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Summary. The article evaluates, based on ordinal data simulated with cluster.Gen

function of clusterSim package working in R environment, some cluster analysis
procedures containing GDM distance for ordinal data (see [4, 18, 19]), nine clustering
methods and eight internal cluster quality indices for determining the number of
clusters. Seventy two clustering procedures are evaluated based on simulated data
originating from a variety of models. Models contain the known structure of clusters
and differ in the number of true dimensions, the number of categories for each
variable, the density and shape of clusters, the number of true clusters, the number
of noisy variables. Each clustering result was compared with the known cluster
structure from models applying Hubert and Arabie’s [2] corrected Rand index.
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1 Introduction

Four basic scales are distinguished in the theory of measurement: nominal,
ordinal, interval and ratio scale. Among these four scales of measurement the
nominal is considered the lowest. It is followed by the ordinal, the interval,
and the ratio one which is the highest. They were introduced by Stevens [15].

Systematics of scales refers to transformations which retain relations of
the respective scale. These results are well-known and presented e.g. in the
paper [3], p. 106. Any strictly increasing functions are the only permissible
transformations within the ordinal scale. The main characteristics of ordinal
scale are summarised in Table 1.

2 Clustering Procedures for Ordinal Data

Major steps in cluster analysis procedure for ordinal data include (see e.g.
[10], pp. 341-343): the selection of objects and variables, the selection of a
distance measure, the selection of clustering method, determining the number
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Table 1. Rules for ordinal scale of measurement

Scale Basic empirical Allowed mathematical Allowed arithmetic
operations transformations operations

Ordinal equal to, greater
than, smaller than

any strictly increasing
functions

counting of events (num-
bers of relations equal to,
greater than, smaller than)

Source: Adapted from [15], pp. 25, 27

of clusters, cluster validation, describing and profiling clusters. Variable nor-
malization step is omitted while performing comparisons with cluster analysis
procedure for metric data. The purpose of normalization is to adjust the size
and the relative weighting of input variables (see e.g. [11], p. 182). Normaliza-
tion is used when variables are measured with metric data. Normalization is
not necessary with regard to ordinal scale, because only the relations: equal
to, greater than, smaller than are permitted with ordinal values.

The construction of distance measure for ordinal data should take these
relations into account and should be based on relations between the two ana-
lyzed objects and the other objects (context distance measure). In statistical
data analysis literature few distance measures for variables measured with
ordinal data were suggested. Only GDM distance measure dik proposed by
Walesiak [18], pp. 44-45 satisfies ordinal scale conditions (see Table 1):
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aipj(bkrj) =







1 if xij > xpj(xkj > xrj)
0 if xij = xpj(xkj = xrj)

−1 if xij < xpj(xkj < xrj)
for p = k, l; r = i, l , (2)

where: i, k, l = 1, . . . , n – the number of objects,
j = 1, . . . , m – the number of variables,
xij(xkj, xlj) – i-th (k-th, l-th) observation on the j-th variable.

Article [4] discusses the properties of GDM distance measure.
Other proposals (e.g. Kendall distance measure [7], p. 181; Gordon dis-

tance [5], p. 19; Podani distance [12]) imply the assumption that the ranks
are measured with at least, the interval scale (when the differences can be
calculated). It is also worth mentioning the following argument, presented by
Kaufman and Rousseeuw [6], p. 30: “Therefore, most authors advice treat-
ing the ranks as interval-scaled and applying the usual formulas for obtaining
dissimilarities (like the Euclidean or Manhattan distance)”.
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The selected clustering procedures included in the article are as follows:
1. GDM distance measure for ordinal data – GDM2 distance in clusterSim

package.
2. The selected methods of cluster analysis (stats and cluster packages):
– k-medoids (pam);
– seven hierarchical agglomerative algorithms: single link (single), complete

link (complete), group average link (average), weighted average link (mcquitty),
incremental sum of squares (ward), centroid (centroid), median (median). The
Ward, centroid and median methods are easy to implement with distance
matrix for only squared Euclidean distance. These methods could be used with
any distance measure, however, the results would lack useful interpretation
(see [1], pp. 141, 145);

– hierarchical divisive method by Macnaughton-Smith et. al. [8] – diana.
3. The selected internal cluster quality indices for determining clusters’

number (all formulas and references for indices you can find in pdf files of
clusterSim package [20]): Davies-Bouldin – index.DB, Calinski-Harabasz – in-

dex.G1, Baker & Hubert – index.G2, Hubert & Levine – index.G3, gap – in-

dex.Gap, Hartigan – index.H, Krzanowski & Lai – index.KL, Silhouette – in-

dex.S.
For Davies-Bouldin, Calinski-Harabasz, gap, Hartigan, and Krzanowski &

Lai indices medoids of clusters (representative objects of clusters) are used
instead of centroids of clusters.

3 Simulation Experiment Characteristics

Data sets are generated in nine different scenarios (see Table 2). Models con-
tain the known structure of clusters. Simulation models differ in the number
of true dimensions (variables), the number of categories for each variable, the
density and shape of clusters, the number of true clusters, the number of noisy
(irrelevant) variables. The noisy variables are simulated independently, based
on uniform distribution. Variations of noisy variables, in the generated data,
are required to be similar to non-noisy ones (see [9], [13], p. 322).

The clusters in models presented in Table 2 contain continuous obser-
vations (metric data). Discretization process is performed on each vari-
able in order to obtain ordinal data (see [20]). The number of categories
kj for categorical variable Xj determines the width of each class intervals
[

max
i

{xij) − min
i
{xij}

]/

kj. Each class interval receives category 1, . . . , kj in-

dependently for each variable and the actual value of variable xij is replaced
by these categories. The number of categories may be different for each vari-
able. The example of dicretization process is shown in Fig. 1.

The next step was to perform one out of seventy two clustering procedures
(containing GDM distance for ordinal data, nine clustering methods and eight
internal cluster quality indices for determining the number of clusters) with
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Table 2. Experimental factors for simulation models

m v nk cl lo Centroid of clusters Covariance matrix
P

ks

1 2 4, 6 3 60, 30, 30 (0; 0), (1.5; 7), (3; 14) σjj = 1, σjl = −0.9 1

2 3 7 3 45 (1.5; 6, – 3), (3; 12; –6)
(4.5; 18; –9)

σjj = 1 (1 ≤ j ≤ 3),
σ12 = σ13 = −0.9, σ23 = 0.9

1

3 2 5, 7 5 50, 20, 25,
25, 20

(5; 5), (–3; 3), (3; –3),
(0; 0), (–5; –5)

σjj = 1, σjl = 0.9 2

4 3 5, 7, 5 5 25 (5; 5; 5), (–3; 3; –3),
(3; –3; 3), (0; 0; 0),
(–5; –5; –5)

σjj = 1 (1 ≤ j ≤ 3),
σjl = 0.9 (1 ≤ j 6= l ≤ 3)

2

5 2 5 5 20, 45, 15,
25, 35

(0; 0), (0; 10), (5; 5),
(10; 0), (10; 10)

σjj = 1, σjl = 0 3

6 2 6, 8 4 35 (–4; 5), (5; 14), (14; 5),
(5; –4)

σjj = 1, σjl = 0 3

7 3 6 4 25, 25,
40, 30

(–4; 5; –4), (5; 14; 5),
(14; 5; 14), (5; –4; 5),

a 4

8 3 5, 6, 7 5 35, 25, 25,
20, 20

(5; 5; 5), (–3; 3; –3),
(3; –3; 3), (0; 0; 0),
(–5; –5; –5)

b 4

9 2 7 3 40 (0; 4), (4; 8), (8; 12) c 4

m – model, v – number of variables, nk – number of categories (one number means
the same number of categories for each variable); cl – number of clusters; lo –
number of objects in each cluster (one number means that clusters contain the

same number of objects); ks – shape of clusters (1 – elongated, 2 – elongated and
not well separated, 3 – normal, 4 – different for each cluster);
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Source: authors’ compilation with clusterSim package (see [20])
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Fig. 1. The example of discretization process
Source: authors’ compilation

each model. The analysis reffered only to clustering results from 2 to 10 clus-
ters. Next each clustering result was compared with the cluster structure
known from models applying Hubert and Arabie’s [2] corrected Rand index.
The maximum value of corrected Rand index is 1 for identical partitions and
its expected value is zero when the partitions are selected at random. Fifty
realizations were generated from each setting.

4 Discussion on Simulation Results

In table 3 nine clustering methods are ranked, based on adjusted Rand index
mean values for nine models and eight internal cluster quality indices (with
50 simulations).

The following conclusions can be drawn from the results presented in Table
3:

– group average method is definitely the best, while single link method is
the worst for clustering ordinal data,

– Ward method ensures better results in clustering ordinal data with noisy
variables.

Table 4 presents internal quality indices of clustering results ranking based
on adjusted Rand index mean values for nine models and nine clustering
methods (with 50 simulations).

Based on the results in Table 4 the following conclusions can be drawn:
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Table 3. Clustering methods ranking based on adjusted Rand index mean values

Method Mean
Shape of clusters No. of noisy variables

1 2 3 4 0 2 4

average 0.545 1 0.514 1 0.509 2 0.494 1 0.625 1 0.739 1 0.508 1 0.388 1

ward 0.512 2 0.473 3 0.479 3 0.465 2 0.591 3 0.680 7 0.482 2 0.373 2

mcquitty 0.506 3 0.450 4 0.473 4 0.445 3 0.606 2 0.706 3 0.463 3 0.350 4

diana 0.499 4 0.477 2 0.532 1 0.388 6 0.565 5 0.704 4 0.428 6 0.364 3

complete 0.484 5 0.433 5 0.466 5 0.418 5 0.573 4 0.700 5 0.436 5 0.315 5

pam 0.465 6 0.415 6 0.446 6 0.425 4 0.539 6 0.664 8 0.422 7 0.310 6

centroid 0.408 7 0.384 7 0.362 7 0.370 7 0.479 8 0.721 2 0.451 4 0.051 8

median 0.402 8 0.343 8 0.362 8 0.341 8 0.510 7 0.690 6 0.381 8 0.136 7

single 0.312 9 0.324 9 0.238 9 0.256 9 0.390 9 0.613 9 0.291 9 0.032 9
Shape of clusters: 1 – elongated, 2 – elongated and not well separated,

3 – normal, 4 – different for each cluster

Table 4. Internal quality indices of clustering results ranking based on adjusted
Rand index mean values

Index Mean
Shape of clusters No. of noisy variables

1 2 3 4 0 2 4

KL 0.472 1 0.424 2 0.432 1 0.440 1 0.553 1 0.722 1 0.442 1 0.254 2

G1 0.430 2 0.422 3 0.406 4 0.352 5 0.503 3 0.616 4 0.423 2 0.250 3

Gap 0.414 3 0.440 1 0.323 8 0.341 6 0.505 2 0.687 2 0.346 7 0.208 8

G3 0.408 4 0.359 6 0.421 2 0.353 4 0.469 6 0.559 8 0.408 3 0.257 1

S 0.404 5 0.381 4 0.373 5 0.339 7 0.482 4 0.585 6 0.399 4 0.226 5

H 0.397 6 0.368 5 0.370 6 0.327 8 0.479 5 0.594 5 0.361 6 0.234 4

G2 0.391 7 0.313 8 0.406 3 0.358 3 0.456 7 0.583 7 0.373 5 0.218 6

DB 0.391 8 0.343 7 0.362 7 0.373 2 0.454 8 0.628 3 0.337 8 0.208 7
KL – Krzanowski & Lai, G1 – Caliski-Harabasz, Gap – gap, G3 – Hubert &

Levine, S – Silhouette, H – Hartigan, G2 – Baker & Hubert, DB – Davies-Bouldin

– Krzanowski & Lai and Calinski & Harabasz indices present the best
results in searching for optimal number of clusters in ordinal data,

– gap and Davies-Bouldin indices definitely show worse results in searching
for optimal number of clusters in ordinal data containing noisy variables.

Table 5 presents the ranking of seventy two clustering procedures based
on adjusted Rand index mean values for nine models and 50 simulations.

With reference to the aggregated results of simulations illustrated in Table
5 the following conclusions can be made:

– clustering with group average link algorithm turns out to be the most
efficient way for the simulation experiment, while applying Krzanowski & Lai
index. This method, combined with Gap, Hartigan, Calinski-Harabasz and
Davies-Bouldin indices, was ranked respectively at the fourth, sixth, seventh
and ninth position,

– the second and the third positions were taken by Ward method, along
with applying Krzanowski & Lai and Gap indices,
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Table 5. Clustering procedures ranking based on adjusted Rand index mean values
(the selected results)

Rank Method Mean Index
Shape of clusters No. of noisy variables

1 2 3 4 0 2 4

1 average 0.623 KL 0.553 7 0.577 1 0.608 1 0.710 1 0.853 3 0.590 1 0.426 1

2 ward 0.610 KL 0.537 9 0.550 5 0.596 2 0.708 2 0.852 4 0.571 2 0.407 4

3 ward 0.578 Gap 0.648 2 0.447 39 0.495 7 0.673 3 0.857 2 0.502 11 0.375 14

4 average 0.573 Gap 0.649 1 0.440 46 0.496 6 0.662 4 0.883 1 0.481 18 0.354 24

5 mcquitty 0.565 KL 0.488 16 0.528 8 0.533 4 0.662 5 0.801 9 0.512 9 0.381 13

6 average 0.564 H 0.556 6 0.531 7 0.471 12 0.654 6 0.726 19 0.544 3 0.423 2

7 average 0.558 G1 0.565 4 0.518 10 0.476 11 0.634 10 0.735 16 0.543 4 0.395 8

8 pam 0.553 KL 0.476 21 0.508 13 0.534 3 0.647 7 0.845 5 0.478 19 0.336 30

9 average 0.538 DB 0.486 17 0.502 16 0.530 5 0.601 18 0.772 14 0.474 20 0.367 18

10 diana 0.535 KL 0.466 23 0.571 3 0.457 16 0.609 16 0.780 12 0.458 28 0.367 17

– – – – – – – – – – – – – – – – – –

68 median 0.334 DB 0.267 69 0.288 65 0.313 60 0.425 66 0.678 35 0.266 68 0.059 61

69 single 0.292 S 0.302 67 0.247 69 0.228 70 0.358 69 0.618 60 0.250 69 0.008 66

70 single 0.269 DB 0.253 72 0.200 70 0.246 69 0.342 70 0.614 61 0.182 70 0.012 65

71 single 0.243 Gap 0.259 70 0.132 72 0.205 71 0.331 71 0.571 71 0.150 71 0.007 67

72 single 0.235 H 0.254 71 0.137 71 0.181 72 0.322 72 0.551 72 0.146 72 0.007 69

– the single-link algorithm, combined with Hartigan, Gap and Davies-
Bouldin indices, is the least efficient method for ordinal data clustering.

5 Limitations

In our analysis the random generation of data set comes from multivariate nor-
mal distribution in which clusters’ locations and the homogeneity of shapes
are defined by means (centroids) and covariance matrices (distortion of ob-
jects). Such approach is typical for many other simulation studies, presented
e.g. in papers [14, 16, 17]. The infinite number of cluster shapes for any num-
ber of dimensions becomes the main problem regarding data generation with
known cluster structure. It seems substantiated to consider other distributions
and copula functions in data generation process for data with non-standard
cluster shapes. This task poses substantial difficulties, especially in case of
ordinal data.

In our simulation study we do not take into account such methods like
as spectral clustering for ordinal data and non-distance based methods (e.g.
Latent Class Analysis for ordinal data).
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