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1. INTRODUCTION

All performed measurements (despite of units, such as temperature, water level or current
in a line) are associated with some noise, and the correct state estimation allows to reduce
errors. Kalman filter (KF) was proposed by Rudolf Kalman in 1960 [10], and its version
for nonlinear systems, so called Extended Kalman Filter (EKF), 10 years later by Andrew
Jazwinski [8].

The Particle Filter (PF) algorithm is much younger, because the first algorithm was pro-
posed in 1993 [7]; however it is worth noting that already in the 1940s years Norbert Wiener
suggested something like PF [18]. In 1980s and early 1990s Sequential Importance Sampling
methods were studied, and by adding the resampling step to them the Sequential Importance
Resampling (SIR – other name of PF) was created.

Since then there have been proposed many algorithms, which combine any version of KFs
and PFs, e.g. Unscented Kalman Particle Filter [20, 15], Mixed Kalman Particle Filter [3] or
Iterated Extended Kalman Particle Filter [14]. The authors decided to focus at the beginning
on the Extended Kalman Particle Filter (EKPF), and the remaining ones will be studied in the
future.

In Section 2, the formulation of the problem is presented. The article is focused on de-
scribing algorithms of state estimation: Extended Kalman Filter (Section 3), Particle Filter
– Bootstrap Filter (Section 4) and Extended Kalman Particle Filter (Section 5). In Section
6, the examined objects are presented, and Section 7 contains results of the simulations, and
conclusions are given in Section 8.
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2. FORMULATION OF THE PROBLEM

The discrete system in state space is given by
{

x(k+1) = f(x(k), u(k); k) + v(k)

y(k) = h(x(k)) + n(k) (1)

where x(k) is a state vector at k-th time step, u(k) is an input vector, y(k) is a measurement

vector, v(k) is a process noise vector, n(k) is a measurement noise vector, f(·) and h(·) are
transition and measurement nonlinear vector functions, respectively. The task is to recon-
struct values of the state variables from the available measured outputs and known inputs of
the system.

3. EXTENDED KALMAN FILTER

This method can be used for a nonlinear object (1) and probably is the most widely used
estimation algorithm due to its implementation simplicity, satisfactory time of operation and
relatively good estimation results (in general).

However, in special cases estimation results of EKF method may be poor. Such cases are
plants, in which error propagation can not be well approximated by linear function, objects
which have highly quantized measurements from sensors [9] and so called jump systems [13].

The EKF algorithm is composed of the two main steps:

• prediction step (time update):

x̂(k|k−1) = f
(

x̂(k−1|k−1), u(k−1)
)

, (2)

P (k|k−1) = F (k−1)P (k−1|k−1)F (k−1)T +Q , (3)

• filtration step (measurement update):

K(k) = P (k|k−1)H(k)T
(

H(k)P (k|k−1)H(k)T +R
)−1

, (4)

x̂(k|k) = x̂(k|k−1) +K(k)
(

y(k) − h(x̂(k|k−1))
)

, (5)

P (k|k) =
(

I −K(k)H(k)
)

P (k|k−1), (6)

where F (k−1) is a Jacobian matrix calculated as F (k−1) = ∇f
k−1

∣

∣

x̂(k−1|k−1) , H(k) is a

Jacobian matrix calculated as H(k) = ∇hk

∣

∣

x̂(k|k−1) . Superscripts (k|k−1) denote values
predicted at k-th time step with the use of the information from previous step and the transi-
tion model.

Despite the fact that the original Kalman filter did not apply Bayes’ rule [10], it has been
proven that Kalman’s equations can be derived from Recursive Bayesian Filter (see (7) in the
next section), under the assumption that models are linear-Gaussian. It is worth noting that
there is a common misconception that Kalman filters can be used only to Gaussian plants,
while there is nothing about distribution type, but only the mean and covariance [9].

More information about Kalman filtering can be found in books [18, 5].
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4. PARTICLE FILTER

This method can be used for a nonlinear object (1) and also for plants with non-Gaussian
transition or measurement models. The Particle Filter (PF) operation principle is based on
the Recursive Bayesian Filter [2], given by

p
(

x(k)|Y(k)
)

=
p
(

y(k)|x(k)
)

p
(

x(k)|Y(k−1)
)

p
(

y(k)|Y(k−1)
) , (7)

where Y
(k) is a set of output measurements {y(1), . . . , y(k)}, p

(

x(k)|Y(k)
)

is a posterior
probability density function (PDF), p

(

y(k)|x(k)
)

is a likelihood, p
(

x(k)|Y(k−1)
)

is a prior

PDF, and p
(

y(k)|Y(k−1)
)

is an evidence
In the PF algorithm, posterior PDF is represented by a set of particles. Each particle

consists of value xi and weight qi for i = 1, 2, ..., Np, where Np is the number of particles.
Hence, the i-th particle can be written as a pair {xi, qi}. When the particles number Np is
large enough, posterior PDF can be approximated by

p
(

x(k)|Y(k)
)

Np→∞
= p̂

(

x(k)|Y(k)
)

=

Np
∑

i=1

qi,(k)δ
(

x(k) − xi,(k)
)

, (8)

where δ(·) is a Dirac’s delta function.
The algorithm of Bootstrap Filter, which was proposed in 1993 by Gordon, Salmond and

Smith [7], and is presented below.

Algorithm 1. Bootstrap Filter (BF)

1. Initialization. Draw initial values of the particles xi,(0) ∼ p(x(0)), set time step k := 1.
2. Prediction. DrawNp new particles from the transition model: xi,(k) ∼ p(x(k)|xi,(k−1)).
3. Update. Calculate particles’ weights from the measurement model

qi,(k) = p(y(k)|xi,(k)). (9)

4. Normalization. Scale values of the weights in such a way that their sum equals 1.
5. Resampling (systematic resampling has been used [12]).
6. End of the iteration. Calculate the estimate of the state vector at k-th time step, update

the time step k := k + 1, go to Step 2.

In the most general form – Sequential Importance Resampling (SIR) – there are two
main differences in comparison to BF, i.e. resampling does not have to be executed in every
iteration (only when relatively low number of particles have significant weights values), and
in the prediction step one can use any, so called importance function π(x(k)|x(k−1), y(k)),
from which particles will be drawn. Therefore, the expression for weights calculation in the
update step of SIR algorithm is given by

qi,(k) = qi,(k−1)
p(y(k)|xi,(k))p(x(k)|xi,(k−1))

π(xi,(k)|xi,(k−1), y(k))
. (10)
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The SIR approach is useful especially when the transition model is given by function, from
which particles drawing is problematic.

The main disadvantage of PF usage is needed number of calculations, which grows expo-
nentially with a number of state variables [19]. However, there is a number of advantages in
favour of using particle filtering: the optimality in nonlinear and non-Gaussian plants (due to
Bayesian based solution), the possibility of adaptation of performed calculations to used de-
vice (by changing the number of particles), the possibility of parallelize calculations on GPU
[17] or FPGA [16, 19] (all calculations, except resampling, are performed independently for
each particle).

For more information about particle filters references [1, 4] are suggested.

5. EXTENDED KALMAN PARTICLE FILTER

This is a modified PF algorithm, where particles in the prediction step are not drawn from
the transition model, but from the PDF calculated using EKF method. Therefore, the weights
calculation (11) is based on the importance function usage.

With the combination of EKF and PF algorithms, the meaningful estimation results should
be obtained also for a very small particles number Np, and with Np increasing the estimation
quality should improve. Except that strengths and weaknesses are similar to EKF and PF
methods.

Algorithm 2. Extended Kalman Particle Filter (EKPF)

1. Initialization. Draw Np particle values from initial PDF xi,(0) ∼ p(x(0)), set initial
values of covariance matrices P i,(0|0) = Q, set the number of iteration k = 1.

2. Prediction. DrawNp new particles xi,(k) ∼ g(x(k)|xi,(k−1), y(k)) = N (x̂i,(k|k),P i,(k|k)),

where x̂i,(k|k) and P i,(k|k) are the values of estimated state variables and covariance
matrices, respectively, calculated from (2)-(6) for each particle, and x̂i,(k−1|k−1) in (2)
is equal to xi,(k−1) after resampling (EKF calculations are performedNp times at every
time step).

3. Update. Calculate the weights of particles

qi,(k) =
p(y(k)|xi,(k))p(xi,(k)|xi,(k−1))

g(xi,(k)|xi,(k−1), y(k))
. (11)

4. Normalization. Scale the weights in such a way that their sum equals 1.
5. Resampling (systematic resampling has been used [12]).
6. End of the iteration. Calculate the estimate of state vector, update the time step k :=

k + 1, go to Step 2.

6. EXAMINED OBJECTS

The systems Ob1 and Ob2 are plants without the input signal (autonomous), so change
of the state is only due to the presence of a process noise. Ob1 is used very often in particle
filters examination [1, 7]. According to [11] this object was firstly proposed in 1978 by Netto,
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Gimeno and Mendes. Ob2 is the modification of Ob1 through simplification of measurement
function and removal of the cosine term from transfer function. The Ob3 is multidimensional
system with 3 inputs and 3 outputs (MIMO object).

• Ob1:
{

x(k+1) = 0.5x(k) + 25x(k)

1+x(k)2
+ 8 cos(1.2k) + v(k)

y(k) = x(k)2

20 + n(k)
,

v(k) ∼ N (0; 10),

n(k) ∼ N (0; 1),

x(0) = 0.1 .

• Ob2:
{

x(k+1) = 0.5x(k) + 25x(k)

1+x(k)2
+ v(k)

y(k) = 2x(k) + n(k)
,

v(k) ∼ N (0; 10),

n(k) ∼ N (0; 102),

x(0) = 0.1 .

• Ob3:
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,

v
(k)
1/2/3 ∼ N (0; 0.1),

n
(k)
1/2 ∼ N (0; 0.1),

u
(k)
1/2/3 ∼ U [−1; 1],

x(0) = [0.1, 0.1, 0.1]T .

7. RESULTS OF SIMULATIONS

Calculations were performed for every method and plant configurations. Each simulation
was repeated 1000 times, and all signals in the system were different for each simulation.
Simulations with PF and EKPF methods were performed with different numbers of particles.
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Standard deviations were calculated based on the theory from [6], i.e. the variance of the
mean value is m times smaller than the variance from m samples, for Gaussian PDF.

The quality index aRMSE has been used, which is given by equations:

MSEi =
1

M

M
∑

k=1

(

x̂
(k)
i − x

+(k)
i

)

, (12)

RMSEi =
√

MSEi, (13)

aRMSE =
1

Nx

Nx
∑

i=1

RMSEi , (14)

where M is the length of the simulation, Nx is the number of state variables, x̂(k)
i and x

+(k)
i

are estimated real values of the i-th state variable, respectively, at the k-th time step.
Quality indices of each methods for Ob1, Ob2 and Ob3 have been presented in Figures

1-3. Standard deviations with 95% probability round-trip (according to 68-95-99.7 rule) have
been presented in the graphs.

Fig. 1. Values of aRMSE for Ob1; the result for EKF has been presented as two times smaller (for
better readability)

8. CONCLUSIONS

Based on the simulation results, one can see that EKPF usually provides better estimation
quality (for plants Ob2 and Ob3); however, in system Ob1 this relation is not met. It is
caused by highly nonlinear transition and measurement models of this plant, and as it was
mentioned, for such systems EKF methods can not be used. Additionally, KF methods have
access to history only as the state vector from the previous time step (while PF methods, based
on the Bayes rule, contain whole history) – this is insufficient for the plant with quadratic
measurement function. Hence, EKF has the worst estimation quality, and EKPF method is
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Fig. 2. Values of aRMSE for Ob2

Fig. 3. Values of aRMSE for Ob3

worse than PF (drawing particles, in the prediction step, from the PDF based on EKF mean
and covariance deteriorates estimation quality).

For higher number of particles values of quality index is similar for PF and EKPF meth-
ods, which confirms that EKPF usage makes sense only for low particles number (because
additional calculations extend computation time).

In the future, the authors plan to deepen studies related to hybrid filters, which combine PF
and KF methods, such as Mixed Kalman Particle Filter or Iterated Extended Kalman Particle
Filter, which have been mentioned in the introduction.
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ABSTRACT

In this paper, three state estimation algorithms, namely: Extended Kalman Filter, Particle Filter (Boot-
strap Filter) and Extended Kalman Particle Filter, have been presented. Particle Filter and Extended
Kalman Particle Filter algorithms have been compared with a different number of particles and the re-
sults have been presented together with Extended Kalman Filter. Estimation quality has been checked
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for three nonlinear objects (one- and multidimensional systems) and evaluated through the aRMSE

quality index value. Based on the obtained results it was concluded that Extended Kalman Particle Fil-
ter provide better estimation quality for low number of particles in comparison to simple particle filter.
However it is not met for highly nonlinear system.

PORÓWNANIE ALGORYTMÓW FILTRU CZĄSTECZKOWEGO I ROZSZERZONEGO
CZĄSTECZKOWEGO FILTRU KALMANA

STRESZCZENIE

W pracy zostały zaprezentowane trzy algorytmy estymacji – rozszerzony filtr Kalmana, filtr cząstecz-
kowy (algorytm Bootstrap) i rozszerzony cząsteczkowy filtr Kalmana. Algorytmy filtru cząsteczkowego
i rozszerzonego cząsteczkowego filtru Kalmana zostały porównane dla różnej liczby cząsteczek,
a wyniki zestawione z wynikami działania rozszerzonego filtru Kalmana. Jakość estymacji została
sprawdzona dla trzech nieliniowych obiektów (systemy jedno- i wielowymiarowe) i oceniona za po-
mocą wskaźnika jakości aRMSE. Na podstawie otrzymanych wyników stwierdzono, że rozsze-
rzony cząsteczkowy filtr Kalmana zapewnia lepszą jakość estymacji dla niewielkiej liczby cząsteczek
w porównaniu do zwykłego filtru cząsteczkowego. Jednakże nie jest to spełnione dla silnie nieliniowe-
go obiektu.
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