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Summary 

The paper presents a methodology for assessing the intensity of damage to the elements 

of building structures constructed in the large-panel technology, located in mining areas. 

Bayesian Belief Network was used, which allows to predict the intensity of damage to a 

building structure, and the probability of its occurrence was predicted. The article also 

presents the possibility of using the created model for the assessment of damage in the case of 

incomplete or uncertain decision data. The structure of the Bayesian Belief Network was built 

on the database regarding the construction, maintenance quality, and intensity of damage to 

129 buildings, taking into account environmental effects in the form of mining impacts. The 

study demonstrates applications of the network for the diagnosis of the causes of damage and 

for predicting the impacts of mining activities on building structures. 

 

Keywords: damage to large-panel building structures, mining impacts, Bayesian Belief 

Network 

 

1. INTRODUCTION 

The technical condition of building structures located in mining areas, besides natural 

wear associated with the passage of time, is affected by a number of additional factors, which 

are random in the statistical sense, including the impacts of underground mining in the form 

of rock mass tremors and continuous surface deformation. 
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Assessment of mining impacts on building structures includes both prediction of the 

potential effects of exploitation at the approval stage for the plan of a mining plant, as well as 

the necessity to determine the causes of damage, reported to the department of mining 

damage, after mining the deposit. This assessment is a complex decision problem, with 

uncertainty as to the value of the factors, such as mining impacts, affecting the technical 

condition of the buildings. 

The paper presents the methodology for evaluating the intensity of damage to elements 

of building structures located in mining areas. Bayesian Belief Network was used, which 

allows to predict the intensity of damage to a building structure, together with the 

determination of the probability of its occurrence. The authors demonstrated the possibility of 

applying the model created to predict the state of damage and to diagnose its causes. 

The research was based on the database regarding the construction, maintenance quality, 

and intensity of damage to 129 multi-storey buildings of prefabricated large-panel structure, 

located in the mining area of Legnica-Głogów Copper District (LGOM). 

 

2. RESEARCH METHODOLOGY 

2.1. General characteristics 

In decision support systems using traditional rules of a probabilistic approach, 

difficulties occur which are related to a mathematical presentation of the problems in the form 

of joint probability distribution for a large number of decision variables. Additional 

difficulties are associated with the need to collect a specified number of model data to 

determine all the parameters of the model in the process of adaptation, and to check it 

properly, as well as with determining conditional probability distributions for a large number 

of variables [1]. 

In 1988, in [2], while introducing the concept of conditional independence of events, a 

new representation of the joint probability distribution was proposed, which is known today 

as Bayesian networks. This proposal allowed to eliminate the original, enormous 

computational effort associated with modeling the joint probability distribution for all input 

variables treated as mutually dependent. 

Bayesian networks are widely used in various fields of science and engineering, and 

their main advantages include (e.g. [3]): 

-  clear interpretation of the system structure in the context of the relationships between 

nodes representing attributes, 

-  high level of generalization of the acquired knowledge, and no effect of the so-called 
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overfitting, 

-  possibility to solve problems in which the number of learning patterns is smaller than the 

number of model parameters, 

-  possibility to infer in the case of uncertain and incomplete information about the decision 

attributes, 

-  effective methods of building the system, including evolutionary algorithms, based on the 

model data used in the learning process. 

2.2. Mathematical bases 

In general, belief networks are a combination of the DAG (Directed Acyclic Graph) 

method and the formalism of Bayesian inference (e.g. [4, 5]). The structure of the Bayesian 

network in the form of a directed acyclic graph G (N, E) consists of nodes (N) representing 

the attributes, and the set (E) consisting of the edges defining the cause-and-effect 

relationships between the attributes [6]. The introduction of conditional independence allows 

to eliminate from the network a number of relationships which do not exhibit cause-and-effect 

relationships, which in turn significantly reduces the computational effort. At each node of the 

network, CPT (Conditional Probability Table) is determined, in which for individual states of 

the attribute Ai = {Ai
1
, Ai

2
, ..., Ai

k
} their conditional probability Ai

j
 is determined, depending on 

the value of the attributes which comprise the set of par(Ai) (1). Directed Acyclic Graphs 

represent the structure of the cause-effect relationships between the attributes E={A1,A2,..,An}, 

which form the basis for the inference in such systems (Fig. 1). 

In general, the joint probability represented by the network can be written in the 

following form [3]: 
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where: par(Ai) – nodes of the graph which are directly preceding the node Ai (c.f. Fig. 1). 

Basing on such a network with the conditional probability tables assigned to a given 

node, using the equation (1) and Bayes' theorem [6], in the evaluation of the condition of 

objects, it is possible to perform both the diagnosis of the causes for the observed effects, as 

well as the prediction of the effects for the assumed causes (Fig. 2). 

When it is necessary to identify the most likely state of the decision attribute, all its 

possible categories are considered, and on the basis of MAP ranking (Maximum-a-Posteriori) 

[6], this one is determined for which the posterior probability takes the highest value. 

Construction of Bayesian Belief Networks involves the determination of their structure 
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and calibration of the parameters affecting the values of conditional probabilities for each 

node. Both the determination of the topology as well as of the network parameters can be 

arbitrary, imposed by an expert, or it can be performed through optimization [3]. In this paper 

there is the division of the procedure into the expert one - in the selection of network 

topology, and the automatic one - in the case of adjusting the network parameters using the 

EM method (Expectation-Maximization Algorithm) [6] using learning data stored in the 

database. 

 

Fig. 1. Schematic diagram of the structure of the directed acyclic graph as a Bayesian network 

for the attributes A1,A2,..,A6, together with conditional probability tables for each node 

 

Fig. 2. Schematic diagram of the direction of inference for diagnoses and predictions [7] 
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3. DESCRIPTION OF VARIABLES USED FOR THE CONSTRUCTION OF 

BAYESIAN BELIEF NETWORKS 

3.1. The influence of continuous surface deformation 

Basing on the data collected from mines, the values of the parameters characterizing the 

continuous surface deformations in LGOM were determined. The mining area category (KT) 

[8] was adopted as the index describing the threat of continuous surface deformation. The 

mining area category describes the intensity of continuous surface deformation, expressed by 

assigning values characterizing the slopes, curves, and horizontal deformation, to the specific 

ranges of these indices (0, I, II, III, IV and V). 

3.2. The impact of mining tremors 

The impact of mining tremors, characteristic for the LGOM area,  was taken into 

consideration using the factor asg of dynamic impacts on the technical wear [9]: 

      pkH

n

k

kHsg ayxayxayxa  


,;,,

1

2    (2) 

where: (x, y) - coordinates of the object, 

aHk(x,y) -  peak value of the horizontal component of the vibration acceleration in the 

frequency range up to 10 Hz, calculated at the point (x, y) 

n - the number of tremors that occurred during the exploitation, for which the calculated peak 

value at the point (x, y) was higher than the threshold value ap=0.12m/s
2
. 

This factor takes into account both the number and the individual intensity of all seismic 

phenomena, significantly affecting the building during the whole period of its use. The 

significance of the so-defined dynamic impact factor asg was positively verified in the course 

of the research on the technical wear of traditional development and buildings constructed in 

the industrialized technologies (e.g. [10]). 

3.3. Structure resistance to mining impacts 

Structure resistance category (KO) [8] was adopted as the index of resistance of a 

building structure to mining impacts. It results from its geometrical, construction and material 

characteristics. Structure resistance category (0, 1, 2, 3, 4), understood as resistance to 

horizontal deformation and curvature of land, is adapted to the values of these indices defined 

in the mining area categories (KT). The structure is considered to be resistant to mining 

impacts when its resistance category (KO) is not smaller than the mining area category (KT). 

3.4. Quality of building maintenance 

The analysis took into account the REM parameter (in a 4-point scale), which was 
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adopted as a qualitative categorical variable reflecting the extent of the repair work 

management for individual buildings. Gradation of the level of maintenance quality results 

directly from the frequency and scope of the performed modernization works. 

3.5. State of damage to building elements 

For each building, a qualitative damage intensity index wui was determined, relating to 

the individual structural and non-structural components (eg. [10]). A total of 22 elements were 

distinguished, for which this index was defined in a 6-point scale, where wui = 0 means that 

the damage does not occur, wui = 1 - slight damage, wui = 2 - moderate damage, wui = 3 - 

intense damage wui = 4 (and 5) - very intensive damage. 

The study used the information collected during the survey conducted with the 

participation of the authors. On this basis, a database was established which included 129 

multi-storey residential buildings and public utility buildings, up to 35 years old, located in 

the LGOM mining area. All the structures subject to the analysis were constructed in the 

large-block technology, in the systems of large blocks (WBL) and large blocks for school 

buildings (SzWBL). 

Prior to the study, analysis of the input data was performed for their variability. It 

allowed to leave for further analysis the indices describing the damage to the following 

elements: basement load-bearing walls (wu2), overground load-bearing walls (wu3), ceilings 

and roofs (wu7), partition walls (wu11), internal plaster and wall coverings (wu12), floors (wu13), 

layers of cladding (wu17), damp insulation (wu18), roofing (wu19), flashings and guttering (wu20), 

as well as external elements such as platforms, trims (wu22). 

In the analyzed group of objects, the values of the damage intensity index wui 

demonstrate that most of the buildings were damaged slightly or moderately. 

4. STUDY RESULTS 

4.1. Verification of the quality of the created Bayesian Belief Network 

As a result of the analysis, a structure of the Bayesian Belief Network was obtained, 

which is presented in Figure 3. The model described in this paper was created using the 

GeNIe modeling environment developed by the Decision Systems Laboratory of the 

University of Pittsburgh (http://dsl.sis.pitt.edu). 

http://dsl.sis.pitt.edu/
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Fig. 3. Schematic diagram of the created Bayesian Belief Network 

Source: own study based on the GeNIe program [11] 

 

The structure of the network in terms of the predetermined relationships between the 

analyzed variables was created based on the knowledge and experience of the authors. 

Network parameters, in the form of Conditional Probability Tables (CPT) for each of its 

nodes, were determined using the EM method. 

The resulting model was verified for its proper classification. The verification was 

carried out in two variants (I and II). The first one (I) was the prediction of the intensity level 

of damage indices (wui), depending on the input mining impacts (KT, asg), design 

characteristics (KO), maintenance quality (REM) and the age of the building (WIEK). In he 

second variant (II), basing on the specific values of the damage intensity indices, the network 

demonstrated the categories of potential causes. Table 1 illustrates the results of the 

conformity of these indications with the created model. 

 

Tab. 1. Results of the conformity of indications of the created Bayesian Belief Network 

Variant I - prediction Variant II - diagnosis 

Average conformity of the model for the 

prediction of all the analyzed damage 

intensity indices wui  

Average conformity of the model in  

diagnosing the causes of the observed degree 

of damage to the building wui 

86.37 % 85.66 % 

 

The verification of the model quality, both in the case of predicting the degree of 

http://dsl.sis.pitt.edu/
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damage to individual elements (variant I), as well as in the case of diagnosing the causes of 

damage (variant II), high levels of conformity were achieved. This is confirmed by the initial 

assumption of the suitability of the adopted methodology, both for estimating the extent of 

mining damage and for identifying the dominant factor influencing their occurrence. 

4.2. Example of the prediction of damage intensity indices - variant I 

To illustrate the possibilities of using the Bayesian Belief Network to predict the 

damage intensity category, the case of inference was considered, in a situation of incomplete 

information about their causes (variant I). Assuming lack of information about the category of 

the dynamic impact factor asg, its value will be assessed during the inference on the basis of 

the cause-and-effect relationships with other attributes existing in the network (Tab. 2). Based 

on the values of conditional probabilities illustrated in Table 2, for all the damage intensity 

indices and for the attribute describing the intensity of mining tremors (asg), it is possible to 

determine their most probable categories. For example, for the index wu2, it is the category 2 

with the probability equal to 0.66. 

 

Tab. 2. Results of the predictions of the damage intensity index in the case of an incomplete 

set of input data (variant I) 

Indices of potential causes of damage (input variables) 

Index name WIEK REM KO KT asg 

Predetermined 

index category 
4 3 2 2 - 

Damage intensity indices (output variables) 
Index of 

tremors 

Index name wu2 wu3 wu7 wu11 wu12 wu13 wu17 wu18 wu19 wu20 wu22 asg 

Resulting index 

category 
Probabilities of categories of individual indices 

0 0.11 0.11 0.11    0.11 0.56 0.70 0.56 0.39  

1 0.11 0.11 0.11 0.36 0.29 0.15 0.11 0.15 0.15 0.29 0.25 0.43 

2 0.66 0.52 0.66 0.64 0.56 0.70 0.39 0.29 0.15 0.15 0.11 0.57 

3 0.11 0.25 0.11  0.15 0.15 0.39    0.25  

4.3. Example of diagnosing the causes of the intensity of damage - variant II 

In the case of diagnosing the causes of the observed extent of damage with the 

evidences, the categories of individual damage intensity indices were determined. Table 3 

summarizes the values of conditional probabilities for the variables which according to the 

description of the phenomenon (e.g. [9]) may contribute to the occurrence of damage to 

building structures. As a result of the model simulation for the given values of the damage 

indices, the obtained response identified the category for the attributes describing the age, 
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maintenance quality, resistance of the building, continuous surface deformations and mining 

tremors. For example, the index WIEK was assigned category 4 with the probability equal to 

0.65. All the variables (except the variable REM) are characterized by uniqueness of 

indications resulting from the high probability values for the dominant categories. A relatively 

low level of identifying the resulting category for the variable REM may be due to the 

dependence of this attribute of other variables in the model structure (c.f. Fig. 3). 

 

Table 3. Results of the inference for diagnosing the causes of the observed damage intensity 

(variant II) 

Damage intensity indices (input variables) 

Index name wu2 wu3 wu7 wu11 wu12 wu13 wu17 wu18 wu19 wu20 wu22 

Predetermined 

index category 
2 1 1 2 2 2 3 2 1 1 1 

Wskaźniki potencjalnych przyczyn uszkodzeń (zmienne wyjściowe) 

Nazwa wskaźnika WIEK REM KO KT asg 

Resulting index 

category 
Probabilities of categories of individual indices 

0  0.26  0.19  

1 0.02 0.30 0.51 0.34 0.64 

2 0.05 0.20 0.39 0.41 0.36 

3 0.28 0.24 0.10 0.07  

4 0.65     

  

5. SUMMARY AND CONCLUSIONS 

The paper demonstrates possibilities of inference regarding the technical condition of 

building structures with the use of Bayesian Belief Network. The research study was based on 

the database regarding the construction, maintenance quality, and intensity of damage to 129 

multi-storey buildings of prefabricated large-panel structure, located in the mining area of 

Legnica-Głogów Copper District (LGOM). 

The presented results prove that Bayesian Belief Networks allow to combine a formal 

uncertainty with the probability of occurrence of individual variables affecting the intensity of 

damage to a building. The result is the possibility to streamline the assessment of the 

condition of building structures in mining areas. 

Based on the performed analyses, it was found that the proposed methodology can be 

used both to predict the effects of the planned mining exploitation and to diagnose the 

dominant external factor causing the observed extent of damage. In addition, inference can be 

performed basing on the incomplete information about the analyzed phenomenon. 
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The use of the probabilistic approach offered by Bayesian Networks may allow to 

combine the current results of the analysis of the technical condition with the field of 

structural reliability comprising the techniques based on strictly defined probability 

distributions. 

 

The article was prepared as part of the AGH statutory research No. 11.11.150.005. 
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