitarnego maszyn, urządzeń i sprzętu pod względem zapewnienia bezpieczeństwa żywności. Maszyny i urządzenia powinny być zbudowane z nietoksycznych dla żywności materiałów odpornych na korozję, umożliwiających sprawne i precyzyjne ich czyszczenie oraz dezynfekcję, z zabezpieczeniami chroniącymi przed wniknięciem do środka owadów, szkodników, pyłów, łatwe w przenoszeniu oraz demontażu;

5) prawidłowości i skuteczności procesów czyszczenia wyposażenia zakładu poprzez odpowiednio mycie i dezynfekcję według procedur oraz instrukcji znajdujących się bezpośrednio przy każdym stanowisku pracy. Kontrolowanie obecności szkodników powinno odbywać się poprzez stosowanie środków jak najmniej szkodliwych dla ludzi i środowiska;

6) prawidłowości utrzymywania w dobrym stanie urządzeń kontrolno-pomiarowych oraz systematycznego ich wzorcowania i kalibracji;

7) jakości wody stosowanej w zakładzie do celów technologicznych oraz socjalno-bytowych. Woda zatapna do spożycia powinna podlegać systematycznej kontroli jakości, zaś jej wyniki powinny być dokumentowane i przechowywane\(^{71}\). Ujęcia wody technicznej, powinny być oznakowane\(^{72}\);

\(^{69}\) Ustawa z 25 sierpnia 2006 r. o bezpieczeństwie żywności i żywienia, art. 3, ust. 3, pkt 8.

\(^{70}\) B. Jackiewicz, op. cit., s. 14.

\(^{71}\) Rozporządzenie Ministra Zdrowia z dnia 13 listopada 2015 r. w sprawie jakości wody przeznaczonej do spożycia przez ludzi, Dz.U. z 2015 r., poz. 1989.

\(^{72}\) B. Jackiewicz, op. cit., s. 15.
8) prawidłowości usuwania ścieków, gromadzenia i usuwania odpadów stałych, w tym odpadów niebezpiecznych oraz odpadów pokonsumpcyjnych w zakładach żywienia zbiorowego. Odpady poza obiektami powinny być usuwane na bieżąco. Kosze wewnątrz budynku powinny być wyposażone w plastikowe jednorazowe worki plastikowe oraz w pokrywy umożliwiające otwarcie ich bez konieczności użycia rąk i powinny być często dezynfekowane73;

9) kwalifikacji pracowników w zakresie przestrzegania zasad higieniczno-sanitarnych oraz postępowania pracowników na danym stanowisku pracy. Zdobycie kwalifikacje powinny być potwierdzone dokumentacją przechowywaną w aktach osobowych pracowników74. Pracownicy zajmujący się żywieniem powinni stosować na stanowisku pracy odpowiednią odzież ochronną. W zakładzie powinny znajdować się wyznaczone pomieszczenia socjalne: szatnie, toalety, miejsca do spożywania posiłków75;

10) obowiązku posiadania przez pracowników biorących udział w procesie produkcji lub w obrocie żywnością aktualnych orzeczeń lekarskich sanitarno-epidemiologicznych, określonych w przepisach o chorobach zakaźnych i zakażeniach76.

Kierownictwo każdego zakładu produkcji żywności lub żywnienia zbiorowego, mając na celu wdrożenie systemu HACCP, powinno rozpocząć działania od opracowania oraz wdrożenia, a następnie ciągłego udoskonalania zakładowego programu GHP. Procedury i techniki wykorzystywane w zakładzie produkcyjnym powinny być spisane za pomocą jasnych i czytelnych instrukcji oraz powinny być ogólnodostępne, tak, aby każdy pracownik bez problemu mógł się z nimi zapoznać, a następnie ich przestrzegać. Reguły i procedury powinny być ścisłe przestrzegane przez wszystkich pracowników na każdym szczeblu. Odpowiedzialność za przestrzeganie zasad spoczywa na kierownictwie danego zakładu.

Wytłuszczone dotyczące GTP, o jakich wspomniano we wstępie, zostały opracowane przez grupę Dyrekcji Generalnej ds. Mobilności i Transportu Komisji Europejskiej77. Wśród tych zasad na uwagę zasługuje potrzeba:

74 Ustawa z 25 sierpnia 2006 r. o bezpieczeństwie żywności i żywienia, art. 59, ust. 3 i 4.
75 Ibidem, s. 16–17.
76 Ustawa z dnia 5 grudnia 2008 r. o zapobieganiu oraz zwalczaniu zakażeń i chorób zakaźnych u ludzi, Dz.U. z 2013 r., poz. 947, z 2014 r., poz. 619, 1138.
77 Dyrekcja Generalna ds. Mobilności i Transportu (MOVE) wchodzi w skład Dyrekcji Komisji Europejskiej (kod cyfrowy 7).
1) rzetelności sporządzania umowy transportu,
2) wyboru odpowiedniej techniki transportu – np. dopasowanie ładunku do transportu, stosowanie innowacyjnych metod załadunku i rozładunku towaru,
3) zapewnienia przewozu towaru w odpowiednim czasie gwarantującym bezpieczeństwo transportu,
4) zabezpieczania ładunków w transporcie poprzez zastosowanie odpowiedniego mocowania,
5) przestrzegania zasad przewożenia ładunków luzem,
6) odpowiedzialności przewoźnika przy załadunku i rozładunku towaru,
7) przestrzegania zasad logistyki transportu.

Wszystkie powyższe wymienione zasady muszą być stosowane szczególnie w transporcie surowców i produktów żywnościowych, które mają z reguły krótki czas przydatności do przetwarzania i spożycia.

GLP to system zapewnienia dobrej jakości badań laboratoryjnych. Zasady GLP zostały opracowane w roku 1978 przez Grupę Ekspertów ds. Dobrych Praktyki Laboratoryjnej. Zasady te zostały ujęte w systemie prawnym Unii Europejskiej oraz w ustawodawstwie polskim. Celem GLP jest promowanie jakości i wiarygodności wyników badań, w szczególności produktów żywnościowych, od momentu zaplanowania badań, poprzez ich wykonanie oraz prawidłowe przechowywanie danych źródłowych i sprawozdań.

Zasady GLP obejmują wymagania dla akredytowanych laboratoriów dotyczące metod badawczych, aparatury oraz zapisów wyników badawczych. Ponadto badania powinny być wykonywane przez wykwalifikowany personel. Ogólne wymagania GLP dotyczą:
1) odpowiednio wyszkolonego personelu,
2) stosowania standardowych metod analitycznych,
3) przestrzegania odpowiedniej częstotliwości pobierania próbek do badań i stosowanie właściwego sposobu ich pobierania,
4) stosowania właściwej aparatury, regularnie sprawdzanej i kalibrowanej,
5) przechowywania wyników badań oraz stosowania odpowiedniego systemu ich dokumentowania.

78 Dyrektywa 1999/11/WE z dnia 8 marca 1999 r.
79 Rozporządzenie Ministra Zdrowia z dnia 4 czerwca 2003 r. w sprawie kryteriów, które powinny spełniać jednostki organizacyjne wykonujące badania substancji i preparatów chemicznych, oraz kontroli spełnienia tych kryteriów, Dz.U. z 2003 r., nr 116, poz. 1103.
Unormowania prawne GDP dotyczą głównie produktów leczniczych. Wytyczne zostały ujęte w komunikatach UE80. GDP dedykowane jest podmiotom zajmującym się obrotem hurtowym produktów przeznaczonych do leczenia ludzi81. GDP gwarantuje bezpieczne przyjmowanie, transportowanie, przechowywanie i wydawanie produktów leczniczych. GDP jest to także element zapewnienia jakości poprzez przeprowadzanie kontroli i licznych działań mających miejsce w procesie dystrybucji.

GAP jest zborem zasad dotyczących pozyskiwania surowców zwierzęcych i roślinnych, produkcji żywności, ochrony środowiska oraz bezpieczeństwa i higieny pracy. W przypadku produkcji podstawowej – w ramach GAP wyróżnia się Dobre Praktyki Uprawowe (produkcja roślinna) i Dobre Praktyki Hodowlane (produkcja zwierzęca)82. Po raz pierwszy termin GAP został przedstawiony przez FAO Committee on Agriculture (COAG) w 2003 r. w Development of a Framework for Good Agricultural Practices83. GAP jest to zbior wytycznych, dedykowanych gospodarstwom, obejmujących zasady produkcji surowców żywnościowych, elementy ochrony środowiska i bezpieczeństwa i higieny pracy84. Wymagania dla gospodarstw zawarte w GAP określają m.in.:

1) sposób przeciwdziałania zanieczyszczaniu środowiska m.in. pierwiastkami promieniotwórczymi i metalami ciężkimi, nawozami, środkami ochrony roślin;
2) lokalizację powierzchni pod uprawę i hodowlę, która powinna być oddalona od źródeł zanieczyszczeń emitowanych do gleby, wody bądź powietrza;
3) warunki przechowywania surowców roślinnych oraz zwierzęcych;
4) sposoby i środki do usuwania np. nadmiaru wilgoci w pomieszczeniach magazynowych;
5) rodzaje badań, jakie powinny być dołączone przez producenta produktów podstawowych do dostawy surowców dla odbiorcy, np. okresowe badania na zawartość substancji szkodliwych, m.in. pestycydów, dioksyn, antybiotyków itp.

80 Dziennik Urzędowy Unii Europejskiej, Komunikaty Instytucji, Organów i Jednostek Organizacyjnych UE z dnia 7 marca 2013 r. w sprawie Dobrej Praktyki Dystrybucyjnej dotyczącej produktów leczniczych do stosowania u ludzi, 2013/C 68/01.
81 Rozporządzenie Ministra Zdrowia w sprawie wymagań Dobrej Praktyki Dystrybucyjnej z dnia 13.03.2015 r., Dz.U. poz. 381.
82 W. Dzwołak, \textit{GMP/GHP w produkcji bezpiecznej żywności. Przemysł Spożywczy, obrót żywnością i gastronomia}, BD Long, Olsztyn 2005.
83 http://www.fao.org/prods/gap/home/principles_en.html [15.07.2015].
84 W. Dzwołak, \textit{Dobre praktyki rolnicze GAP w produkcji roślinnej i zwierzęcej, „Gospodarka. Praktyki Rolnicze”}, t. 67, wrzesień 2013.
W ustawodawstwie UE podczas reformy obszarów wiejskich UE (w 2004 r.), w ramach tzw. Wspólnej Polityki Rolnej, termin GAP zastąpiono określeniem Zwykła Dobra Praktyka Rolnicza (ZDPR). W związku z tym każde państwo członkowskie zostało zobligowane do opracowania zasad ZDPR uwzględniających przepisy prawa stosowane w danym kraju.

GCP, kolejna praktyka, określona również mianem Dobrego Praktyki Produkcyjnej Żywienia Zbiorowego. Zasady zawarte w GCP powinny być wdrażane przez podmioty zajmujące się przygotowywaniem i żywieniem ludzi. GCP obejmuje wszystkie etapy procesu produkcji żywności z uwzględnieniem metod postępowania i procesów/operacji jednostkowych zachodzących podczas produkcji. Określa ona wymagania dotyczące:

1) wyboru odpowiednich dostawców surowców oraz sposobu weryfikacji dostawy;
2) wyboru odpowiednich surowców i sposobu ich przechowywania;
3) przestrzegania zasad prawidłowej obróbki wstępnej surowców;
4) prowadzenia procesów technologicznych (obróbki wstępnej, rozmrażania, porcjowania, obróbki cieplnej, schładzania, serwowania, dystrybucji potrawy oraz przechowywania);
5) określenia, przestrzegania i kontroli parametrów technologicznych (np. temperatury, czasu trwania procesu) obróbki termicznej potrawy;
6) postępowania z odpadami pokonsumpcyjnymi;
7) zapobiegania powstawaniu zanieczyszczeń krzyżowych poprzez unikanie kontaktu skażonej żywności z żywnością mikrobiologicznie czystą (np. krzyżowanie się dróg transportu surowców – potraw i odpadów).

GCP podobnie jak GHP, ma na celu zagwarantowanie bezpieczeństwa konsumenta poprzez zapewnienie wytworzenia bezpiecznej potrawy. Ponadto prawidłowe prowadzenie procesu produkcji zgodnie z zasadami GCP spowoduje, że otrzymane potrawy będą charakteryzowały się wysoką jakością, na którą składa się wartość odżywcza,

85 FVE – Federation of Veterinarians of Europe.
kaloryczność, jakość sensoryczna (wygląd, smakowitość). GCP jest odmienną GMP przeznaczoną dla zakładów zajmujących się produkcją i żywieniem ludzi\(^{87}\).

2.3. System HACCP

System HACCP został opracowany przez *Pillsbury Company* współpracującą z NASA\(^{88}\) i z Laboratorium Badawczym armii USA w latach 60. ubiegłego wieku w celu zapewnienia mikrobiologicznego bezpieczeństwa żywności dla astronautów. Firma ta zastosowała HACCP do własnych produktów żywnościowych. W latach 1972–1978 obligatoryjnie wprowadzono realizację tego systemu w USA do przemysłu spożywczego. W Europie rozpoczęto stosowanie zasad HACCP na mocy dyrektywy unijnej\(^{89}\) przez producentów europejskich. Od czerwca 1993 system HACCP wprowadzono obligatoryjnie do produkcji, dystrybucji i sprzedaży żywności w Unii Europejskiej. W Polsce obowiązek wdrażania zasad GMP/GHP datuje się od 2000 r.\(^{90}\). Natomiast od 1 stycznia 2004 r. rozpoczęło się obligatoryjne wdrażanie systemu HACCP we wszystkich firmach i przedsiębiorstwach w całym łańcuchu produkcji i obrotu żywnością\(^{91}\).

System HACCP opiera się na dwóch filarach: analizie zagrożeń zdrowotnych (chemicznych, biologicznych, fizycznych) i ustaleniu kontrolnych punktów krytycznych\(^{92}\),\(^{93}\). System ten ma na celu identyfikację i ustalenie działań naprawczych w przypadku wystąpienia zagrożeń, wpływacych na bezpieczeństwo żywności\(^{94}\), a następnie stałą kontrolę tych zagrożeń. Takie działania powinny poprawić efektywność económiconą oraz obniżyć koszty producenta. Przed wprowadzeniem tego systemu muszą być wdrożone Programy Warunków Wstępnych. W odróżnieniu od dotychczasowych systemów bezpieczeństwa skupiających się na jakości produktu końcowego system HACCP uwzględnia zagrożenia na poszczególnych etapach powstawania produktu.

88 *National Aeronautics and Space Administration*.

89 Dyrektywa Rady 89/397/EWG.

90 Rozporządzenie Ministra Zdrowia z dnia 28 lutego 2000 r. w sprawie warunków oraz zasad przestrzegania higieny przy produkcji i obrocie środkami spożywczymi i substancjami dozwolonymi, Dz.U. z 2000 r., nr 30, poz. 377, z późn. zm.

92 Ustawa z 25 sierpnia 2006 r. o bezpieczeństwie żywności i żywienia, Dz.U. z 2006 r., nr 171, poz. 1225, z późn. zm.

94 M. Wiśniewska, E. Malinowska, *Zarządzanie jakością żywności*, Difin, Warszawa 2011, s. 44.
Zanieczyszczenia żywności można podzielić na chemiczne, fizyczne i biologiczne95. Zagrożenia chemiczne (CH) żywności to wszystkie substancje, które spożywane wraz z żywnością powodują stan rzeczywistego organizmu96. Mogą to być:
1) celowo dodane substancje dodatkowe, polepszające, konserwanta,
2) substancje dodane przypadkowo,
3) pozostałości leków, pestycydów, detergentów.
Zagrożenia fizyczne (F) stanowią ciała obce, które mogą znaleźć się w żywności wskutek niedostatecznej dbałości o higienę przy obróbce żywności. Mogą to być włosy, fragmenty paznokci, skóry, piasek, drobne kamyczki, niedopalki papierosów, śmieci, kawałki materiałów, szpilki, elementy urządzeń, liście, ości, łuski, pestki.
Występują zagrożenia biologiczne (B) oraz mikrobiologiczne (M). Te ostatnie dzielą się na zagrożenia pochodzące z surowca (Ma), powstające w wyniku wtórnego zanieczyszczenia (Mb) oraz nieprawidłowego przestrzegania czynników ograniczających wzrost bakterii (Mc). Warunki wzrostu i namnażania drobnostrójów zależą od temperatury, pH lub aktywności wody w środowisku97 (\(a_w\))98. Do zagrożeń mikrobiologicznych zalicza się bakterie chorobotwórcze (jak np.: *Salmonella*, *Escherichia coli*), pasożyty i pierwotniaki (wirusy).
Wymogi HACCP powinny uwzględniać zasady zawarte w Kodeksie Żywnościowym i powinny być elastyczne oraz możliwe do stosowania w dużych i małych przedsiębiorstwach. System HACCP nie może być traktowany jako stała, raz opracowana procedura. Etapy jego muszą być ciągle analizowane, regjestrowane i aktualizowane ze względu na konkurencję na rynku i zmieniające się wymagania konsumentów.
System HACCP opiera się na siedmiu zasadach. Zasady te nie mogą być postrzegane jako reguły, lecz powinny stanowić listę zadań obowiązkowych, które wymagane są do wykonania w trakcie wdrażania systemu. W praktyce postępuje się z zaleceniami opisanimi w Codex Alimentarius99, gdzie przed zasadami należy wprowadzić etapy wstępne HACCP (rys. 2.2).

95 Rozporządzenie WE nr 178/2002 Parlamentu Europejskiego i Rady z dnia 28 stycznia 2002r. ustanawiającego ogólne zasady i wymagania prawa żywnościowego, powołującego Europejski Urząd ds. Bezpieczeństwa i Żywności oraz ustanawiającego procedury w zakresie bezpieczeństwa żywności, Dz.Urz. WE L 31 z 1 lutego 2002 r.
97 \(a_w\) – stosunek ciśnienia pary wodnej nad powierzchnią danego roztworu do ciśnienia pary nad powierzchnią czystej wody w tej samej temperaturze i przy tym samym ciśnieniu.
98 K. Kowal, Wpływ aktywności wody na wzrost drobnostrjść, „Przegląd Spożywczy” 2012, nr 66, s. 8–9.
Rysunek 2.2. Zasady i etapy systemu HACCP

- Określenie obszaru wprowadzenia systemu HACCP
- Powołanie zespołu ds. HACCP
- Opisanie produktu wraz z potencjalnym sposobem jego wykorzystania
- Opracowanie schematu procesu technologicznego
- Weryfikacja schematu procesu technologicznego z pracą lini technologicznej
- Sporządzanie listy zagrożeń wraz ze środkami ich kontroli /ZASADA 1/
- Określenie CCP /ZASADA 2/
- Określenie wartości docelowych i krytycznych dla każdego CCP /ZASADA 3/
- Opracowanie systemu monitorowania /ZASADA 4/
- Określenie działań korygujących /ZASADA 5/
- Określenie procedury weryfikacji /ZASADA 6/
- Opracowanie i prowadzenie dokumentacji /ZASADA 7/

Pierwsze etapy (punkty 1–5) mają charakter organizacyjny, mający na celu odpowiednie przygotowanie przedsiębiorstwa do wdrożenia systemu HACCP. Druga część wdrażania systemu (punkty 6–12) może rozpocząć się dopiero po etapach wstępnym (1–5). Przebieg jest następujący:

Etap 1 – Określenie obszaru stosowania systemu HACCP
Zanim przedsiębiorstwo przystąpi do wdrożenia systemu HACCP, jego kierownictwo musi najpierw precyzyjnie i jasno wyrazić na piśmie politykę wdrażania systemu HACCP. Następnie ustalany jest zakres zastosowania systemu (całe przedsiębiorstwo, wybrane działy, wybrane procesy produkcyjne). Bierze się również pod uwagę możliwe zagrożenia występujące na linii produkcyjnej.100

Etap 2 – Powołanie zespołu HACCP
W dużych przedsiębiorstwach system HACCP powinien być wdrażany tylko przez zespół przeszkołonych i kompetentnych osób, które posiadają wiedzę obejmującą wiele dziedzin. Najczęściej zespół ten składa się z 3 do 5 osób. Jednak, w małych

100 M. Zarendowski, *HACCP: katalog zagrożeń biologicznych, fizycznych i chemicznych*, ODIDK, Gdańsk 2008, s. 9.
przedsiębiorstwach wystarczy jeden dobrze wyszkolony pracownik. Wśród osób będących w zespole należy wybrać lidera, który będzie odpowiedzialny za pracę zespołu, koordynację jego działań oraz będzie ponosić odpowiedzialność za podejmowane przez zespół decyzje. Wszystkie osoby wchodzące w skład zespołu HACCP muszą być odpowiednio przeszkolone. Powołanie zespołu HACCP powinno mieć charakter formalny i być wynikiem decyzji kierownictwa firmy101.

Etap 3 – Opisanie produktu wraz z jego potencjalnym sposobem wykorzystania

W każdym zakładzie powinien być sporządzony dokument, w którym zawarty będzie spis wszystkich wytwarzanych produktów lub przygotowywanych posiłków, wraz z dokładną ich specyfikacją. Opis ten powinien zawierać m.in.: skład surowcowy i chemiczny, rodzaj wykorzystywanej do produkcji technologii, warunki i temperaturę magazynowania tych produktów, ich cechy mikrobiologiczne, metody dystrybucji itd. Oczywiście, ze względu na tajność receptur nie muszą być one szczegółowo opisane. Szczególna uwaga powinna być zwrócona na wykorzystywane surowce.

Na tym etapie należy również określić przeznaczenie produktu przez konsumenta po zakupie. Dodatkowo, sprecyzowana musi być docelowa grupa konsumentów, do której produkt jest kierowany.

Etap 4 – Opracowanie schematu procesu technologicznego

Prawidłowe opracowanie schematu technologicznego w znacznym sposób utrwala zrozumienie, przede wszystkim osobom z zewnątrz, przepływu półproduktów i surowców w procesie produkcji. W związku z tym, schemat powinien obejmować wszystkie fazy procesu produkcji, rozpoczęwając od przyjęcia surowców, poprzez kolejne etapy, aż do dystrybucji i klienta ostatecznego. Każdy etap procesu powinien mieć określone wszystkie podstawowe parametry, takie jak: sposób i temperaturę obróbki termicznej oraz jej czas trwania, warunki magazynowania, sposób kontroli i monitorowania czynności itd.102 Schemat procesu produkcyjnego powinien być opracowany przy użyciu symboli zgodnie z normą ISO103, 104. Graficzne przedstawienie wszystkich etapów procesu utrwala kierownictwu i pracownikom przegląd przepływu surowców, półproduktów oraz wyrobu gotowego w przedsiębiorstwie.

102 Ibidem, s. 42–43.

103 Norma ISO 9842:1982 – Symbole.

Ponadto umożliwia wskazanie miejsc, w których może dojść do skażenia krzyżowego surowców, półprodktów, produktów gotowych.

Etap 5 – Weryfikacja schematu procesu technologicznego na linii technologicznej

Weryfikacja schematu procesu technologicznego powinna być przeprowadzana w obecności wszystkich członków zespołu HACCP pod nadzorem lidera, a następnie zostać potwierdzone pisemnie. Ma ona na celu porównanie opracowanego w dokumentacji procesu technologicznego z aktualnie działającą linią produkcyjną. W przypadku zaistnienia rozbieżności należy nanieść na schemat stosowne poprawki. Schemat należy uaktualniać w przypadku każdej zmiany lub modernizacji linii produkcyjnej.

Etap 6 – Sporządzenie listy zagrożeń oraz środków kontroli (Zasada 1)

Etap ten polega na stworzeniu listy możliwych zagrożeń chemicznych, fizycznych lub biologicznych/mikrobiologicznych żywności, których obecność w produkcie żywnościowym może być niebezpieczna dla konsumentów.

Następnie należy przystąpić do charakterystyki opisanych zagrożeń pod względem ich istotności, stopnia zagrożenia oraz wpływu na bezpieczeństwo produktu. Wówczas można określić ryzyko, z jakim zagrożenia mogą się pojawić.

Na końcu należy opracować sposoby kontroli dla zidentyfikowanych zagrożeń. Służby one mają zapobieganiu, eliminowaniu oraz ograniczaniu poziomu ich wystąpienia.

Etap 7 – Określenie Krytycznych Punktów Kontroli – CCP (Zasada 2)

Na tym etapie zespół ds. HACCP musi zidentyfikować krytyczne punkty kontroli, czyli etapy procesu technologicznego, które należy kontrolować w celu zapobiegania, wyeliminowaniu zagrożenia żywności bądź zmniejszeniu zagrożenia do bezpiecznego poziomu.

Następnie należy je odróżnić od zwykłych punktów kontroli, czyli etapów, w których należy dokonywać pomiaru/obserwacji w celu wyeliminowania/zredukowania zagrożenia.
Najczęściej do wyznaczania CCP wykorzystuje się tzw. drzewko decyzyjne. Zawiera ono ciąg logicznie występujących po sobie pytań i odpowiedzi, które są pomocne w wyznaczeniu istotnych dla bezpieczeństwa żywności etapu/ów w procesie produkcyjnym. Zaproponowana lista pytań zawartych w drzewkach jest bardzo ogólna, co umożliwia stosowanie jej do różnych procesów produkcyjnych. Pytania te mają ułatwić użytkownikowi identyfikację CCP; jednak należy pamiętać, iż przy ocenie istotności zagrożenia należy posłużyć się również posiadanalną wiedzą na temat danego procesu w celu uniknięcia zbyt dużej liczby punktów, które mają istotny wpływ na zapewnienie bezpieczeństwa żywności.

Po wyznaczeniu CCP określa się punkty kontrolne, które nie wchodzą ścisłe w system HACCP, ale jedynie spełniają wymagania Dobrej Praktyki Produkcyjnej bądź jakości handlowej.

Identyfikację zagrożenia zarówno surowców, jak i etapu/ów procesu produkcyjnego przeprowadzić można na podstawie drzewka przedstawionego w Codex Alimentarius (załącznik 1) bądź tzw. drzewka holenderskiego (załącznik 2). Powszechnie stosowanym drzewkiem decyzyjnym jest drzewko holenderskie, ze względu na uszczegółowienie pytań, co przekłada się na precyzyjne określenie CCP. Głowną zaletą tego drzewka jest to, iż etapy związane z szeroko rozumianą higieną, istotną dla zachowania bezpieczeństwa żywności, nie należy uznawać za CCP. Wymika to z braku możliwości bieżącego monitorowania zagrożenia (odpowiedź NIE na pyt. 1 – załącznik 2). W rezultacie udzielając odpowiedzi na kolejne pytania 1a i lub 1b, uzyskuje się informację, że etapy te należy kontrolować zgodnie z obowiązującymi procedurami i instrukcjami GHP/GMP.

Drzewka decyzyjne można jeszcze bardziej uszczegółów, dostosowując je do własnego użytku, (np. drzewka decyzyjne kanadyjskie, angielskie).

Wyznaczanie CCP za pomocą drzewka decyzyjnego ma jednak kilka wad, których wpływ jest niekorzystny na proces produkcji przy dłuższym funkcjonowaniu
systemu HACCP. CCP mogą być nieprawidłowo wyznaczone, ponieważ upoważniona do identyfikacji zagrożenia wpływającego na bezpieczeństwo produktu osoba może nie posiadać odpowiednio dużego doświadczenia i wiedzy na temat technologii produkcji. Może ona nie przewidzieć konsekwencji, jakie mogą wynikać z odpowiedzi udzielanych na poszczególne pytania. Kluczowym problemem w tej metodzie jest brak określenia stopnia ważności analizowanego etapu procesu.

W związku z tym coraz częściej stosuje się metodę analizy przyczyn i skutków wad (FMEA), którą wykorzystuje się do wyznaczania oceny stopnia ryzyka. Metoda ta polega na identyfikacji wad produktu (FMEA produktu) bądź etapu procesu (FMEA procesu) poprzez określenie przyczyn ich powstania, następnie na doborze odpowiednich środków zapobiegawczych w celu uniknięcia powstawania wad w nowych produktach, uwzględniając informacje uzyskane z przeprowadzonych analiz. FMEA składa się z kilku etapów, z których najważniejszym do wyznaczenia CCP jest opis zapobiegania wystąpienia wady. Dla każdej wady oblicza się wskaźnik priorytetu (LPR), który składa się z iloczynu liczby prawdopodobieństwa wystąpienia wady (LPW), liczby prawdopodobieństwa znaczenia wady (LPZ) oraz liczby prawdopodobieństwa odkrycia wady (LPO). Wartości LPW, LPZ i LPO określa się w skali 1-10. W przypadku dwóch pierwszych wskaźników wartość 1 oznacza nieprawdopodobne bądź prawie nieodczuwalne, zaś wartość 10 oznacza wiele prawdopodobne lub bardzo duże. Odwrotnie jest w przypadku wskaźnika LPO, gdzie 1 oznacza duże prawdopodobieństwo zaś 10 oznacza nieprawdopodobną wykrywalność błędu. Za punkty CCP uznaje się te etapy procesu, które mają największe wartości wskaźnika LPR.

Zgodnie z metodą FMEA zaleca się, aby wybrać od 2–5 źródeł zagrożeń.

Zaletą metody FMEA jest jej uniwersalny charakter, przez co może znaleźć zastosowanie do różnych procesów technologicznych we wszystkich gałęziach przemysłu, zarówno w produkcji seryjnej, jak i jednostkowej. Metoda FMEA może być wykorzystana na etapie projektowania produktu i procesu jego wytwarzania w celu określenia wad, przyczyn ich powstania i podjęcia działań naprawczych. Wyeliminowanie wad na etapie projektowania zapobiega powstawaniu tzw. kosztów złej jakości, wynikających z konieczności pokrycia wydatków na działania naprawcze powstałych podczas produkcji wad. Dzięki temu możliwe jest obniżenie kosztów produkcji i uzyskanie tańszych produktu o wysokiej jakości. Coraz częściej zarówno wśród zagranicznych, jak i polskich kontrahentów warunkiem koniecznym nawiązania współpracy jest wykorzystywanie metod statystycznej kontroli procesu oraz stosowania metody FMEA.

109 *Ibidem.*
Rozdział 2. Wybrane systemy związane z jakością i bezpieczeństwem żywności

Inną metodą uwzględniającą na każdym etapie procesu produkcyjnego częstotliwość występowania zagrożenia oraz wskaźnik priorytetu (ryzyka) jest Analiza Istotności Ryzyka (priorytetu zagrożeń). W celu wyznaczenia priorytetu zagrożenia, określa się odpowiednią liczbę punktów (tab. 2.1) dla częstotliwości występowania zagrożenia i dla wskaźnika priorytetu ryzyka.

Tabela 2.1. Wartości liczbowe oceny częstotliwości występowania zagrożenia (A) i istotności jego występowania (B) do wyznaczania wskaźnika priorytetu (ryzyka)

<table>
<thead>
<tr>
<th>Częstotliwość występowania zagrożenia (A)</th>
<th>Istotność zagrożenia (B)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zagrożenie występuje:</td>
<td>Zagrożenie ma wpływ na produkt:</td>
</tr>
<tr>
<td>Bardzo często A = 3</td>
<td>Bardzo duży B = 3</td>
</tr>
<tr>
<td>Średnio A = 2</td>
<td>Średni B = 2</td>
</tr>
<tr>
<td>Bardzo rzadko A = 1</td>
<td>Bardzo mały B = 1</td>
</tr>
</tbody>
</table>

Następnie za pomocą wzoru 2.1 wylicza się wskaźnik priorytetu (ryzyka).

\[P = A \times B \]

(2.1)

dzie:

- \(P \) – wskaźnik priorytetu (ryzyka),
- \(A \) – częstotliwość występowania zagrożenia,
- \(B \) – istotność występowania zagrożenia.

Na podstawie uzyskanego wyniku określa się kategoryzację wskaźnika priorytetu istotności występowania ryzyka. Wartość iloczynu oceny istotności zagrożenia oraz prawdopodobieństwa występowania zagrożenia znajdującą się w przedziale od 6 do 9 określa się mianem ryzyka poważnego. Oznacza to wysoki poziom zagrożenia, którego nie można lekceważyć i należy oznaczyć jako CCP. Umiarkowany poziom ryzyka (średni) występuje, gdy uzyskana wartość iloczynu znajduje się w przedziale od 3 do 6. Wobec takiego zagrożenia można podjąć działania prewencyjne poprzez wprowadzenie CP. Niski poziom ryzyka związanego z zagrożeniem, określany jako drugorzędny, stwierdza się, gdy uzyskany wynik znajduje się poniżej liczby 3. W tym przypadku nie ma konieczności wyznaczania CCP oraz CP110, 111.

Uwagi:

111 M. Wiśniewska, E. Malinowska, op. cit., s. 270–271.
W odróżnieniu od metody drzewka decyzyjnego, FMEA oraz Analiza Istotności Ryzyka wykorzystywane są do ilościowego szacowania ryzyka, tj. do określenia wskaźnika priorytetu ryzyka/wady na każdym etapie procesu produkcyjnego.

Etap 8 – Określenie wartości docelowych i krytycznych dla każdego punktu krytycznego (Zasada 3)
Parametry wyznaczonych punktów krytycznych muszą być stale kontrolowane i monitorowane. Każdy z kontrolowanych parametrów powinien mieć jasno określone:
– wartości docelowe optymalne dla danej operacji/procesu jednostkowego,
– wartości przedziału tolerancji z uwzględnieniem dopuszczalnych odchyleń,
– wartości krytyczne, których przekroczenie obniża bezpieczeństwo produktu.\(^{112}\)

Etap 9 – Przygotowanie systemu monitorowania Krytycznych Punktów Kontroli – CCP (Zasada 4)
Monitorowanie CCP polega na systematycznych pomiarach i obserwacjach wybranych parametrów. Jest to bardzo drogi, czasochłonnny, jak i pracochłonný etap. Zaletą systematycznego monitorowania parametrów jest szybkie wykrywanie odchylen od określonych wartości krytycznych oraz natychmiastowe wprowadzanie działań korygujących. Dzięki monitorowaniu możliwe jest wykazanie nieprawidłowości występujących w czasie procesu oraz ich przyczyn. Należy dodać, że dla poszczególnych etapów produkcji częstotliwość i sposób monitoringu muszą być doborane indywidualnie. Przy opracowywaniu monitoringu należy skupić się na tym, aby w sposób jasny i precyzyjny określone zostały mierzone parametry, granice krytyczne tych pomiarów, sposób oraz częstotliwość ich prowadzenia. Monitoring powinien być możliwie łatwy do przeprowadzenia, a jego wyniki muszą być wiarygodne i prawidłowo przechowywane. Personel, odpowiedzialny za wykonywanie pomiarów powinien zostać odpowiednio przeszkolony.\(^{113}\)

ETAP 10 – Określenie działań korygujących (Zasada 5)
Zespół ds. HACCP opracowuje plan działań korygujących, jakie należy podjąć natychmiast po wykryciu przekroczenia ustalonych wartości krytycznych monitorowanych parametrów. Plan działań korygujących zawiera opis metody, wykaz osób przeszkolonych do podjęcia działań naprawczych, sposób przechowywania zapisów z podjętych działań oraz sposób postępowania z produktami niezgodnymi. Działania takie muszą być wymienione w planie HACCP i opracowane dla poszczególnych CCP.\(^{114}\)

\(^{113}\) J. Pikula, *op. cit.*, s. 26–27.
\(^{114}\) H. Turlejska, *Zasady GHP/GMP*, *op. cit.*, s. 51–52.
ETAP 11 – Określenie procedury weryfikacji (Zasada 6)

Weryfikacja ma na celu stwierdzenie, czy system HACCP został wdrożony prawidłowo i czy przynosi oczekiwane rezultaty. Może ona być realizowana poprzez bada-
nie produktu gotowego, przeglądy dokumentacji HACCP, analizę wszystkich CCP
i wyników działań korygujących. Najczęściej w celach weryfikacji przeprowadzane
są audyty zewnętrzne przez uprawnione do tego jednostki certyfikujące. Zespoły te
koncentrują się na:
– analizie zarejestrowanych odchyleń od wartości krytycznych i zastosowanych
działań korygujących,
– badaniu mikrobiologicznym, fizykochemicznym na zgodność ze standardami,
– sprawdzeniu wiedzy personelu na temat higieny działań korygujących,
– udziale w badaniach porównawczych w innych laboratoriach.

Po przeprowadzonym audycie sporządzane są raporty określające zauważone
niezgodności, które powinny być wzięte pod uwagę przy ustalaniu działań
naprawczych.

Etapowi weryfikacji powinien towarzyszyć harmonogram audytów oraz być
przeprowadzany okresowo.115

ETAP 12 – Opracowanie i prowadzenie dokumentacji (Zasada 7)

Przy wdrażaniu systemu HACCP wymagane jest prowadzenie dokumentacji
w formie ogólnych dokumentów systemowych (księga HACCP), dokumentów
wykonawczych (instrukcje, procedury systemowe) oraz zapisów i rejestrów z prze-
prowadzonych pomiarów.

Księga HACCP powinna zawierać:
– ogólne informacje o firmie (profil firmy, jej cele i zadania, istniejąca struktura
organizacyjna, prowadzona polityka jakości),
– szczegółowy opis niezbędnych programów warunków wstępnych (GMP/GHP)
w przedsiębiorstwie (plan infrastruktury przedsiębiorstwa, opis systemu gospo-
darki wodno-ścierekowej, usuwania odpadów i kontroli szkodników; zasady higieny
osobistej pracowników oraz programu ich szkolenia, opis procedury postępowa-
nia z surowcami/produktami wadliwymi, opis procedury reklamacji oraz konser-
vacji i kalibracji urządzeń na linii produkcyjnej),
– opis wprowadzonego systemu HACCP (skład zespołu HACCP, opis produktów,
surowców, identyfikacja procesów technologicznych i CCP, przedstawienie sys-
temu monitorowania oraz działań korygujących itd.).

115 Ibidem, s. 52.
Struktura dokumentacji powinna być przejrzysta, czytelna oraz zrozumiała. Należy pamiętać o nadzorowaniu obiegu dokumentów.116

Do najważniejszych zalet wprowadzenia systemu HACCP należy:

1) spełnienie przez przedsiębiorstwo wymogów prawodawstwa żywnościowego UE zawartego w Dyrektywie 93/43 EWG w sprawie higieny środków spożywczych;
2) poprawa wizerunku firmy oraz wzrost jej konkurencyjności na rynku krajowym i międzynarodowym;
3) zwiększenie zaangażowania pracowników na wszystkich poziomach organizacyjnych oraz podnoszenie ich świadomości i kwalifikacji na rzecz wzrostu jakości i bezpieczeństwa produktu;
4) lepsza komunikacja między pracownikami oraz działami firmy;
5) podejmowanie działań zapobiegawczych przed wystąpieniem potencjalnego zagrożenia;
6) stałe podnoszenie jakości produktów spełniających oczekiwania klientów;
7) wzrost wiarygodności firmy oraz ułatwienie współpracy z kontrahentami;
8) zmniejszenie strat produkcyjnych poprzez logistyczne podejście;
9) obniżenie kosztów przedsiębiorstwa poprzez wykrywanie wad na wcześniejszych etapach produkcji;
10) efektywne przeprowadzanie audytów;
11) rzadkie kontrole urzędowe (np. kontrolę Sanepidu);
12) możliwość łatwjszego wprowadzania zmian w przedsiębiorstwie.

Wdrożenie systemu HACCP wpływa znacznie na polepszenie warunków pracy w przedsiębiorstwie. Prowadzi on do zwiększenia dyscypliny pracowników oraz lepszej współpracy między nimi. Poza tym usprawnia procesy produkcyjne. Najważniejsze skutki wdrożenia systemu HACCP są następujące:

1) podniesienie bezpieczeństwa zdrowotnego i jakości żywności (niższe ryzyko zatrucia pokarmowych i chorób);
2) wzrost zadowolenia i zaufania konsumentów oraz poprawa poziomu i komfortu ich życia;
3) położenie nacisku na kontrolę wyrobu na każdym etapie produkcji;
4) podniesienie świadomości i odpowiedzialności pracowników i lepszej współpracy pomiędzy działami;
5) zwiększenie konkurencyjności danego przedsiębiorstwa na rynku żywnościowym.

116 J. Pikula, op. cit., s. 32–33.
Występują jednak pewne wady i trudności związane z wdrażaniem systemu HACCP. Wśród nich można wymienić:
1) złe przygotowanie organizacyjno-techniczne przedsiębiorstwa,
2) niewłaściwe stworzenie harmonogramu działań w celu wdrożenia systemu,
3) niewystarczające zaangażowanie kierownictwa,
4) słabo wykwalifikowany personel,
5) niską motywację pracowników,
6) zbyt duża ilość dokumentacji,
7) długotrwałe wdrażanie systemu HACCP i ciągłe jego doskonalenie,
8) wysokie koszty wdrożenia systemu.

Wdrażanie systemu HACCP w należących do łańcucha żywnościowego polskich przedsiębiorstwach jest konieczne ze względu na obligatoryjny charakter tego systemu w UE i USA. Przedsiębiorstwa z sektora spożywczego poddawane są certyfikacji zgodności procesów produkcyjnych z wymaganiami HACCP przez uprawnione do tego jednostki certyfikujące. Do roku 2007 system HACCP można było certyfikować na podstawie jednego z trzech zaleceń: duńskiej normy DS 3027:2002, holenderskich kryteriów oceny HACCP[117], bądź Codex Alimentarius[118]. W Polsce od 2007 r. krajowa jednostka akredytująca nadaje jednostkom certyfikującym uprawnienia do weryfikacji systemu HACCP zgodnego z wymaganiami zawartymi w normie ISO 22000[119].

2.4. Norma ISO 22000

117 Criteria for Assessment of an Operational HACCP System (Dutch HACCP).
120 Ang. Committee Draft.

Głównym założeniem normy ISO 22000 jest ukierunkowanie procesów w przedsiębiorstwie na zarządzanie bezpieczeństwem żywności123. Wymagania normy ISO 22000 obejmują szerszy obszar działania przedsiębiorstw niż system HACCP wraz z programami warunków wstępnych (rys. 3.1). Wymagania tej normy mają charakter ogólny i stosują się do wszystkich przedsiębiorstw znajdujących się w tzw. łańcuchu żywnościowym. W strukturę normy ISO 22000 wchodzą także wymagania zawarte w systemie bezpieczeństwa żywności BRC124. Norma ISO 22000 równiez integruje elementy zarządzania przedsiębiorstwem zgodne z normą ISO 9001125. Norma ISO 22000 ma podobną strukturę do pozostałych norm dotyczących systemów zarządzania, co ułatwia integrację systemu z innymi systemami zarządzania jakością oraz normami środowiskowymi.

Wymagania zawarte w tej normie pozwalają na:
1) zaplanowanie, wdrażanie, funkcjonowanie, aktualizowanie i doskonalenie systemu zarządzania związanego z dostarczaniem do potencjalnych klientów bezpieczeństwa żywności,
2) realizację własnej polityki bezpieczeństwa,
3) wykazanie zgodności tej normy z prawem dotyczącym bezpieczeństwa żywności,
4) oszacowanie i ocenę wymagań konsumentów,
5) zapewnienie efektywnej komunikacji zainteresowanych stron działających w łańcuchu żywnościowym (np. z dostawcami),
6) uczestnictwo w przetargach.

122 Ang. International Standard.
124 Ang. British Retail Consortium.
125 I. Lipińska, Zarządzanie jakością w sektorze spożywczym – wybrane aspekty prawne, „Logistyka" 2012, nr 4, s. 1087–1094.
Norma ISO 22000 również obejmuje:
1) elementy systemu zarządzania bezpieczeństwem żywności,
2) monitorowanie programu warunków wstępnych,
3) kontrolowanie środków nadzoru zagrożeń,
4) wytyczne dotyczące polityki bezpieczeństwa żywności,
5) zasady wycofania wadliwych produktów z rynku.

Po wdrożeniu systemu zarządzania wg normy ISO 22000 można starać się o certyfikat, który jest uznawany na całym świecie. Działania w przedsiębiorstwie posiadającym taki certyfikat są sprawniejsze i lepiej zorganizowane na wszystkich szczeblach organizacji ze względu na ujednolicenie procedur i ich harmonizację z obowiązującymi unormowaniami oraz ze względu na lepszy przepływ informacji między działami.

Norma ISO 22000 ma zastosowanie do wszystkich organizacji uczestniczących w funkcjonowaniu łańcucha żywnościowego, bez względu na wielkość organizacji. Może to być gospodarstwo rolnicze, ferma (np. drobiowa), mleczarnia, firma zajmująca się przetwórstwem żywności, zakład zajmujący się produkcją dodatków do żywności, firma cateringowa, firma zajmująca się magazynowaniem żywności, produkcją opakowań oraz materiałów mających kontakt z żywnością, dystrybucją, handlem lub transportem żywności. Normę tę powinny wdrażać nawet przedsiębiorstwa zajmujące się produkcją środków czyszczących i dezynfekujących, używanych w zakładech zaliczanych do łańcucha żywnościowego.

Norma ISO 22000 składa się z 8 rozdziałów, przy czym rozdziały 1–3 dotyczą opisu normy, zaś w rozdziałach 4–8 zawarte są wymagania odnoszące się do certyfikacji systemu zarządzania bezpieczeństwem żywności. W rozdziale czwartym tej normy podano wymagania ogólne i wymagania dotyczące dokumentacji systemu zarządzania bezpieczeństwem żywności. Rozdział piąty dotyczy odpowiedzialności kierownictwa ze szczególnym uwzględnieniem zaangażowania kierownictwa, polityki bezpieczeństwa żywności, planowania systemu, odpowiedzialności i uprawnień przewodniczącego zespołu, komunikacji, gotowości i reakcji na sytuacje awaryjne.
oraz przeglądu zarządzania. W rozdziale szóstym opisano zarządzanie zasobami,
 a mianowicie zasoby ludzkie, infrastrukturę i środowisko pracy. W rozdziale siódmym
 ujęto planowanie i realizację bezpiecznych wyrobów, w tym postanowienia
 ogólne, opis programów i etapów wstępnych oraz planu systemu HACCP umożliwiającego
analizę zagrożeń, aktualizację programów wstępnych, planowanie weryfikacji,
system identyfikowania oraz nadzór nad niezgodnościami. Rozdział ósmy
dotyczy pomiarów, analizy i doskonalenia systemu zarządzania bezpieczeństwem
żywności. Ujęto w nim postanowienia ogólne, validację kombinacji środków,
nadzór monitorowania i pomiarów, weryfikację systemu zarządzania bezpieczeństwem
żywności i jego doskonalenie.

Podsumowując, należy stwierdzić, że omówione w tym rozdziale systemy związane
z jakością i bezpieczeństwem żywności powinny być wdrażane we wszystkich
organizacjach należących do łańcucha żywnościowego. Gwarantują one konsumentom dostęp do
bezpiecznej żywności, która ma znaczący wpływ na zdrowie
człowieka.