Bioarchaeology of Social Inequality in the Unetice Culture: A Case Study

Dalia A. Pokutta, Justyna Baron, Paweł Dąbrowski and Christina Karlsson

Abstract: The barrow in Kąty Wrocławskie was discovered near the city of Wrocław, SW Poland, in 1998. This paper presents the results collated from excavations, isotopic analyses (13C/15N), radiocarbon dating and lipid analyses of organic residues, found in this tomb. Social ranking/hierarchy shaped the lifestyle and identities, be they either individual or collective, upon which ultimately rigid or more flexible forms of stratification were built. However, archaeological debate regarding social inequality and leadership in the Unetice Culture is frequently reduced to bronze halberds, gold and the Leubingen barrow. We seek to determine the scale of social diversity among members of Early Bronze Age society. In this paper we present the biological profiles of the first group of Uneticean aristocracy buried in princely graves.

Keywords: Early Bronze Age, Unetice Culture, Silesia, isotopic analyses, barrows

Site location and the monument

Discovered at the medieval gallows hill of Kąty Wrocławskie, in 1998, the barrow is located approximately 24 km SW of Wrocław. Taking into consideration, that only six barrows have been fully excavated in Poland so far, four at Łęki Małe and two in Szczepankowice (Kowiańska-Piaszykowa 2008; Sarnowska 1969); the discovery of a new funerary monument was undeniably an achievement. The monument at Kąty Wrocławskie belongs within the construct of the pan-European horizon of princely graves, broadly discussed in literature (Görsdorf 1993; Kadrow 2001, 132-133; Kristiansen 2005, 133; Meller et al. 2010; Rassmann 1996; Steffen 2010). At a micro-regional scale, the sparse deployment of Early Bronze Age sites in the vicinity of Kąty Wrocławskie, is contrasted remarkably with the densely settled area, around Szczepankowice; located just a few kilometres further east (Sarnowska 1975, map 1). Therefore, the discovery of a new barrow in association with an adjacent Early Bronze Age settlement (unpublished data, pers. comm R. Jarysz) was unexpected. It has however yielded important information regarding non-linear correlations of mortuary variability, with status in the Unetice Culture.

The mound itself is 2.2 m high, with a diameter of about 17 m. Despite destruction, it is still visible in situ. Although, it must be acknowledged, due to the land’s diverse usage over time; that both its shape and size may have been altered remarkably. The remains of the 16th century gallows were discovered at the top of the feature (Fig. 1-2), surrounded by a brick building dating to the 19th century; when the mound served as a scaffold for executions. The tomb was partially explored in 1998 and again in 2000 (Jarysz 2000; Nocuń et al. 1999). In total, the barrow was excavated to the depth of 2.2 m from the top of the gallows wall. The stratigraphy of the tomb resembled a ‘layer-cake’ structure: the uppermost stratum was dark grey humus, covering a deposit of reddish-yellow loam and clay. The strata were separated by light grey humus. Beneath that, a layer of yellow-brown clay was recorded, containing small boulders and gravel. The natural deposits (at a depth of approximately 1.95 m) consisted of compact, yellow clay and fine grained white sand of eolic provenance. The location of the monument suggested that the mound was built on the slight slope of a small natural hill (Fig. 2).

The mound contained archaeological material purporting to at least four, distinct archaeological periods: the Neolithic, the Early Bronze Age, medieval and post-medieval era (15th/16th century AD). The Neolithic phase of prehistoric activity on site was represented by a single pit, discovered in the north-eastern part of the trench, about 0.8 m below the surface, near the gallows wall. This feature produced 129 pottery sherds and 4 flint artefacts associated with the Globular Amphora Culture (the possible remains of a destroyed Neolithic grave (Jarysz 2000, 4). An Early Bronze Age inhumation was discovered about 1.7 m east of the gibbet wall and about 0.5 m below the topsoil. The pit was 1.3 m long and 0.8 wide and contained the remains of a poorly preserved adult male skeleton, arranged with bent legs and twisted hands; indicating they were bound during burial. The deceased was oriented along the north-south axis, with his head to the south and facing east (Pokutta 2013, 67), with the stone setting present marking the exact shape of the grave cut. The location of this burial, on the slope of the mound at a significant depth (in correlation to the assumed original size of the tomb); suggests that this was an additional, accompanying grave placed in this barrow. Thus, it should be hypothesised that there may be further satellite/ accompanying inhumations, relating to the barrow.

There were two directly associated grave goods: a single pottery vessel and a double-coiled hair clip made of bronze wire, located near the head (cf. Moucha 2005, 350, 423, 474). The vessel retrieved from the grave was a fine-ware, carinated jug, with a flared rim made of fabric tempered with mica grains. It was decorated with five horizontal grooves, with both the technology (mica temper), as well as the form; typical and indicative of the classical phase of
the Unetice Culture. At this point is worth mentioning that it has been argued, this particular type of carinated vessel is of older provenance (Müller 1999). Similar forms are widely distributed in some parts of Central Europe (Kadrow 2001, Fig. 5) and come mostly from sepulchral sites, e.g. the cemetery of Przecławice (Lasak 1988, Fig. 48) or burial mounds from Łęki Małe (Kowiańska-Piaszykowa 1968, Fig. 12). The bronze ring/clip made of wire (1.6×1.2 cm) recovered from this grave is also a common Early Bronze Age artefact (Butent-Stefaniak 1997, 110). Both the construction of the grave and the treatment of the body are typical for the Unetice Culture.

Anthropological analysis of human remains

The human remains discovered in the barrow were very poorly preserved. The skeleton was incomplete and fragmentary. In most cases, bones were deprived of diagnostic features and were extremely brittle. These factors significantly affected the precision of morphological examination. Sexing was based on morphology of the supraorbital region (thickened edges of the orbits) and the glabella (a second grade of expression), as well as the general description of the size of the preserved fragments of the neurocranium and postcranial skeleton, especially muscle attachments (Acsadi and Nemeskeri 1970; Buikstra and Ubelaker 1994).

The appearance of the orbits’ edges seem to indicate a male, however, the glabella could definitely be classified as gracile. The general morphological picture of the preserved skeleton may be an indicator of a male. Nevertheless, these findings must be treated circumspectly, particularly considering such a limited number of distinctive and certain diagnostic features. The age of the individual at the time of death was estimated at maturus (approximately 55 years of age) on the basis of the grade of the spongy substance loss in the region of the epiphyses of the long bones and closure of cranial sutures (Piontek 1996; Ubelaker 1989).

Due to the poor preservation of remains, the range of paleopathological analysis was significantly limited. Within the orbit, only traces of cribra orbitalia (CO) were recorded. Said perforations were in a degenerating and remodelling stage, resulting from the age-dependent structural changes of the external lamella and the diploë. Discussed lesions were in the stage of regression, and may be ascribed the first and second grade of the intensity according to the criteria established by Hengen (1971) and Robledo et al. (1995). Traces of porotic hyperostosis (PH) were identified in four fragments of the parietal bones. Perforation tracks of the lamella in the external side of the cranium vault were recorded, in addition to hypotrophy of the diploë in the exposed sections of the connective tissue, as a result of post mortem breakages. In this case, the hypertrophy of the neurocranium indicates different types of anaemia, characterized by hypertrophy and hyperplasia of the diploë; the compact substance spongiosity, accompanied by the thinning of the external lamellae (cf. Hengen 1971; Lovell 1997; Ortner and Putschar 2003; Stuart-Macadam 1987; Vercelotti et al. 2010). Crucial erythropoetic components such as: iron, vitamin B12, vitamin C, folic acid and trace elements deficiency lead to hyperactivity of the bone marrow. This creates a causal link to the identified spontaneous hypertrophy of the lamellae (Salvadei et al. 2001). The deficiency may have been caused by parasitic infections, iron-dependent anaemia (alimentary), sickle-cell anaemia, thalassemia (mutations of the haemoglobin structure) and/or scurvy (Holland and Obrien 1997; Wright and Chew 1998; Walker et al. 2009).

The assessment of the etiological factors in the paleopidemiological examination targeted the reconstruction of the living conditions affecting this individual, along with his adaptability. The examination was based on specified...
health and life indicators, especially when referring to sanitary and dietary factors, in conjunction with hygiene conditions, broadly discussed in anthropological literature (cf. Nowak and Piontek 2002; Palkovich 1987; Walker et al. 2009). The presence in the same individual of both types of porous hypertrophy in the cranial vault and the orbit fornix, results from a similar etiology. The only difference between them may be the time of exposure and the intensity of the etiopathogenetic factors. The orbits were the most exposed to hypertrophic lesions, due to the thickness of the diploë. Portions of the cranium were the second most exposed. Thus, the coexistence of both lesions in the cranium of the individual could have resulted from protracted bone marrow hyperplasia in response to the alimentary deficiencies (Cybulski 1977, 1985; Łubocka 2003; Rothschild et al. 2002; Stuart-Macadam 1987).

Isotopic analyses of human remains

The dating of the burial was performed at the Chrono Center isotopic laboratory at Queen’s University in Belfast. The Kąty Wrocławskie burial mound was dated to 3535±30 BP (Fig. 3-4). From a chronological point of view, the barrow in Kąty Wrocławskie can be associated with the classic phase of the Unetice Culture in Silesia and its construction should be considered contemporaneous with Szczepankowice IB barrow (Pokutta 2013, 63-65).

In this study carbon and nitrogen analyses were used to reconstruct the diets of EBA aristocracy buried at the Kąty Wrocławskie barrow (the adult male) and the adjacent Szczepankowice barrows. Skeletal materials from Szczepankowice necropolis were used as a control group in this case (cf. Pokutta and Frei 2011). In the following, the results were compared with the diets of several individuals interred at the Przeclawice cemetery, which has yielded some unexpected results. The background for the dietary analysis of the Unetice population constituted 13C/15N analyses of faunal materials from Silesia, including a broad range of both wild and domesticated specimens (presented in detail by Pokutta and Howcroft, in this volume; cf. Pokutta 2013, 146-149).

In many studies, nitrogen isotope ratios (usually in combination with carbon) have been applied as a means of tracing diet (DeNiro 1987; Fuller et al. 2012; Larsen et al. 1992; Lidén 1995; Lidén et al. 2004; Milner et al. 2003; Müldner et al. 2009; Pate 1994; Schwarz and Schoeninger 1991; Sealy et al. 1995; Tykot 2002; Zhang et al. 2015). The major principles upon which a typical δ15N versus δ13C investigation are based are outlined in Milner et al. (2003). The average value of δ13C for Szczepankowice control group is reported at -21.06‰, with a corresponding average for δ15N at 11.20‰. The most typical isotopic values for non-elite burials (flat cemeteries, excluding Przeclawice) in Silesia are -20.5‰ (δ13C) and 11.5‰ (δ15N).

For the male buried at the Kąty Wrocławskie barrow, the corresponding values are -20.55‰ for carbon and 11.31‰ in nitrogen. The diet of an individual buried in the chronologically older barrow IA from Szczepankowice seems to be enriched in nitrogen (by about 1‰ when compared with
Part 1: Materiality and the Construction of Identity

The female buried in the upper, younger tomb; Figure 5). The sample for this individual was taken from the cranium and indicates that, in adulthood, his diet bordered on the carnivorous (likely with high fish intake). Samples from the female (Szczepankowice barrow IB) were taken from a lower premolar and tibia and show a significant decrease in the $\delta^{15}N$ towards the end of her life. Generally speaking, her dietary status appears to have been relatively modest in comparison to other members of the Uneticean community (cf. Pokutta 2013, 150-160).

In terms of caloric equivalent, isotope ratios obtained from humans buried in Silesian barrows suggest a rich omnivorous/borderline carnivorous diet. Values generally do not fluctuate much; both $\delta^{13}C$ and $\delta^{15}N$ values are within the range expected for a population which obtained most of its dietary protein from terrestrial (C3 plants) and aquatic sources (Fig. 5). When compared to the rest of local non-elite population, dietary profiles of Uneticean tribal elite show noticeable moderation, as they fall in a similar range of values, but slightly below the average for the whole population (cf. Pokutta 2013, 150-157). The biological status of the male buried in the barrow at Kąty Wrocławskie was subjected to major changes over the course of his life. The $\delta^{13}C/\delta^{15}N$ values reported depict a rich, mixed omnivorous to carnivorous diet by the end of his life. However, traces of healed *cribra orbitalia* show that for a prolonged period of time this male suffered from malnutrition or anaemia.

One should add that said individuals also demonstrate non-local $^{87}Sr/^{86}Sr$ values. Excluding female buried in Szczepankowice barrow IB, the isotopic signal from the long bones of all males exceed values typical for the sedentary Silesian population and matches strontium baseline levels found in older geological formations in Bohemia (Pokutta 2013, 180-188). It seems feasible that the man buried in Kąty Wrocławskie barrow, may have travelled to central Bohemia or/and territories between Prague and Pilsen a few years prior to his death. The malnutrition and anaemia may have been related to that fact.

Isotopic data from Helmsdorf princely grave (c.1840 BC) and non-elite burials in German group of the Unetice Culture; published by Knipper et al. (2015) advocate diametrically opposed situation. Isotopic values shown in Figure 5 indicate both different local ecological settings, and diversity in adaptation strategies.

The most recent archaeobotanical survey of the Bronze Age sites across Europe shows that in EBA Germany we encounter agriculture primarily based on hulled barley, with emmer and spelt as secondary crops (Stika&Heiss 2013). In the south, in Silesian and Bohemian groups staples were based primarily on emmer, supplemented by barley and einkorn. However, isotopic ratios reported for male buried in Helmsdorf barrow (12.5‰ $\delta^{13}C/-19.4‰ \delta^{15}N$; Fig. 5) indicate significant enrichment (+2.1‰ $\delta^{15}N$) in relation to the average non-elite interments of commoners.

Organic residue analysis of ceramics

To further our study, the carinated jug discovered in Kąty Wrocławskie barrow was analysed. Unglazed pottery may adsorb lipids (fats, waxes and resins) from food stuffs or other organic materials that have been stored or prepared in them (Evershed 2008a; 2008b; Evershed et al. 2001). Thus providing information on the last few uses of a vessel in prehistory (Craig et al. 2004; Karlsson 2007). It should, however; be mentioned that the forming of lipid residues is a complex process making it difficult to trace the exact ingredients that was put into a pot. Likewise, it should be considered that the more fat-rich ingredients will leave stronger signals, despite not having been the main ingredient.

In principle lipid analyses of unglazed pottery involves extraction and derivatization, followed by gas chromatography-mass spectrometry. The first 0.5 mm of ceramic was ground off to avoid contamination. Approximately 1 g of ceramic powder was transferred quantitatively to an extraction vessel and an internal standard was added (20 μg hexatriacontane, C36). In the following stage, 2.1 ml of

Table 1.

<table>
<thead>
<tr>
<th>Site name</th>
<th>The deceased</th>
<th>Grave furnishing</th>
<th>Context</th>
<th>Dating/ material</th>
<th>Calibration (OxCaL)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Szczepankowice barrow IA</td>
<td>Adult male</td>
<td>Stone & timber structures, 30% grinding stones, pottery (+); animal bones (++), monument was robbed in antiquity</td>
<td>princesly grave central chamber burial</td>
<td>3559 +/- 24 BP human bones</td>
<td>1874</td>
</tr>
<tr>
<td>Kąty Wrocławskie</td>
<td>Adult male</td>
<td>Stone setting; vessel (1); bronze ring (1)</td>
<td>princesly grave burial</td>
<td>3535 +/-30 BP human bones</td>
<td>1785</td>
</tr>
<tr>
<td>Szczepankowice barrow IB</td>
<td>Adult female</td>
<td>Vessels (2), animal bones</td>
<td>princesly grave central burial</td>
<td>3522 +/-24 BP human bones</td>
<td>1760</td>
</tr>
</tbody>
</table>

Fig. 3. Chronological and archaeological overview: Kąty Wrocławskie and Szczepankowice barrows.
choloroform and methanol (2:1) were added to the ceramic powder. The lipid residue was extracted through sonication (2x15 min). The samples were centrifuged (30 minutes at 3000 rpm) and the clear extracts were transferred to vials, after which, the solvents were evaporated under a gentle stream of nitrogen. The lipids were treated with 60µl bis(trimethylsilyl) trifluoracetamide containing 10% chlorotrimethylsilane, at 70°C for approximately 20 minutes to produce trimethylsilyl derivates, which were then dried under nitrogen. The derivatized extracts were re-dissolved in n-hexane and analysed by GCMS. The analysis was performed on an HP 6890 Gas Chromatograph equipped with a SGE BPX5 capillary column (15m×220µm×0.25 µm). The injection was done by a pulsed spitless (pulse pressure 17.6 Psi) technique at 325°C by a Merlin Microseal High Pressure Septum by means of an Agilent 7683B auto-injector. The oven was programmed with an initial isothermal of 2 minutes at 50°C, followed by an increase of 10°C per minute to 350°C, followed by a 15 minute finishing isothermal at this temperature. The carrier gas was helium at a constant flow of 2.0 ml/minute. The gas chromatograph was connected to an HP 5967 Mass Selective Detector through an interface with the temperature of 350°C. The fragmentation of the compounds was done by electric ionization (EI) at 70 eV and the temperature at the ion source was 230°C. The mass filter was set to scan the interval of m/z 50 to 700, providing 2.29 scans/second. The data was processed though MSD Chem Station D 03.00.611.

The lipid content of the vessel was high, approximately 630 µg/g. The ratio C18:0/C16:0 was 1.11, indicating fats of animal origin. Terrestrial animals generally have a higher amount of stearic acid (C18:0) compared to palmitic acid (C16:0). Thus, if the ratio C18:0/C16:0 is high, then the origin is a terrestrial animal and if it is low the origin may be plant or fish based (Olsson and Isaksson 2008). Cholesterol was also present, strengthening this interpretation. Furthermore the ratio C17:0 branched/ C18:0 straight indicated a ruminant origin, even if no intact triacylglycerols were present (Dudd et al. 1999:1480; Hjulström et al. 2008). Ruminant fats (both adipose tissue and milk fats) contain more branched fatty acids, as well as more fatty acids with an uneven amount of carbon atoms, compared to other terrestrial animals. This is due to bacterial activities in the animals’ intestines and stomachs (Christie 1981). The main part of organic residues is free fatty acids that have been hydrolysed from triacylglycerols (TAG). TAG is the bulk part of what is normally referred to as fats and oils. Sometimes intact TAG is present in well-preserved prehistoric pottery. A wide distribution of TAG (40-54 carbons in the acyl-part, compared to 46-54) indicates ruminant fat, as ruminants produce more short-chained compounds. If the amount of the shortest of these (40-44) is high it indicates fat derived from milk. However, the short-chained TAG decomposes faster than the longer, so a sample with a narrower distribution may still be of ruminant origin.

Plant waxes were identified inside this vessel by the presence of phytosterol and long-chained alkanols (Charters et al. 1997). The vessel also contained 3,7,11,15-tetramethylhexadecanoic acid (3,7,11,15-TMHD). This is formed by the oxidation of phytol, derived from chlorophyll; which is produced both by plants, photosynthesizing microorganisms and plankton (Olsson and Isaksson 2008).

Given the size of the vessel, approximately 25 cm×20 cm (diameter/ high) and archaeological context, it is feasible that this vessel may have been used as a regular serving dish prior to deposition in the barrow. It seems unlikely that it has been produced for burial purposes only. Analysis has shown that it might actually have been used on multiple occasions, carrying different contents, including...
fats of animal origin, plant derived food and possibly milk. The exact sequence of use remains unknown, nevertheless it seems logical that the vessel belonged to the household of the deceased. Its last contents might have reflected not only the gustatory preferences of the dead (e.g. favourite soup etc.; cf. Pokutta 2014), but also shared, customary meals among living members of Uneticean communities at that time.

Conclusions

Certain number of barrows located in Silesia suggests the presence of high status individuals and the development of specific centralized social institutions, within Uneticean communities. Barrows are also known from Greater Poland (Łęki Male; Knapowska-Mikołajczykowa 1957; Kowińska-Piaszykowa 2008), and Germany (Leubingen, Helmsdorf, Baalberge, Dieskau II, Nienstedt, Klein- kornbetha, Hohenbergen, Sömmerda I-II, Königsaue and Österkörner; Gibmutas 1965, 262-268; Kadrow 2001, 123; Steffen 2010, 19). Although, the highest concentration of Uneticean barrows can be found in northern and central Bohemia (i.e. Brandýs, Březno, Mladá Boleslav- Čejetíčky-Choboty, Horní Přim, Chotěšov, Kojetice, Konobrže, Litovice, Odolena Voda, Prague 5-Reporyje, Prague 6-Bubeneč, Selibice, Stračovská Lhota, Toužetín, Tursko, Zlončice and Želeč; Danielisová 2013, 81, Krutová and Turek 2004).

Until today approximately 55 Uneticean barrows has been found in Central Europe. The majority of monuments was published in archaeological literature, but only approximately 60% of that number has been excavated according to modern standards. The best preserved examples of the so-called princely graves in Silesia were located at Szczepankowice (Sarnowska 1969) and Katy Wrocławskie, but the number of barrows situated around Wroclaw was originally much higher. A certain number of rich graves covered with stone pavements are considered today to be the remains of destroyed barrows. Among these are: Kromočew, Gola Górowska with the remains of three monuments, Krzesin, Płatków and possibly Kotla (Blajer 1990, 199; Sarnowska 1969, 89, 344). A barrow discovered in 1934 in Nowy Zagórz might have been associated with the Early Bronze Age: the inner core of the barrow was built of large stones forming a massive internal flange, typical for Unetice technology at that time. Another example derives from Groß Gastrose, first excavated by Jentsch in 1888, where a stone box was recorded beneath the burial mound (Butent-Stefaniak 1997, 188).

The barrow in Katy Wrocławskie may be interesting for a few reasons. First, is the location of the monument. The Unetice period can be characterized by new cultural phenomenon which is the blending of settlement with funerary space, sacral and profane aspects of interment. A certain number of single, isolated inhumations have been discovered in Early Bronze Age settlements. Occasionally some parts of a cemetery may also overlap or intercut the space of the village. Examples of this practice derive from cemeteries in both Czechia (Slavkov, District Brno-Venkov) and southern Poland (e.g. Wojkowice), but also from Greater Poland like the single male skeleton discovered in Bruszczeowo. The tomb in Katy Wrocławskie was sited in the vicinity of the settlement (distance of approx. 200 m, unpublished materials) and it could be argued it was intentionally made visible. Therefore, the monument in Katy Wrocławskie should be considered a feature that possessed an agreed-upon special meaning to a community of people. Barrows were more than just burials, they were markers of authority (cf. Binford 1971, Wason 1994). These types of graves take enormous amounts of effort and manpower to create, therefore were important political statements on the landscape, likely used to control trade routes, and marked control over land.

Another issue is the biological profile of the tribal elites interred in barrows. Differential diet is one indicator of resource distribution within the society, not general cultural adaptation. In our analysis, isotopic evidence of diet was linked to lipid analysis of ceramics found in the barrow. Data indicates a general absence of gender distinction between those buried in princely graves. Moreover, their diet falls below average for the whole Early Bronze Age Silesian population, especially when compared to the population of Przecławice cemetery. The individual life history of an older male buried in Katy Wrocławskie barrow, especially his long-distance journey, combined with a potential episode of starvation, calls into question previous opinions regarding biological profiles of prehistoric elites (e.g. Haas 1982, 94).

Nonetheless, what seems to be more important is the noticeable and specified distribution of power within local communities in SW Poland. In a study of the changes in pre-state social organization of Jutland, Parker Pearson (1984) observed that the variation among households in cattle keeping increased, and some individuals appear to have had greater access to this important basic subsistence resource than others. Despite the growing wealth for some, their poorest contemporaries were now poorer than anyone in earlier periods. Bioarchaeological data from Helmsdorf barrow indicate such scenario and progressive social differentiation in Uneticean populations in Germany. However, no such trend can be seen in Early Bronze Age Silesia. In fact, our investigation reveals socially distinct hierarchical model with dynamic ranking system. All communities sited around Wroclaw display astonishing uniformity in terms of subsistence and economic equality, with their elites being subjected to some form of collective control. In global terms, that may mean that princely graves, commonly found in Early Bronze Age Bohemia, Poland and Germany; despite physical resemblance in fact represent different social and tribal institutions.

The social arrangements between tribal leaders and their communities seem to be variable, negotiable and never static. I. Hodder once noted: ‘The relationship between
material culture and human organization is partly social (…) But it is also dependant on a set of cultural attitudes which cannot be predicted from or reduced to an environment. The cultural relationships are not caused by anything else outside themselves. They just are. The task of archaeologists is to interpret this irreducible component of culture so that society behind the material evidence can be ‘read’” (Hodder 1991, 4).

The social features such as ranking in the Unetice cultural hierarchy could have been expressed materially in a number of ways. The bioarchaeological evidence from Katý Wroclawskie presented in this study, evokes a long-forgotten reality of what power might have been: a story of a man who thousands of years ago set off on a long journey to the south, occupied in his times by Bohemian tribes of the Unetice Culture. Suffering from diseases and starving, he manage to come back home. It was also a story of his community who waited for him, and by the end acknowledged his achievements. It shows that prehistoric leadership required active involvement, and people were active agents. Therefore their behaviour was not fully predictable.

Acknowledgments

The authors would like to thank Archaeological Research Laboratory in Stockholm for their support and assistance during analyses. Special thanks also go to Leo Sucharyna-Thomas for his critical comments and editorial assistance.

References

Butent-Stefaniak, B.1997. Z badań nad stosunkami kulturowymi w dorzeczu górnej i środkowej Odrzy we wczesnym okresie epoki brązu. Wrocław, Ossolineum.

