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Abstract:

Background: Artificial Neural Networks (ANNs) are introduced as robust and versatile tools in quantitative structure-activity rela-

tionship (QSAR) modeling. Their application to the modeling of enzyme reactivity is discussed, along with methodological issues.

Methods of input variable selection, optimization of network internal structure, data set division and model validation are discussed.

The application of ANNs in the modeling of enzyme activity over the last 20 years is briefly recounted.

Methods: The discussed methodology is exemplified by the case of ethylbenzene dehydrogenase (EBDH). Intelligent Problem

Solver and genetic algorithms are applied for input vector selection, whereas k-means clustering is used to partition the data into

training and test cases.

Results: The obtained models exhibit high correlation between the predicted and experimental values (R2 > 0.9). Sensitivity analy-

ses and study of the response curves are used as tools for the physicochemical interpretation of the models in terms of the EBDH

reaction mechanism.

Conclusions: Neural networks are shown to be a versatile tool for the construction of robust QSAR models that can be applied to

a range of aspects important in drug design and the prediction of biological activity.
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Introduction

In recent years, the construction of predictive models

assessing the biological activity of various chemical

compounds has gained deserved respect, not only

among medical chemists but also among biologists,

pharmacists and synthetic chemists who appreciate

the powerful explanatory and predictive powers of

such models in solving even very complex problems.

In silico drug candidate screening for potential activ-

ity or toxicity is now a standard procedure used in

most drug development projects. The foundations for

this field of science were laid by Corwin Hansch [20,

21], who had the evident but still ingenious idea that

the structure of a compound should be connected with

its chemical, biological or pharmacological activity

and that it can be described with statistical methods.

This idea led to the development of the huge and ro-

bust field of structure-activity analysis, which finds

application not only in drug development but also in

many other fields, such as the following:
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i) synthetic organic chemistry (to understand reac-

tion mechanisms),

ii) chromatography (to predict chromatographic re-

tention times),

iii) physical chemistry (to predict various important

physicochemical properties, such as log P, solubility,

refractivity etc.) and

iv) catalysis and biocatalysts (in which models are

built to find novel substrates and investigate factors

determining catalysts reactivity).

By no means should these applications be sepa-

rated from one another, as these fields are closely re-

lated. For example, quantitative structure-property re-

lationships (QSPRs), developed for the prediction of

log P in physical chemistry, have the utmost impor-

tance in the preparation of many models for drug de-

sign, whereas models developed by chemists working

in biocatalysis can frequently be transferred into phar-

macology for drugs targeting not receptors but spe-

cific enzymes of interest.

Traditionally, quantitative structure-activity rela-

tionships (QSARs) are constructed with linear models

that link a dependent variable in the form of a loga-

rithm of kinetic rate constant (log k), or logarithm of

equilibrium constant (log K) with a linear combina-

tion of various independent variables that describe

properties of the investigated compounds. Such an

approach has various merits, among which the sim-

plicity of interpretation appears to be the strongest.

However, this approach is typically limited to the lin-

ear relationships between a dependent variable and

independent predictors. This limitation is sometimes

circumvented by the introduction of binary or quad-

ratic interactions and splines [14], but experience re-

veals that such an approach is rarely practical, due to

an increase in the predictor number in the case of the

cross-terms and a decrease in the model generaliza-

tion capabilities in the case of splines. As long as the

investigated relationships are indeed highly linear, the

standard QSAR approach is mostly valid and can

have generalization powers even outside the descrip-

tor values range used for model creation. Such a situa-

tion, however, is rare, as pure linear relationships are

typically found in very simple or isolated systems in

which no complex interactions take place. Of course,

one can hardly expect that real biological problem can

be narrowed down to such idealized conditions and

still be fully described. This situation leaves basically

two options: i) the construction of linear models that

are valid locally and are used only for the assessment

of the activity of similar congeners or ii) the applica-

tion of more advanced statistical tools that can handle

non-linear relations and still be trained with a reason-

able number of cases. The latter solution leads to the

tool that forms the topic of this paper – artificial neu-

ral networks.

Artificial neural networks

Features

Artificial neural networks (ANNs) are modular infor-

matics soft computing methods that can be used to

automate data processing [45]. They were designed as

an artificial computer analog of biological nervous

systems and, to some extent, possess the same won-

derful characteristics. Although they are frequently

regarded as the mysterious offspring of artificial intel-

ligence from science fiction novels, it is better to treat

them as a slightly more advanced form of mathemati-

cal equations linking a handful of inputs with a pre-

dicted dependent variable. Nevertheless, neural net-

works surpass standard linear or even non-linear mod-

els in multiple characteristics [62]:

– ANNs optimize the way they solve the problem

during the iterative training procedure – as a result,

there is no need to predefine the structure of equa-

tions. The neural models are built from modular proc-

essing elements with standard, predefined mathemati-

cal characteristics (i.e., the functions used for data

processing). The mathematical nature of a neural

model is naturally dependent on the structure of the

network and the type of selected activation and trans-

fer functions. However, many studies concerning the

behavior of neural models showed a lack of unequivo-

cal relationships between the performance of the ob-

tained ANN, its structure and the mathematical func-

tions utilized by its processing elements. It has been

shown that almost identical predictions can be ob-

tained from models with markedly different structures

and mathematical characteristics. Therefore, although

the ANN user is typically expected to define a net-

work structure and the type of the neurons to be used

in the modeling, such selection does not equate with

the choice of the particular mathematical formulas to

be used in classical modeling. The selection of the ap-
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propriate functions to be utilized by the processing

elements is typically conducted with automatic or

heuristic methods or proposed by the authors of the

ANN modeling application and is not typically of

great concern to the ANN user.

– ANNs learn using examples that are presented to

the networks in iterations (called epochs) and mini-

mize the error of their predictions. In contrast to many

non-linear optimization protocols, this process does

not require any a priori parameters to reach a mini-

mum, as the initial parameters (weights) are assigned

randomly. Advanced training algorithms are very effi-

cient in the minimization of the prediction error and

are able to circumvent the problem of local minima.

That efficiency does not imply, however, that the prob-

lem is solved automatically, regardless of the structure

and characteristics of the chosen neural model. The

selection of appropriate training algorithms and their

performance parameters (such as, for example, the

learning rate h used in back propagation, quick propa-

gation and delta-bar-delta, learning momentum, or

Gaussian noise) frequently has an important influence

on a model’s training time and its final quality (see

Training section).

– ANNs comprise informatics neurons that collect

inputs and process them with non-linear functions.

This procedure automatically eliminates the need for

the introduction of cross-terms or quadratic terms [65].

The mutual interactions, if necessary, will emerge in

the network structure. Moreover, non-linearity is es-

sentially a structural ANN feature, which allows more

complex modeling (i.e., the creation of a much more

complex response surface that is possible in the case

of linear models).

– ANNs exhibit great versatility in the way the de-

pendent variable is predicted, i.e., they can work in ei-

ther a regression or a classification regime. In the former

case, a continuous dependent variable is predicted,

whereas in the latter, it is provided in the form of non-

continuous categorical classifiers (for example 0 – non-

active, 1 – active, 2 – very active). Moreover, as the

non-linearity is built in, the relationship of the predictors

to the predicted dependent variable does not have to be

continuous. For example, it is possible to model enzyme

substrate conversion rates together with inhibitors, al-

though there is no common scale for both groups.

– ANNs typically exhibit higher generalization ca-

pabilities than linear models. As such, they are pre-

destined to obtain global relationships, in contrast to

the local ones characteristic for the linear models.

All of these advantages are so powerful that one

can wonder why neural networks have not superseded

traditional linear approaches in structure-activity re-

search. The answer is very simple – artificial neural

networks have an important drawback that limits their

application. In most cases, the robustness of neural

models comes at a cost – the algorithms are too com-

plex to be analyzed by their users. As a result, there is

no straightforward method for the physicochemical

interpretation of such models. Thus, there is a simple

tradeoff between prediction quality and interpretabil-

ity. As neural networks are better prepared to model

complex nature, they are much harder to understand

than simple linear models. Moreover, as complex prob-

lems can be frequently solved in more than one way,

it is very common to obtain a range of good ANN

models that utilize different descriptors. As a result,

there is no ultimate answer for a given problem, which

yields additional uncertainty in the interpretation.

Nevertheless, as ANNs are models that offer theo-

retical representations of the studied problem, in prin-

ciple it is possible to study them and gain insight into

the described process.

Structure of neural networks

There are numerous different types of ANNs. A descrip-

tion of these types is beyond the scope of this paper

and therefore, if readers are interested in this specific

subject, they should refer to an appropriate textbook

on neural science [8, 12, 41]. As the feed-forward

Multi-Layer Perceptrons (MLPs) are most frequently

utilized in QSAR research, they are also used as an

example in this paper. Their short description is pro-

vided below.

MLPs are built from artificial neurons (Fig. 1), fre-

quently referred to as processing elements (PEs).

Each neuron collects signals from other neurons

(through artificial synapses) and assigns a different

importance to each signal. This assignment is typi-

cally achieved by the linear combination of each sig-

nal xi multiplied by an adjustable weight constant wi
plus a constant q used as a neuronal activity threshold

(the aggregation or transfer function z ).

The result of the aggregation function z is subjected

to further mathematical processing by the so-called ac-

tivation function s (z ), which is responsible for the in-
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troduction of non-linearity into the model. Although

there is a range of different types of activation func-

tions, the most frequently used are logistic or continu-

ous log-sigmoid functions that allow the smooth ad-

justment of the neuron activation level to the given set

of inputs. The result of the activation function y is

further transmitted along an artificial connection

(axon) to become an input signal for other PEs.

As mentioned above, the most common neural ar-

chitecture utilized in QSAR research is feed-forward

MLP (Fig. 2). In such a network, the neurons are

aligned in three (rarely more) layers, and signal is

transferred in only one direction, from the input neu-

rons toward the output neurons. In the input layer, the

PEs are responsible for the introduction of descriptors

into the model, and their only task is to normalize the

value of the parameter and transfer it to each neuron

in the next (‘hidden’) layer. The hidden layer is the

most important part of the network, performing, in

fact, most of the ‘thinking’. Each PE of this layer col-

lects the signals from all of the input neurons and pro-

duces various levels of activation as an output. The fi-

nal signals are collected in the output neuron(s),

which produces the predicted value as its output.

Training

ANN training methods can be divided into two general

groups: supervised and unsupervised. In both cases, the

ANN is mapping input data into its structure, but dur-

ing supervised learning, a dependent variable is also

provided. As a result, the ANN is trained to associate

characteristics of the input vectors with a particular

value or class (dependent variable). In contrast, in the

case of unsupervised learning, no dependent variable is

provided, and the resulting map of cases is based on the

intrinsic similarities of the input data. The most com-

mon unsupervised networks are Kohonen networks

(Self Organizing Maps) [31], which perform mapping

of an N-dimensional input space onto a 2D map of Ko-

honen neuron. Such an approach is excellent for the in-

vestigation of complex data structures.

In structure-activity relationship (SAR) research,

ANNs with supervised learning are most frequently en-

countered. Therefore, the description of this training

method is the most relevant for the topic of that paper.

The mean difference between the predicted values

of the dependent variable and the experimental values

determines the error of prediction. The main aim of

the training algorithm is to decrease this error. This

reduction is achieved by so-called ‘back-propagation’

algorithms that are based on the value and gradient of

the error. These algorithms adjust the weights in the

network’s PEs in a previous layer (thus propagating

an error signal ‘back’) in a step-by-step manner, aim-

ing at the minimization of the final error. As a result,

the ANN learns by examples what prediction should

be made for a particular set of inputs and adjusts its

mathematical composition in such a way as to be the

most efficient. There are a number of different algo-

rithms available, but the back propagation algorithm

was the first one. Its discovery was a cornerstone of

the application of ANNs in all fields of science [12].
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Fig. 2. A schematic representation of an MLP neural network. Trian-
gles – input neurons, gray rectangles – hidden neurons, white rectan-
gle – output neuron, circle – input and output numerical variables.
MLP 11-6-1 – 11 input neurons, 6 hidden neurons, 1 output neuron

Fig. 1. The schematic of the artificial neuron. z – aggregation func-
tion, s – activation function, xi – input signal, wi - weight, q – bias, y –
output signal



The price paid for the greater (non-linear) model-

ing power of neural networks is that, although it is

possible to adjust a network to lower its error, one can

never be sure that the error could not be still lower. In

terms of optimization, this limitation means that one

can determine the minimum of the network error but

cannot know whether it is the absolute (global) mini-

mum or simply a local one.

To determine minimum error, the concept of the er-

ror surface is applied. Each of the N weights and bi-

ases of the network (i.e., the free parameters of the

model) is taken to be a dimension in space. The N + 1

dimension is the network error. For any possible con-

figuration of weights, the error for all of the training

data can be calculated and next can be plotted in the

N + 1 dimension space, forming an error hypersur-

face. The objective of network training is to find the

lowest point in this hypersurface. Although the litera-

ture describing the learning methods depicts error sur-

faces as smooth and regular, the neural network error

surfaces for real tasks are actually very complex and

are characterized by a number of unhelpful features,

such as local minima, flat spots and plateaus, saddle-

points and long, narrow ravines. As it is not possible

to analytically determine where the global minimum

of the error surface is, the training of neural network

is essentially an exploration of the error surface. From

an initially random configuration of weights and

thresholds, the training algorithms incrementally

search for the global minimum. Typically, the gradi-

ent of the error surface is calculated at the current

point and used to make a downhill move. The extent

of the weight correction is controlled by the learning

rate parameter, h (also called the learning constant).

The value of h has an influence on the rate of the

model training – for learning rates that are too small,

the final (optimal) set of weights will be approached

at a very slow pace. In contrast, values of the parame-

ter that are too high may result in jumping over the

best descent to the global minimum of the error sur-

face, which may result in the instability of the training

procedure. In most cases of ANN application, the

character of the error surface is unknown, and the se-

lection of the learning rate value has to be completely

arbitrary. It is only possible to tune its value as a result

of ex-post analysis of the training procedure. Fortu-

nately, only the back-propagation algorithm requires a

fixed a priori determination of the h value. Most of

the modern algorithms (such as quick propagation,

quasi-Newton-based algorithms or conjunct gradient

algorithms) apply the adaptive learning rate, which

results in incremental convergence along the search-

ing direction [69]. To attain more efficient ANN train-

ing, additional tricks are sometimes applied, such as

momentum (which maintains the gradient-driven di-

rection of optimization and allows passing over local

minima) or Gaussian noise (added to the training in-

put values, also aimed at jumping out of the local min-

ima). Eventually, the algorithm stops in a low point,

which hopefully is the global minimum.

Of course, ANNs are prone to the same over-fitting

problems as any other model. The origin of the prob-

lem is the so-called over-training of the network. One

of the possible descriptions of over-training is that the

network learns the gross structure first and then the

fine structure that is generated by noise [65] or that it

accommodates too much to the structure of the learn-

ing data. The problem is handled by splitting the data-

base into training and test sets [60]. The error of the

test set is monitored during the ANN optimization

procedure but is not used for ANN training. If the er-

ror of the test set starts to rise while the error of the

training set is still decreasing, the training of the ANN

is halted to avoid over-training (which can be com-

pared with ‘learning by heart’ by the student).

As, to a certain extent, the test set indirectly deter-

mines the training process (the decision when to

stop), it is also advisable to design yet another valida-

tion subset, which is used as an ultimate robustness

cross-check. If the error obtained for the validation

and test sets is in the similar range, one can be fairly

sure that the model is not over-fitted and retains high

generalization powers. Moreover, although the error

of the training set is, in most cases, lower than those

of the test and validation sets, it should also be in

a similar range. If the training error is many orders of

magnitude lower than that obtained for validation and

test sets, it is a sure indication of over-fitting. In other

words, the neural model is too well accommodated to

describing the training cases and likely will not have

high prediction and generalization capabilities. In

such a case, the training of the model should be re-

peated and/or the initial neural architecture modified

to avoid over-training.

Data partitioning

As was mentioned above, before training starts, the

available data set has to be partitioned into at least
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two subsets (the training and test subsets) [11]. The

main problem in the selection of the validation and test

cases is their representativeness to the whole studied

population. In most QSAR problems, each compound is,

to a certain extent, a unique case with distinct chemical

features. Removal of such a compound from the data set

excludes part of the important knowledge from which

neural model learns how to solve the problem.

The test set is supposed to be representative for the

whole data set, as it controls the endpoint of the train-

ing. If the test cases are too easy for the model to pre-

dict, the error might be lower than for more difficult

cases. As a result, such an easy test set will allow

over-fitting effect to take place unnoticed. In contrast,

if the test set is composed from compounds that have

features that do not occur in the training set, the

model might not be able to extrapolate its knowledge

to predict their activity correctly. This case yields

a low training error and a high test error, which should

result in the rejection of the model. Finally, the valida-

tion set should also be representative, but it may con-

tain several ‘difficult’ cases. As the validation set is

not involved in the training, one can use it to assess

the generalization capabilities of the network.

The most common method used is random parti-

tioning of the cases into three subsets (in which

a 2:1:1 ratio is very common). Such an approach is

correct as long as the data set is numerous, and it is

reasonable to assume that randomized choice will

guarantee the representativeness of all subsets [59]. It

is worthwhile to warn potential ANN users that the

subset partitioning should be performed only once be-

fore the optimization starts. Many programs have the

option of shuffling the test and training cases between

attempts at ANN optimization to diminish the chance

of an uneven random selection of the data sets. How-

ever, with the ever increasing power of computers, it

is possible, in a very short time, to train thousands of

models. When the cases are randomly parted into test

and training subsets and only the best models are se-

lected from the tested group, it is possible to ‘ran-

domly optimize’ the easiest possible test and valida-

tion sets. In such a case, the model can have ex-

tremely low errors but virtually no generalization

capabilities being over-fitted to all cases. Approxi-

mately two years ago, such a problem was encoun-

tered in our own research and was carefully analyzed

and discussed [57]. Therefore, it is best to avoid ran-

dom partitioning and to use chemical sense in the se-

lection of the test and the validation representatives or

to apply partitioning combined with cluster analysis.

Cluster-based partitioning uses all collected descrip-

tors and dependent variables to divide compounds

into subgroups. The cases are selected from these

groups based on random choice, the distance from the

cluster center or any other feature. It is also sensible

to include fingerprint descriptors among the variables

used in partitioning. The fingerprint descriptors allow

more objective chemical (i.e., structure-based) selec-

tion of the test and validation cases. Such an approach

was used, for example, in the papers of Andrea et al.

and Polley et al. [2, 42], and in the example of our re-

search provided below. Recently, a custom protocol

allowing the easy partitioning of data sets based on

cluster analysis was introduced into Accelrys Discov-

ery Studio 2.5.

Selection of the input vector

In most experimental studies, the QSAR researcher is

confronted with a limited number of experimental

cases that can be collected and an almost limitless

number of possible descriptors that can be used in the

model construction. Sometimes, it is very difficult to

judge which of the variables available in many QSAR

programs will be best suited for the modeling. That

situation typically leaves us with the problem of an

undetermined data set, in which the number of tested

compounds is far lower than the number of descrip-

tors. In the past, there were numerous strategies de-

veloped that handled that problem (also referred to as

the ‘dimensionality problem’). For standard linear re-

gression, forward and backward stepwise selection al-

gorithms were used that test the correlation of the par-

ticular descriptor with the dependent variable. Such

an approach, however, does not take into account any

interactions occurring between the descriptors and is

vulnerable to the so-called co-linearity problem. Fi-

nally, such algorithms are limited to the selection of

linearly correlated descriptors.

Another strategy is based on principal component

analysis (PCA), which forms a linear combination of

a number of descriptors and selects only those compo-

nents that have the greatest influence on the determina-

tion of variance of the dependent variable. Such a strategy

is also routinely used in PLS protocols employed in 3D

Comparative Molecular Field Analysis (COMFA)

766 Pharmacological Reports, 2012, 64, 761�781



QSAR. Although PCA is a very effective strategy in

decreasing the number of dimensions of the input vec-

tor, the obtained PCA components do not have straight-

forward physicochemical interpretations, which ren-

ders them less valuable for explanatory models.

ANNs are also subject to the dimensionality prob-

lem [64]. The selection of the most important vari-

ables facilitates the development of a robust model.

There are a number of approaches that can be used:

1. Removal of redundant and low-variance vari-

ables. In the first place, the manual removal of de-

scriptors that have a pairwise correlation coefficient

greater than 0.9 should be performed. In such a case,

one of two redundant descriptors is removed, as it

does not introduce novel information and typically

will not improve the robustness of the model. How-

ever, there are several ANN researchers who suggest

that, as long as both descriptors originate from differ-

ent sources, they should be left in place due to possi-

ble synergetic effects they can enforce on the model.

Moreover, it is advisable to remove descriptors that

do not introduce valuable information into the data

set. Low variance of a variable is typically an indica-

tion of such a situation. Such an approach was used,

for example, by Kauffman and Jurs as a first step in

their ‘objective feature selection’ protocol [27].

2. Brute force’ experimental algorithms. As long

as the training data set is relatively small in number

(and typically in the case of QSAR applications, the

data set does not exceed 100 compounds), one can at-

tempt an experimental data selection approach. Due

to the high performance of modern computers it is

possible to build thousands of ANNs with different

input vectors within an hour’s time. If a uniform train-

ing algorithm is applied and a selection is based on

the value of the test set error, such an approach allows

the selection of the most robust input vector. An ex-

ample of such an algorithm, Intelligent Problem

Solver (IPS), can be found in the Statistica Neural

Networks 7.0. Examples of applications of that strat-

egy can be found in our previous papers [57, 59, 61].

3. Genetic algorithm – linear models. Another

technique that is extremely efficient applies a genetic

algorithm for the selection of the input vector [44].

Genetic algorithms utilize evolutionary principles to

evolve an equation that is best adapted to the ‘environ-

ment’ (i.e., to the problem to be solved). The evolu-

tionary pressure is introduced by a fitness function

(based on the correctness of the prediction of the de-

pendent variable) that determines the probability of

a given specimen to mate and produce offspring equa-

tions. The optimization of the initially randomly dis-

tributed characteristics (i.e., input variables) is assured

by the cross-over between the fittest individuals and

by accidental mutations (insertion or deletion of indi-

vidual feature-variables). However, in the case of neu-

ral networks, GA optimization becomes somewhat

trickier than in the case of traditional linear models. It

is important to consider the type of fitness function

that is applied to select the best equation. In most

cases, the genetic algorithms are intended to develop

multiple regression models, and the fitness function

assesses how well the obtained linear model predicts

the desired dependent variable. Such algorithms favor

the selection of variables that have a linear correlation

with the predicted value and do not have to be neces-

sarily the best suited for the construction of a non-

linear neural network. If the problem can be solved

well in a linear regime, the introduction of more

flexible non-linear networks will not improve the per-

formance [13]. However, if the problem is not linear, it

is advisable to apply as many non-linear features in the

GA as possible. These features can be binary or quad-

ratic interactions as well as splines (inspired by the

MARS algorithm of Friedman [14, 51]). Although

splines allow interpolative models to be built, achiev-

ing response surfaces of considerable complexity from

simple building blocks, it should be understood that

these models no longer hold direct physicochemical in-

terpretations, and as such, should be used with caution.

4. Genetic algorithm – neural models. Another

approach to input selection is the use of genetic algo-

rithms in conjunction with neural networks (so-called

Genetic Neural Networks – GNN). The difference

from the approach described above is that, in a GNN

population, an evolutionary population comprises

neural networks instead of linear equations. As a re-

sult, the fitness function assesses the prediction qual-

ity of a particular neural network instead of a linear

equation. Other than this aspect, the process is basi-

cally similar. It involves a cross-over of the parent

models and breeding offspring models with character-

istics of both parents (in this case, parts of the input

vector and sometimes structural features of the parent

models). Moreover, a mutation possibility is allowed

that introduces or eliminates certain of the input de-

scriptors. Such an approach was carefully analyzed by

So and Karplus in their series of papers [47–49] and

in the study of Yasri and Hartsough [68]. The main

advantage of such an approach is that the fitness of
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the model has already been assessed within a non-

linear neural architecture. Therefore, there is no dan-

ger that crucial non-linear relationships will be lost

during the optimization protocol. Moreover, the algo-

rithm delivers a number of well-suited models that

solve the same problem, sometimes in different man-

ners. This feature allows a more robust and error-

proof prediction strategy to be employed and provides

more insight into the studied problem. However, as

usual, there is a significant cost of such an approach.

Each network must be iteratively trained before its

prediction is ready to be assessed by the fitness func-

tion. In the case of a reasonable population of models

(a few hundred) and a sensible number of generations

that ensures the stability of the selected features (at

least 100, but in many cases 1000+), the optimization

of the models becomes very time-consuming. This

consideration may explain the relatively low popular-

ity of this technique. However, as the desktop com-

puters become faster and faster, this problem should

soon be alleviated. One way to avoid this handicap is

to use Bayesian Neural Networks (also called Gener-

alized Regression Neural Networks – GRNNs), which

are famed for their instant training. This method allows

a quick optimization of the input vector in a non-linear

regime but introduces a need to train new MLP neural

models based on the result of the optimization protocol.

5. Post-processing sensitivity analysis. Finally,

one can resort to a manual elimination of variables

based on a sensitivity analysis. In this method, the ini-

tial network is trained, and the influence of a particu-

lar input variable is assessed. The assessment is based

on the ratio of error calculated for models with and

without a particular input variable. If the prediction of

ANN improves after the removal of a particular de-

scriptor, the error ratio assumes values below 1 and

suggests that the variable can be safely removed with-

out compromising the ANN prediction capabilities.

Every time the input vector is modified, the neural

network must be retrained and the sensitivity analysis

performed again. Moreover, one must keep in mind

that the decreasing number of inputs combined with

the constant size of the hidden layer increases the dan-

ger of over-fitting (see the next section). Therefore, it

is best to adjust the number of hidden neurons as well.

Although this protocol requires more experience from

its user, it has been found to be very effective in our

research and has been applied frequently as a final

touch after the application of automatic optimization

protocols [59].

Regardless of the method used for pruning the ini-

tial descriptor number, it is always important to keep

the number of independent variables in check to avoid

a chance correlation effect [66]. Jurs et al. [34] sug-

gest keeping the ratio of the number of descriptors to

the training set compounds below 0.6 as a useful pre-

caution. Moreover, one can apply a scrabbling tech-

nique to test whether a chance correlation is not pres-

ent in the final model. This method randomly assigns

the dependent variable to the training cases and con-

structs the model. As, under such conditions, no real

structure-activity can exist, a significant deterioration

of the prediction should occur.

Determination of the size of the hidden

layer

For a Multiple-Layer Perceptron, the correct determi-

nation of the input layer has the utmost importance.

However, it is also very important to properly adjust

the capacity of the hidden layer. If there are too many

neurons, the network will be prone to over-fitting.

The system will tend to accommodate too much to the

training data, exhibiting a loss of generalization capa-

bilities. Such a behavior can be spotted during manual

network training as a rapid increase in the test error

curve. Sometimes, however, this issue can occur in

a slightly more subtle form, when the training error is

decreasing while the test error is not, keeping in

a constant horizontal trend (Fig. 3) [56, 61]. In such

a situation, it is worthwhile to decrease the number of

hidden neurons and repeat the training. It is advisable

to optimize the size of the network to the minimal

number of hidden neurons that still provides sufficient

computational capacity to ensure a good model per-

formance. Many authors tend to assess model robust-

ness as a function of the number of hidden neurons [2,

7, 18]. Others utilize automated protocols (such as

IPS or GA) for the optimization of the hidden layer

[18, 59, 68]. Automated protocols are present in most

of the software packages devoted to ANN, such as

Statistica Neural Network (IPS) or NeuroSolution.

Generally speaking, the smaller model the better,

as it requires fewer examples to be trained. This fea-

ture, in turn, allows a more profound testing ap-

proach, with larger testing and validation sets. It

should be kept in mind, however, that there are no
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analytical rules describing the maximal size of the

network for a given number of training cases, as dif-

ferent relationships may exhibit various degrees of

linear dependence. The more complicated the depend-

ence, the more cases are required for a proper train-

ing. However, several authors provide a ‘rule of

thumb’ introduced by Andrea et al. [2, 50] linking the

total number of adjustable parameters with the

number of cases. For a three-layer MLP, the number

of adjustable parameters P is calculated from the fol-

lowing formula:

R = (I + l)H + (H + 1)O

where I, H and O are the numbers of input, hidden and

output neurons, respectively, and

r = no. of training cases/P

Adrea et al. suggest that r, the ratio of input train-

ing data to P, should be in the range of 1.8 to 2.2.

Models with a r value close to 1 are prone to over-

fitting, whereas those with a r above 3 are unable to

extract all of the important features and have poor

prediction and generalization capabilities. However,

our own experience in this matter suggests that the

optimal range of r is problem-dependent. Neverthe-

less, every user of ANNs should be aware of all of the

possible pitfalls connected with the above-mentioned

problems and should apply rigorous cross-validation

schemes.

Types of descriptors and their encoding

Almost all of the types of numerical descriptors used

in QSAR can be fed into the neural network. Continu-

ous variables, such as log P or molecular weight, are

introduced into the network by single input neurons.

The same situation occurs for categorical parameters

that assume only two binary values. However, the de-

scriptors that assume three or more non-continuous

values require more attention. One can encode any

feature with numerical codes (for example, attribute 0

to the substituent ortho position in the phenyl ring,

1 to meta and 2 to para), but it should be kept in mind

that a neural network will try to find a connection be-

tween the introduced numeric values (in this case, the

values of codes) and the predicted parameter. As there

are no grounds to attribute a higher numerical value to

para-substituted compounds and there is no logical

justification favoring on such encoding over another,

such a presentation of descriptors delivers false informa-

tion into the model. To avoid this problem, ‘one-of-N’

encoding is used, which utilizes one neuron per code

of the descriptors. In the case of substituent position

in the phenyl ring, it must be encoded by 3 binary-

value neurons (each able to assume a value of 0 or 1)

that describe the presence or absence of the substitu-

ent in the ortho, meta or para position, respectively.

This approach renders fingerprint descriptors not very

useful for ANN, as their sheer length necessitates the
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formation of huge input layers, which in turn requires

a huge training data set.

In addition to the points discussed above, the selec-

tion of the input descriptors has the same require-

ments as in every QSAR: descriptors relevant to the

studied problem should be included, describing elec-

tronic, thermodynamic, hydrophobic, steric, structural

and topological characteristics of the investigated

compounds.

Applications of neural networks

in enzyme studies

The application of neural networks in drug design has

caught the interest of many authors. This topic was re-

viewed by Winkler [67], Duch et al. [10] and, most re-

cently, Michielan and Moro [36]. However, the topic

of this paper, the application of neural networks for

the prediction of enzymatic activity, appears to be not

so popular. It should be mentioned that this topic can

be approached from two perspectives. Certain authors

are more concerned with the prediction of the en-

zymes’ reaction rates from an engineering point of

view. Therefore, these authors focus on identifying re-

lationships between experimental variables, such as

temperature, spinning rate of the reactor, and concen-

trations of various reagents and biocatalysts, with the

observed conversion rate, product yield or fermenta-

tion process [1, 32, 46]. As these studies do not have

any connection with SAR, they are beyond the scope

of this paper.

The second group of papers, a literature concerning

applications of ANNs in enzyme reactivity prediction,

can be further divided into two subsets. Certain papers

focus on the development of methodologies and utilize

a handful of benchmark data sets that allow model

comparisons. The other group of papers is problem-

oriented and utilizes developed methodologies for the

description of specific biological phenomena.

To our best knowledge, one of the earliest applica-

tions of neural networks for the prediction of enzyme

biological activity as a function of chemical descrip-

tors should be attributed to Andrea and Kalayeh [2].

Their paper used the benchmarking data set – diami-

nodihydrotriazines inhibitors of dihydrofolate reduc-

tase (DHFR) and utilized back-propagation feed-

forward MLP models. This pioneering work was soon

followed by So and Richards [50], who, in turn, stud-

ied the inhibition of DHFR by 2,4-diamino-5-(substi-

tuted-benzyl)pyrimidines. Both papers demonstrated

that ANNs outscore traditional linear QSAR approaches.

Both model data sets of DHFR inhibitors were also

used by Hirst et al. to compare the robustness of the

multivariate linear models, non-linear ANNs and in-

ductive logic programming (ILP) methods [22, 23].

Their work suggested that the ANN and ILP methods

did not significantly surpass linear models due to the

over-fitting and data splitting problems. The topic of

the potential superiority of ANNs over traditional lin-

ear models was also discussed in the paper of Luèiæ

et al. [33]. These authors advocate the construction of

non-linear regression models over neural networks or

neural network ensembles (i.e., groups of NN models

averaging their predictions). The DHFR pyrimidine

derivatives data set and the HIV-1 reverse transcrip-

tase derivatives of 1-[2-hydroxyethoxy)methyl]-6-(phe-

nylthio)thymine (HEPT) inhibitors were also used by

Chiu and So to construct ANN models based on

Hansch substituent constants (p, MR, F and R) de-

rived from QSPR models [9]. Such an approach en-

hanced the interpretability of the obtained models and

delivered another proof of the higher predictive pow-

ers of ANNs in comparison to linear MLR models.

A handful of other successful applications of neural

networks to SAR modeling should be mentioned. No-

vic et al. applied a counter-propagation neural net-

work (CP-ANN) to model the inhibitory effect of 105

flavonoid derivatives on p56lek protein tyrosine kinase

[39], whereas Jalali-Heravi et al. used MLP ANNs to

study the inhibitory effect of HEPT on HIV-1 reverse

transcriptase [25] and investigated possible inhibitors

of heparanase [24]. Both papers argue against supe-

rior ANN performance in comparison to that of linear

models, which has been attributed to the partially

non-linear characteristics of inhibitory action. The in-

hibition of carbonic anhydrase was studied by Mat-

toni and Jurs [34] with both regression and classifica-

tion approaches. Approximately a 20–30% improve-

ment of the prediction quality in the case of neural

networks with respect to MLR models was observed.

Nevertheless, the paper by Zernov et al. argues that

supported vector machine (SVM)-based models are of

a better quality than ANNs in the estimation of the ac-

tivity of carbonic anhydrase II inhibitors [70]. Another

paper by Kauffman and Jurs modeled the activity of

selective cyclooxygenase-2 inhibitors with ensembles

of ANNs [27]. These authors claim that the applica-

770 Pharmacological Reports, 2012, 64, 761�781



tion of a committee of nonlinear neural networks has

a specifically beneficial effect on the quality of the

prediction in cases in which a high degree of uncer-

tainty and variance may be present in the data sets. An

interesting example of a similar approach by Bakken

and Jurs has been applied to the modeling of the inhi-

bition of human type 1 5a-reductase by 6-azasteroids

[3]. The authors constructed multiple linear regres-

sion, PCA, PLS and ANN models predicting the pKi
values of inhibitors of 5a-reductase and compounds’

selectivity toward 3b-hydroxy-D5-steroid dehydroge-

nase/3-keto-D5-steroid isomerase. Again, neural net-

work models appeared to have higher predictive pow-

ers than their linear counterparts. An interesting and

original application of ANNs can be found in the pa-

per of Funar-Timofei et al., who developed MLR and

ANN models of enantioselectivity in the reaction of

oxirane ring-opening catalyzed by epoxide hydrolases

[15]. The application of neural models significantly

improved the prediction relative to that of the linear

models.

Apart from the most common MLPs, there are

a number of different neural architectures that have

been successfully applied to studies on enzyme activ-

ity. In addition to the already-mentioned CP-ANNs,

Bayesian regularized neural network (BRANN [7])

models were used with success by Polley et al. [42]

and Gonzalez et al. [18] to predict the potency of thiol

and non-thiol peptidomimetic inhibitors of farnesyl-

transferase and the inhibitory effects of flavonoid de-

rivatives on aldose reductase [13]. The authors note

that the application of the Bayesian rule to the ANN

automatically regularizes the training process, avoid-

ing the pitfalls of over-fitting or overly complex solu-

tions. This benefit, according to Burden [7], is due to

the nature of the Bayesian rule, which automatically

panelizes complex models. As a result, authors fre-

quently do not use the test sets, utilizing all available

compounds to train the networks. Another application

of neural networks with similar architecture can be

found in the paper of Niwa [38]. The author used

probabilistic neural networks (PNNs) to classify with

high efficiency 799 compounds into seven different

categories exhibiting different biological activities

(such as histamine H3 antagonists, carbonic anhydrase

II inhibitors, HIV-1 protease inhibitors, 5 HT2A an-

tagonists, tyrosine kinase inhibitors, ACE inhibitors,

and progesterone antagonists). The obtained model is

clearly meant to be used for HTS screening purposes

(and is thus barely within the scope of this paper).

A good experience with PNN models was also re-

ported by Mosier and Jurs [37], who applied that

methodology to the modeling of inhibition of soluble

epoxide hydrolase set. The same data base was also

modeled by McElroy and Jurs [35] with either regres-

sion (MLR or ANN) or classification (k-nearest neigh-

bor (kNN), linear discriminant analysis (LDA) or ra-

dial basis function neural network (RBFNN)) ap-

proaches. Their research demonstrated that non-linear

ANN models are better in the regression problems but

that kNN classifiers exhibit better performance that

ANNs using radial basis functions.

Finally, the input of our research should also be

mentioned here. A handful of models have been de-

rived that predicted the biological activity of ethyl-

benzene dehydrogenase, an enzyme that catalyzes

the oxidation of alkylaromatic hydrocarbons to secon-

dary alcohols. In our research, both regression and

classification MLP networks [59] were used, as were

Bayesian-type general regression neural networks

(GRNNs) [56, 57, 61], which were based on descrip-

tors derived from DFT calculations and simple topo-

logical indices. Our approach differed from that pre-

sented above. It was possible to construct a model that

predicted the biological activity of both inhibitors and

substrates. Moreover, our studies were more focused

on gaining insight into the mechanism of the biocata-

lytic process than the development of robust QSAR

modeling methods. Nevertheless, the discussed issues

concerned the random cases partitioning problem, re-

sulting in over-training, and the function of the se-

lected ANN architecture [57].

It appears that the presentation of an example of

enzyme activity modeling with ANNs might be bene-

ficial to the reader. Therefore, a description of a sim-

ple case is presented below, illustrating the problem of

enzyme reactivity model construction.

Practical example

Modeling problem

A molybdoenzyme, ethylbenzene dehydrogenase (EBDH),

is a key biocatalyst of the anaerobic metabolism in the

denitrifying bacterium Azoarcus sp. EbN1. This enzyme

catalyzes the oxygen-independent, stereospecific hy-
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droxylation of ethylbenzene to (S)-1-phenylethanol. It

represents the first known example of the direct

anaerobic oxidation of a non-activated hydrocarbon

[26, 30]. EBDH promises potential applications in the

chemical and pharmaceutical industries, as the en-

zyme is enantioselective [53] and reacts with a wide

spectrum of substrates [54].

According to our recent quantum chemical model-

ing studies, the mechanism of EBDH [52, 55] consists

of two steps (Fig. 4). First, the C-H bond of the sub-

strate is cleaved in a homolytic way, and the hydrogen

atom is transferred to the molybdenum cofactor,

forming an OH group and the radical hydrocarbon in-

termediate. Then, OH is rebound to the radical hydro-

carbon, and in the transition state associated with that

step, a second electron is transferred to the molybde-

num cofactor. As a result, in the vicinity of the transi-

tion state, a carbocation is formed. The completion of

the OH transfer results in the formation of the product

alcohol. After the reoxidation of the enzyme by an ex-

ternal electron acceptor, EBDH is ready for the next

reaction cycle.

Our kinetic studies revealed that EBDH catalyzes

the oxidation of ethyl and propyl derivatives of aro-

matic and heteroaromatic compounds. Recently, its

activity with compounds containing cycloalkyl chains

fused with aromatic rings (derivatives of indane and

tetrahydronaphthalene) has been discovered, as well

as activity with allyl- and propylbenzene. Moreover,

EBDH is inhibited by a range of methyl and ethyl aro-

matic and heteroaromatic compounds [54, 59]. It also

exhibits inhibition by its products (i.e., compounds

with ethanol substituents) and non-reactive structural

analogues of ethylbenzene (e.g., aromatic compounds

with methoxy groups). Therefore, as the enzyme has

potential application in the fine chemical industry,

finding a reliable screening tool predicting its activity

in silico is very appealing. Ideally, such a prediction

model should be able to discern inhibitors and weak

substrates from those which are converted with a high

rate (and therefore can be oxidized on the commercial

scale). It is also interesting to utilize insights gained

from the QSAR studies in understanding the reaction

mechanism.

Methods

Activity measurement

The specific activity of 46 compounds (Tab. 1) was

assessed according to the procedure established previ-

ously [54] and related to the enzyme activity with the

native substrate, ethylbenzene (rSA 100%). The activ-

ity of most compounds was fitted with a non-linear

Michaelis-Menten model. In certain cases, it was nec-

essary to fit the experimental result with a Michaelis-

Menten equation with substrate inhibition. The bio-

logical activity of inhibitors (i.e., compounds that

were not converted but exhibited various types of in-

hibitory effects on ethylbenzene) was always treated

as 0.

772 Pharmacological Reports, 2012, 64, 761�781

Fig. 4. The reaction scheme of ethylbenzene oxidation by EBDH. The reaction pathway involves two one-electron steps: homolytic C-H activa-
tion (TS1) leading to radical intermediate I and an electron transfer coupled to OH-rebound: [TS2] indicates that both processes take place in
a concerted manner
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Tab. 1. Substrates and inhibitors (n = 46) of EBDH. R1 stands for substituents or modifications of the aromatic ring system (e.g., 1-naphthalene
indicates that a naphthalene ring is present instead of a phenyl ring and that R2 is in the 1- position), and R2 describes structural features of the
substituent that is oxidized to alcohol in the methine position. -CH2CH2CH2- like symbols depict cycloalkyl chains of indane, tetrahydronaph-
thalene or coumaran; rSA indicates specific activity related to EBDH activity with ethylbenzene in standard assay condition

No. R1 R2 rSA [%] rSA model 1 rSA model 2

Training

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

2-CH
2
CH

3
4-CH

2
CH

3
4-CHOHCH

3
1-naphthalene

1H-indene
2-OCH

3
2-naphthalene

2-SH
2-OH
2-py

2-pyrrole
2-CH

3
2-furan

2-thiophene
3-NH

2
3-py

H
3-COCH3

4-NH2
4-OCH3
4-COOH

4-Ph
4-OH
4-py

2,4-di-OH
4-F

p-OCH3
naphthalene

H
H
H
H
H
H

CH
2
CH

3
CH

2
CH

3
CH

2
CH

3
CH

2
CH

3
CH

2
CH

3
CH

2
CH

3
CH

3
CH

2
CH

3
CH

2
CH

3
CH

2
CH

3
CH

2
CH

3
CH

2
CH

3
CH

2
CH

3
CH

3
CH

2
CH

3
CH

2
CH

3
CH

2
CHCH

CH
2
CH

3
CH

2
CH

3
CH

2
CH

3
CH

2
CH

3
CH

2
CH

3
CH

2
CH

3
CH

2
CH

3
CH

2
CH

3
CH

2
CH

3
-CH

2
CH

2
CH

2
-

1,8-CH
2
-CH

2
-

-CH
2
-CH

2
-O-

CH
2
CH

3
-CH

2
CH

2
CH

2
-

CH
2
CH

2
CH

3
CH

3
CHOHCH

3

2.62
64.27
2.68

0
242
1.1
9.3
0

56.14
0

234.63
3.8

133.92
0

25.45
3.72
282.6
3.47
134

313.27
0

29.65
259.01

0
362.69

6.4
122.12

0
80
100

80.34
14
0
0

–21.4
63.2
–1.7
1.1

241.6
–7.2
12.8
14.0
56.4
7.5

233.9
11.7
132.8
3.8
34.6
6.1

286.1
1.1

132.8
314.9
0.7
29.4
253.1
–26.1
373.0
6.3

122.3
2.3
73.8
96.1
86.1
16.1
–8.3
–3.6

-6.4
43.3
1.2

-20.5
246.0
14.7
7.4

–14.0
9.2

–2.4
277.0
–10.4
147.3
-2.3

–11.0
3.5

244.4
–21.4
97.8
273.9
–24.7

5.1
241.8
–1.3
302.3
-2.4
93.2

–16.3
86.2
60.4
72.3
33.8

–17.9
–7.7

Test

35
36
37
38
39
40
41
42

2-NH
2

2-thiophene
2-furan
3-CH

3
4-CH2OH

4-CH3
4-OH
p-NH2

CH
2
CH

3
CH

2
CH

3
CH

3
CH

2
CH

3
CH

2
CH

3
CH

2
CH

3
CH

2
CH

2
CH

3
-CH

2
CH

2
CH

2
-

94.53
242.92

0
10
7.4
28
180
33

76.2
217.8
5.8
9.1
24.5
15.7
206.8
12.7

58.0
173.1
15.2
40.7
34.4
52.9
124.4
47.6

Validation

43
44
45
46

2-Br
3-OH

H
H

CH
2
CH

3
CH

2
CH

3
CH

2
CH=CH

2
CH

2
CH

2
CH

2
CH

2
-

0
24.31
281.5
4.45

–11.5
12.3
226.4
–9.8

–21.3
34.4
258.8
86.



Calculation of descriptors

Descriptors were calculated in Gaussian 09 [17] ac-

cording to the procedure provided by Szaleniec et al.

[59]. For each compound, the following quantum-

chemical parameters were computed: the partial a-car-

bon charge, the highest and the lowest atomic charges,

the difference between the highest (positive) and the

lowest (negative) charge in both Mulliken and NBO

analyses, the nsC-H symmetrical stretching frequency,

the H-NMR shift of substituted hydrogen, the

C-NMR shift of a-carbon, the dipole moment µ, the

frontier orbital energies, i.e., ELUMO (as an approxima-

tion of electron affinity) and EHOMO (as an approxi-

mate measure of ionization potential) [43] and GAP –

the energy difference between ELUMO and EHOMO (as

a measure of absolute hardness) [40] (Fig. 5B). The

substituents’ influence on the relative changes in the

Gibbs free enthalpy of radical and carbocation forma-

tion (DDGradical and DDGcarbocation) was calculated ac-

cording to previously described methods [58]. More-

over, a computational alternative to Hammet s, an

electrostatic potential at the nuclei, was calculated ac-

cording to the procedure described by Galabov et al.

[16]. A compound’s bulkiness was described by the

molecular weight (MW), the total energy of the mole-

cule (SCF) and the zero point energy (ZPE) (derived

from DFT calculations), as well as the molecular sur-

face area (Mol_Surf), molecular fractional polar sur-

face area (Pol_Mol_Surf) and molecular refractivity

(MR) (calculated in the Accerlys Discovery Studio

2.5). Moreover, the logP and logP_MR (hydrophobici-

ity) and the Kier and Hall molecular connectivity in-

dices c0, c1, and c2 [28, 29] as well as the Balaban [4]

and Zagreb indices [5] (topology), were also calcu-

lated in Accerlys Discovery Studio 2.5. The topology

descriptors were supplemented with the lengths of

substituents, their mutual locations (ortho, meta,

para), the number of heavy atoms in all substituents

and the number of heavy atoms in the longest sub-

stituent, taking the structure of ethylbenzene as a ref-

erence core (see Fig. 5A for an example).
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Fig. 5. (A) An example of topologic encoding: number of substituents: 2; number of heavy atoms in the longest substituent: 2; number of heavy
atoms in all substituents: 3; localization of substituents (para, meta, and ortho) in the aromatic ring in relation to the ethyl group: (1,0,0); (B) Mul-
liken charge analysis of 4-ethylpyridine (highest charge: 0.146; and lowest charge: –0.434) and the vibration mode of C-H bond stretching [60]
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Selection of variables

The input vector was optimized with three of the

methods described above:

– removal of redundant variables;

– genetic algorithm optimization in the linear re-

gime (performed in Accelrys Material Studio 4.4);

– brute force experimental optimization by Intelli-

gent Problem Solver (IPS in Statistica 7.0, Statistica

Neural Networks package).

The initial removal of the redundant variables was

based on the correlation matrix. This process resulted

in the elimination of c1 and c2, topological indexes

that correlated with c0 with R > 0.95, as well as

logP_MR, which was highly co-linear with logP. These

descriptors were not considered in further optimization.

The input vector optimized by GA was set to pre-

dict log rSA only for the substrate, as there are no lin-

ear relationships of descriptors with both substrates

and inhibitor activities. Moreover, the logarithmic

scale of rSA makes the pursuit relation more linear,

thus rendering the linear GA method more appropriate

for the selection of variables for the ANN.

The GA population comprised 250 equations with

5, 8 and 10 terms that were optimized through 2,500

generations. The 15 most frequently used descriptors

that occurred in all three optimizations were collected

together (reducing the number of descriptors from 34

to 13) and subjected to a subsequent IPS optimization

of the neural network architecture (reducing the

number of descriptors from 13 to 11). To compare the

robustness of the variable selection protocols, the IPS

was set to optimize the initial population of variables

with rSA as a dependent variable. Therefore, both in-

hibitors and substrates could be used as cases in the

optimization protocol. IPS optimized both the input

vector and the number of hidden neurons. In each IPS

optimization run, 2500 networks were constructed,

and the 50 best models were retained. The selection of

models was conducted based on the lowest learning

and testing error and on the correlation of the pre-

dicted values with the experimental data.

Data partitioning

The selection of validation and test cases was

achieved with k-means neighbor clustering. A total of

12 clusters were selected, based on all of the calcu-

lated descriptors additionally supplemented with

atom-based extended-connectivity fingerprints (ECFC_6,

ECFC_8 and ECFC_12). The hold-out subgroup

(26%) comprised 12 compounds that were randomly

selected from each cluster that contained more than

one representative. From this subset, 4 additional

cases were removed to form a validation set that was

used for external cross-validation of the model. The

representativeness of the selected test and validation

subsets was verified with PCA analysis on the 3D

graph of the first three principal components. The se-

lected points were determined to be randomly scat-

tered among the rest of the points and were not out-

liers of the main cloud of the training cases.

Results

Two regression models were obtained, one that was

generated by IPS from GA-optimized input variables

(model 1) and another that was obtained using only

the IPS brute force optimization protocol (model 2).

The obtained GA-ANN model had 11 input neu-

rons, 6 hidden neurons and one logistic output neuron

(MLP 11-6-1). This model was trained with 100 ep-

ochs of back-propagation algorithm, followed by 20

epochs of conjunct gradient and 155 epochs of con-

junct gradient with momentum. It exhibited compara-

ble errors in all subsets (see Tab. 2) and a relatively

low mean absolute prediction error (8.56%).

The IPS protocol not preceded by GA optimization

produced an overall worse population of models

(lower prediction correlations). It contained either

very complex models that could not be accepted due

to the small number of training cases or very simple

ones that exhibited fundamental errors even among

the training cases. However, it was possible to manu-

ally modify one of the moderately sized models,

which, after optimization of the hidden layer, yielded

satisfactory results. Model 2 is an MLP 12-7-1 neural

network that exhibits slightly higher test and valida-

tion mean absolute prediction errors than model 1. It

was trained with 50 epochs of quick-propagation al-

gorithm with added Gaussian noise and 1428 epochs

of BFGS quasi-Newton-based algorithm [6] with mo-

mentum. Nevertheless, both models achieve reasona-

bly accurate prediction results (see Tab. 1). The analy-

sis of scatter plots (Fig. 6) shows that both models are

able to discern between inhibitors and substrates of

the enzyme. They are also able to predict fairly well
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the extent of activity for the test and validation cases,

although model 1 exhibits markedly better perform-

ance. It should be underlined here that the obtained

models are far more complex than advised by the rule

derived by Andrea et al. However, rigorous model

cross-validation with test and validation cases demon-

strates their high generalization capabilities. This

finding again proves that the optimal r interval is

a problem-dependent issue.

Interpretation

Very often, an understanding of the factors influenc-

ing enzyme catalysis is more important than even

the best prediction tool. The interpretation of ANN

models, although not so straightforward as in the case

of MLR, is possible by two means: i) sensitivity

analysis and ii) response curves and surfaces. Sensi-

tivity analysis (see Tab. 3) provides a ranking of the

variables used in the model [19]. However, as our ex-

ample has shown, ANNs are able to achieve similar

prediction levels by different approaches. Therefore,

it is advisable to perform a sensitivity analysis on

a group of models and draw conclusions from a re-

petitive occurrence of the important variables.

In our example, both models suggest that occupa-

tion of the para position is one of the most important

factors, as is a substituent’s ability to stabilize the car-

bocation form. Additionally, the energy of the HOMO

orbital and DDGradical are ranked comparably high.

More information can be gained from the response

curves that depict the dependent variable (here rSA)

as a function of an individual selected descriptor

776 Pharmacological Reports, 2012, 64, 761�781

Fig. 6. Scatter plots of the experimental relative specific activity (rSA) and the predicted rSA for (A) model 1 MLP 11-6-1 network (R2 =
0.986).and (B) model 2 MLP 12-7-1 (R2 = 0.929). The full circles depict test and validation cases. Empty circles – training cases; black circles –
test cases; gray circles – validation cases; the dashed line depicts the 95% confidence interval of the model

A B

Tab. 2. Statistical summary of the obtained models

Model R2 Test R2 Validation R2 Mean
pred. error

Learning error Test error Validation error

Model 1

MLP 11-6-1

0.984 0.957 0.996 8.56% 0.0174 0.0396 0.0654

Model 2

MLP 12-7-1

0.929 0.953 0.874 23.33% 0.0545 0.0856 0.0970



(typically holding the remainder of the input at the av-

erage value, although various other approaches have

also been used [2]). As a result, one obtains a 2D slice

through the multidimensional response hypersurface.

In our case, one can analyze the influence of DDGcarbo-
cation and DDGradical on the rSA. Both models provide

non-linear relationships between rSA, and both de-

scriptors predict high values of rSA for negative (high

stabilization) values of DDGcarbocation and DDGradical

(Fig. 7A, B, E, F). The influence of a steric effect can

be analyzed in the same way for ZPE in the case of

model 1 (Fig. 7C) and the ‘number of heavy atoms

in the longest substituent’ descriptor in the case of

model 2 (Fig. 7G). In both cases, low activity is pre-

dicted for high values of the descriptors, which indi-

cates a negative steric effect on the specific activity.

The influence of hydrophobicity can be analyzed by

following the response of the difference between the

maximum and minimum partial charges (Dq NBO –

Fig. 7D) or the fractional polar surface (Fig. 7H). In

both cases, the obtained relationships indicate that

non-polar, ethylbenzene-like compounds will be of

a higher activity. It should also be noted that, as these

two variables are less important than the top-ranked

one (e.g., DDGcarbocation), changes in their values exert

a smaller effect on rSA.

One should be aware however, that the analysis of

response curves might sometimes be misleading, as

the 2D projection of ANN behavior is far from a real

situation. In a real compound, one can hardly change

DDGcarbocation without changing DDGradical. A glimpse

of the complexity of the true response hypersurface

can be gained through an analysis of the 3D response

surfaces (Fig. 8), which shows that simple conclu-

sions drawn from response curves might not be en-

tirely true for the whole range of values. The figure

predicts a high activity for compounds with a high

stabilization of the carbocation and low stabilization

of the radical, which appears chemically counter-

intuitive. Therefore, it is always advisable to study

ANN models with real chemical probes – i.e., design

in silico a new compound with the desired character-

istics and use the obtained model for prediction of the

activity.

Nevertheless, all of these findings appear to be in

accordance with our recent results on the EBDH reac-

tion mechanism. Both the radical (TS1) and the car-

bocation (TS2) barriers are of similar height and

therefore, influence the observed kinetics. Moreover,

the enzyme has evolved to host non-polar hydrocar-

bons, such as ethylbenzene and propylbenzene, which

explains why less polar compounds are favored in the

reactivity. However, the electronic stabilization of the

transition states introduced by heteroatoms, especially

in a resonance-conjunct para position, appears to over-

come the polarity problems. This situation results in

a specific activity higher than that of ethylbenzene for

compounds such as 4-ethylphenol or 4-ethylresorcine.
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Tab. 3. The results of sensitivity analysis. The ranks provide the descriptor’s order of importance in the model

Model 1 Model 2

Descriptor Rank Descriptor Rank

DDGcarbocation 1 para 1

para 2 DDGcarbocation 2

ZPE 3 DDGradical 3

E
HOMO

4 ortho 4

DDGradical 5 E
HOMO

5

c0 6 GAP 6

EPN 7 nC-H 7

qmin NBO 8 Number of heavy atoms in the longest
substituent

8

Dq NBO 9 E
LUMO

9

C-NMR 10 Pol_Mol_Surf 10

Mull. q meth 11 qmin NBO 11

EPN 12
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Fig. 7. The response curve for MLP 11-6-1 relative Specific Activity as a function of (A) DDG radical, (B) DDG carbocation, (C) ZPE and (D) DNBO;
and for MLP 12-7-1 (E) DDG radical, (F) DDG carbocation, (G) number of heavy atoms in the longest substituent, and H) molecular fractional polar
surface area



Conclusion

Neural networks are extremely powerful modeling

tools. Each year, more and more studies are published

that utilize ANNs in various fields of science [63]. It is

surprising that neural networks receive relatively little

attention in the research on enzyme activity. However,

they are increasingly applied in drug design, as huge

databases are abundant in that field of science.
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