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PANELS LIMIT STATES
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1. Introduction

Typical unreinforced masonry structures are made by joining bricks with mortar [2, 6, 9].
The effective properties of elasticity and plasticity in macroscopic models are determined by
brick layout, as well as the mechanical parameters of bricks and mortar [9]. Experiments
carried out on brickwork panels confirm that before reaching failure state the wall elements
treated as a whole present features of elastic anisotropy (in particular orthotropy) [11, 12]. On
the other hand, failure state is usually determined by a brittle cracking of bed joints in a
tension mode [5]. In general brick cracking and crushing in so called compression mode
occurs only in exceptional cases [2]. As a consequence of these observations it is clear that in
macroscopic modeling in the elastic range the orthotropic generalized Hooke’s relationship is
needed [8]. Also transition to the limit state of the brickwork is determined with pressure
insensitive (understood as a dependence on the trace of the stress tensor) or pressure sensitive
orthotropic yield conditions like Hill’s in first case and Hoffmann’s [6] in the second one.

Studies carried out in this chapter are connected with analysis of the failure mechanisms
in relatively thin (modeled with plane stress assumption) masonry panels, subjected to the
biaxial stress state, taking into account an angle between bed joint plane and loading axis
(principal stress directions). The so called micro-modeling approach is used, meaning that
each component of masonry wall can be distinguished (for wider view on different modeling
strategies see [8]).The bricks are modeled with linear elasticity constitutive model for
isotropic materials, whilst to model the interface (mortar) the cohesive elements [3], with
elasto-plasticity constitutive relationship that allows to describe fracture and post-critical
weakening, are used (see [5]).

As a background for presentation of obtained numerical results the original research
carried out by Page in the 80’s is used [13, 14]. The results of numerical tests on Page’s
masonry panels, modeled using ABAQUS software and constitutive relations shown in
section 2, are presented in section 3. Having results of Page’s experimental tests [13, 14] it is
possible to evaluate the applied numerical approach and to specify the limits of its
applicability. The general conclusion from these analysis is that in cases where the panels are
compressed in one direction (without tensioning in perpendicular direction) there is no
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strength limitation in a constitutive modelling of constituent materials. The first step in the
problem solution is a proposition of the yield condition for the brick material. Having in mind
that brick-panels are modeled with plane stress assumption even the Huber-Mises yield
condition can be applied after adjusting to the proper experimental tests. Such condition give
a limitation for stresses in compression mode, but its limitations in tension mode (obviously
too high compared to the real material properties) are not going to be met because the tension
condition in mortar will have been activated long before. Such supplemented constitutive
model is applied for the solution of the brick-wall crushing test presented in section 4 proving
its usefulness. ’

It is worth to underline here that this chapter is an extended and rewritten version of the
conference paper [7]. So the numerical solutions of biaxial compression-tension tests in a
more detailed form are presented here again. The new and original part of this chapter is a
presentation of the simple recipe to solve one of the main disadvantages of the modeling
approach presented in [7]. This disadvantage was identified in a problems where brick-panels
are under compression, in such cases there is no failure criteria in the constitutive model to
limit compression strength of a brick-panel.

2. Constitutive modelling of heterogeneous masonry structures

2.1. Constitutive model for bricks

To describe the elastic behavior of bricks the linear Hooke’s relationship for isotropic
materials is assumed:

vE

E
G=m(ﬁ'€)l+—8, (21)

(1+v)

where 6 and ¢ are respectively stress and strain symmetrical second order tensors, I is an
identity second order tensor and ,,tr” is a tensor trace operator.

2.2. Constitutive model of an interface

Before the failure occur, interface material (mortar) is working as a linear elastic material,
with the constitutive relationship between the interface stress vector t (t=on, where n is a

normal to the interface plane vector, and ¢ is a stress tensor outside the interface) and strain
vector £ in the following form:

t=Ke—>=K_£,6 whereij=ngs;t 2.2)

where K is a second order tensor describing interface stiffness. The indexes for K
components can be interpreted according to Fig.2.1. In the relationship “n” stands for the
direction normal to the interface plane and “t”, “s” describe two directions perpendicular to
each other and laying in the interface plane. The relationship in the form (2.2) allows taking
into account an anisotropic elastic properties of the interface for tension/compression and

shearing modes of deformations. In (2.2) £ is a nominal strain vector, with components
defined like below:

£ =—. (2.3)

In (2.3), &, are interpreted as the displacements in interface, and T, is the interface initial
thickness.
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Figure 2.1. Local coordinate system in cohesive  Figure 2.2. Degradation of the interface stiffness
elements. after failure initiation.

There is a range of deformation when the interface is working as linearly-elastic, cf.
Fig.2.2, but after crossing a failure criterion expressed in terms of stresses or strains the
stiffness of the joint is decreasing and finally becomes equal to zero. When the joint stiffness
is zero the permanent deformations occur. As a failure criterion the following condition in the
form of quadratic function with respect to the stress vector components may be assumed:

F(s)=[ &2 ) () <
R W 1 ;)T 2.4)

t, t 20
<t">={0, t, <0’

As it is clear from the lower (2.4) formula the condition is not sensitive to pure compression
in “n” direction. Similar condition to (2.4) can be written in the strain vector space as well, cf.
[7). In the numerical tests presented below, the failure criterion depending on stresses in the
form (2.4) is applied. In (2.4) the three interface stress vector components are present, while

¢ are maximum values of these vector components, determined in the uniaxial tension test

and shearing tests conducted in two perpendicular directions (Fig.2.1). In the presented model
(cf.[1]) the real stress vector components are derived with the following equations:

t,=(1-D)(z,),
t,=(1-D)7, (2.5)
1, =(1-D)1,

where 7 are stress vector components derived from (2.2) with the assumption that the failure

condition is not met. A scalar parameter D (degradation) depends linearly or exponentially
on maximum strains achieved in the interface. Aforementioned linear relationship can be

written in the following form:
51 (o7 -5 .
o (s]-82) '

while exponential one is quite more complicated and can be found in [7]. In expression (2.6)
parameter 0, is defined as

5, =\(8,) +62+5; @.7)
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Graphical interpretation of the &/ and 5° parameters can be found in Fig.2.2. The

parameter J,; describes maximum value of the displacement in the interface during the )
entire loading history and §7 €[67,5/]. As aresult D parameter is modified for 8, >0y it
is constant during material unloading and its value is always from the interval: D €[0,1] (if
D=0 there is no degradation of elastic properties, if D=1 there is no interface stiffness,
interpreted as full degradation). A detailed description of this model can be found, among
others, at [3].
3. Numerical tests — masonry panels biaxial tension/compression tests
3.1. Material data
Material parameters in constitutive relationships presented in section 2 for both brick and Fi
mortar were assumed as in works [9, 11, 13], therefore the comparison of numerical test 't
results with results of Page’s studies can only be analyzed on the qualitative level. Summary
of all material data is given in Tab.3.1.
Table 3.1.  Material properties for bricks and mortar interface. 4a)
anc
Bricks Interface anc
£ v K., K, L ™ 5 e
[N/mm’] [N/mm’] | [Nfmm’] | [Nfmm?] | [N/mm?] | [mm] bia
20000 0.15 2000 890 0.5 0.75 0.08 uni
the
In the case of adopted cohesive elements a simplified constitutive relationship is applied - fl? ¢
in (2.3) the only non-zero components are present on the diagonal. It should also be noted that ©
the constitutive relationship described in section 2.2 for the interface does not include material ;ﬁl !
damage as a result of compression, but still it is highly non-linear [15]. o fe]
3.2. Models for numerical tests ga:;]]
To resemble the experimental tests presented in works [4, 14, 15] the four FEM models cha
of square panels were created, measuring 665 x 665 mm, with directions of bed joints (global
principal orthotrophy directions) inclined to x axis with 0.0°, 22.5°, 45° and 67.5° angle mo
respectively, cf. Fig.3.2. The brickwork layout and dimensions of bricks, joints and panels are elel
adopted analogous to those presented in Page’s work [14]. cot
sho
67.
69(
45°¢
72
the
aut
gen
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Figure3.1. Masonry test panels: a) displacement and stress type boundary conditions, b) bed joints
orientation with respect to x axis.

In every analyzed case on two edges perpendicular to each other (e.g. AD and CD, Fig.
4a) the zero displacement boundary conditions were assumed, while in nodes laying on AB
and BC edges (boundaries) the displacement were assumed realizing compression/tension in x
and y direction respectively. For each boundary condition configuration four numerical tests
were performed on each panel using finite element system ABAQUS [1].

The main objective of the work presented here was to determine the limit surface for
biaxial compression-tension tests considering different orientation of the bed joints. The
uniaxial strain test was conducted first, by controlling the vertical displacement in nodes of
the upper AB edge of the panel, and blocking the horizontal displacements of the nodes on
edges AD and BC. Numerical solution of the following tasks was divided into two steps-in
the first one the displacements in direction x (on edge BC) were applied, resulting in a
uniaxial strain compression. In the first step of analysis, (in most cases) all the components of
the panel worked within elasticity range. In the second step, the displacements in y direction
of the nodes of the upper edge of the panel were forced, causing tension and eventually the
failure of the panel. In subsequent tests, in the nodes on the BC edge the values of
displacements in the x direction were increased to: 0.05, 0.10, and 0.15 [mm] respectively,
changing the values of effective (average) horizontal stresses.

All the results presented below were calculated for 2D models in plane stress case. To
model the bricks the CPS4R and CPS3R elements were used (four or three node, bilinear
elements with reduced integration). In case of mortar modeling the 2D, four node, linear,
cohesive elements (COH2D4) were applied. In Fig. 3.1 the FEM meshes are presented
showing different orientation of the bed joints direction (a - 0.0°, b - 22.5°, ¢ - 45° and d -
67.5°) with respect to the x axis. In first case mesh consist of 4067 elements CPS4R type and
690 elements COH2D4 type, for 22.5° - 4118 CPS4R, 742 COH2D4 and 108 CPS3, for
45°:4185CPS4R, 734COH2D4 and 126 CPS3, and for 67.5°: 4100 CPS4R, 743 COH2D4 and
72 CPS3 elements. In general the bed joints are modeled with one cohesive element through
the thickness of a joint, and brick is modeled with about 7 elements through its thickness. The

automatic mesh generator was applied, so in some cases also three node elements were
generated.
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Figure 3.2. FEM meshes with global coordinate system generated for different value of 8 angle.
3.3. Analysis of numerical test results
Table 3.2 summarizes the results of brickwork compression/tension load capacity tests.
For each assumed displacement value u_ leading to compression in x direction the sum of
respective reaction forces in corresponding nodes was read, based on which the average
effective compressive stress o,, was calculated. On the other hand, the stress component o,
is the average value of maximal tensile stress that the panel carries, and was calculated as the Fig
sum of reaction forces of nodes with boundary conditions u, applied, divided by the initial
cross-section area.
Based on the tests results the failure surface was created, wherein the additional axis
indicates the angle of rotation of the bed joints of the panel in relation to the direction of the
principal stresses (compressive force direction) (see [13, 14]).
Values in bold denote the average normal stress in the y direction interpreted as average
yield strength, while o, is the value of the average normal stress in the x direction, which
appears after applying the initial displacement u, . In case of compressive loading at an angle
of 0.0° or 90.0° the failure of the panels did never occur, due to adopted constitutive
relationships, which do not allow for the occurrence of a compressive failure.
Fig:
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Table 3.2. Ultimate stresses in compression-tension tests.
0.0° 22.5° 45.0° 67.5° 90.0°

: 4 Jloul | o | oud | 0w [oud | oy | loul | o | Joul | o,
[mm] [N/mm’]

0.00 | 0 0485 | 0 (0515 0 |0.659'| O |0.794%] o0 |1.178
-0.05 | 1.041 | 0.476 | 0.860 | 0.466 |0.682 | 0.761 | 0.644 | 0.808 | 0.704 | 1.189
-0.10 | 2.082 | 0.455 | 1.698 | 0.272 |1.314|0.137"| 1.288 | 0.616 | 1.408 | 1.187
-0.1513.123 | 0425 | 1.797 | ~0 (1317 ~0 |1.851| ~0 | 2.113 | 1.184

The main result of conducted numerical tests is presented in Fig. 3.3, as a graphical
representation of Tab.3.2. The graph shows the dependence of the in-plane masonry panel
i failure surface on the angle of the load applied. It is a 3D surface for compression/tension
tests obtained anmalogically to that presented in Page [13, 14] for biaxial

compression/compression or compression/tension experimental tests. It is clearly visible that
the nature of the resulting surface (with the accuracy to the adopted constitutive relations)
corresponds to the behavior of real masonry panels.
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Figure 3.4.  Panel failure mode for 6=45.0" with: a) no initial compression in x direction (marked

1" in Table 3.2), b) 0.1 mm initial compression in x direction (marked "ii"). The
quantity QUADSCRT is interpreted as F(1,), see equation (2.4).
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Figure3.5. Panel failure mode for: a) 6 =22.5° (marked "iii" in table 3.2), b) 6=67.5° panel ("iv").
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Figure3.6. Comparison of stress-strain relationship for different panels in tests with no initial
compression (o, = 0).

The failure mode of the brickwork panels (in case of §=45.0°) is presented in Fig. 3.4.
The contour graph shows the value of the left side of the failure condition (2.4) in the
cohesive elements. Fig. 3.4a shows the failure mode for the tensile test with no initial
compression in the x direction applied, whereas in the test the result of which is shown in Fig.
3.4b the value of initially forced displacement u_ was greater than 0. In the latter case slip

occurred alongside bed joint in which initial compression caused shear stress of maximal
value. Both cases show that failure mode in such masonry panel is dependent not only on the
geometry (bricks layout) or the direction of the tensile load, but also on the occurrence of
shear stresses in interface (mortar).

In Fig. 3.5 the comparison of failure modes of the panels with 8 =22.5°and 8=67.5°
with no initial compression is shown. Finally, Fig. 3.6 shows a comparison of functions of
averaged stress versus strain for various values of the 6 angle of the tensile tests in the ¥
direction with no compressive stresses in the x direction. In the case of significant angle value
in between the bed joint and the x direction (in Fig. 3.4a, 8=67.5° and 6=90.0°) the
phenomenon of sudden change in the effective stiffness of the panel, due to the faster failure
of head joints under tension than shearing failure of the bed joints, can be observed. From the
theory of plasticity point of view the observed phenomenon can be interpreted as so called
stress redistribution in the brickwork element [10].
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4. Modification of constitutive model for bricks

As it was mentioned above. modeling of the brick material as an elastic one only, in some
loading cases, may lead to misinterpretations, as the constitutive model for cohesive interface
presented in subsection 2.2 does not consider compressive failure in the material. To
overcome this, a simple plasticity criterion was taken into account when modeling brickwork
behavior in.

Of course the yield condition for a brittle cracking materials (like brick) should depend
on the first stress invariant (average pressure). for example Coulomb-Mohr (CM) or Drucker-
Prager criteria, cf. [10, 11]. Still it is proposed to use Huber-Mises-Hencky yield criterion
(insensitive to first stress invariant) due to its simplicity and because, when reduced to the 2D
model (plane stress case), H-M-H criterion can be matched with CM criterion with respect to
biaxial and uniaxial compressive strength of the material, cf. Fig. 4.1a. The HMH yield
function can be written in the following form [10]:

f'(o.E”') =f(o)~0o, (E”’). (4.1

where o (g ) (of course o,(0)=0,) is a stress function in the uniaxial

(tension/compression) test and £/ is an equivalent plastic strain. By defining the function
rr,,(E # ) it is possible to characterize isotropic strain hardening/softening of the material.

Such function can be determined on the basis of the uniaxial tension/compression test which
exemplary results for a typical quasi-brittle material are presented in Fig. 4.1b. The H-M-H

plastic flow potential have the form
. [2
/(0’)= ES.S. (42)

where s is the deviator of stress tensor (s=0—(tro)I/3) and the operator in between
deviators denoted with *dot™ is a full contraction operator.

a) b)
o

G 100

€

00 0.002 0.004 006

Figure 4.1. a) Comparison of H-M-H with Coulomb-Mohr surface in o, =0 planc, b) stress- strain
relationship for the modified brick material.
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4.1. Panels biaxial tension/compression tests taking into account plasticity for bricks

After the addition of plasticity to brick material constitutive relation, the numerical tests, m
corresponding to cases where compression was significant, were updated. In the first attempt
the compressive strength of brick was set to o,,, =20 MPa whilst the initiation of plastic flow 4.
was taking place around o,=10 MPa. Such assumption is closer to the real brick material
behavior, but the overall strength of the masonry wall would be overestimated. In order to m
obtain the ultimate load values closer to Page's work, the stress - strain relationship in the pr
brick material was taken as it is shown in Fig 4.1, with o, =10 MPa compressive strength bt
and o,=5 MPa beginning of yield. However, even with reduced strength of brick material, ll::
the inclusion of plasticity did not influence most of the results of previous tests - compressive D
displacement larger than 0.15 mm was required to reach the limit value of 5 MPa in any of the th
bricks, and in panels 22.5° 45.0° and 67.5° such displacement caused failure of mortar &
interface. The results of updated tests for panels 0.0° and 90.0° are presented below for both
cases of brick compressive strength, cf. Tab 4.1 and Fig. 4.2.
Table 4.1.  Ultimate stresses in compression-tension tests taking into account plasticity in bricks
modelling.
o, =5[N'mn’], o =10{N/mm’] o, =10[N/mm’], o, =20{N/mm']
0.0¢ 90.0° 0.0° 90.0°
U_\ |O-“" | G” IO.H I Q“ IO'“,I arl IGL\ I a'r:
[”"”] [:M"""":]
-0.50 5.381 0.421 4.843 1.020 8.97 0.335 6.99 1.14 Fi
-1.00 7.044 | 0.435 6.855 0.949 12.59 0.261 11.37 0.949
-1.50 8.053 0.441 9.225 ~0 - - - -
-2.00 9.662 ~0 - - 16.59 0.269 16.55 0.529
-3.00 - - - - 1700 | ~0 1700 | ~0 |
AQ,
1 tt
HHE — T T
JIHHHHE ' : Had
—t= MM - M : :\
T HHHHI : PN
ERRRE! TN : \
! ; : 1 lol
) N zfo TR >
1 ] E 50 70 9.0 .
ATRLY! ) i N s o Fiy
i 4 1
—T 1 8 =
e — ! =Ny 4
L - : e ey —y
llljl 'i-——‘g'; - =22,5° : .,.\
I o e e : : ot sui
IRRRRE] 4 50 7.0 9.0 0o gr:
fol
Figure 4.2.  Updatcd failure surface for the biaxial compression/tension (plasticity characteristic :0(‘
values o, =5 [N/mm’], &, =10 [N/mm?]). (?:
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Fig 4.3 shows the updated failure surface for the first case of the strength of brick
material (10 MPa strength).

4.2. Masonry wall crushing test

Using brick material constitutive relation that supports compressive failure the test of
masonry wall crushing was carried out. Isotropic hardening parameters were taken as in
previous point (Fig 4.1b) with 10 MPa compressive strength. The wall is 8 bricks wide, 9
bricks high, made from the same elements as the analyzed panels and with the same bricks
layout. The boundary conditions assumed for the model can be seen in Fig 4.4. Along the
boundary AF the zero displacement boundary conditions were applied while along AB, BC,
DF, and EF the zero stress boundary conditions are assumed. Loading of the wall is assumed
through displacement boundary conditions on the boundary CD (uniform along CD, vertical
displacement with direction to the wall base is applied).

1,
B C ; D E

A
Figure 4.3. Boundary conditions for the brick-wall crushing test.
02 F
MN]
0.15 o
’ 0.1 //
0.05 /
Uy
0.
(? 15mm 0.25 (004)5 -
=4, Up = mnm =0.4omm
0.00 T 0.20 030 ¥ E B

Figure 4.4. The total reaction force as a function of displacement applied on the CD edge in
masonry wall subjected to compression loading.

Fig 4.4 presents the response of the masonry wall subjected to compression loading (as a
summary reaction to the applied on the CD edge displacement boundary conditions). On that
graph the characteristic values of the absolute displacement on CD boundary, for which the
following contour graph are made, are marked as (a), (b) and (c). Finally Fig 4.5 shows the
contour graphs of Mises stress in the model in three phases of the load (cf. Fig. 4.4). F igures
4.6 and 4.7 show maximal principal plastic strain and interface damage initiation criterion
(2.4) respectively.
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Figure 4.7. Damage initiation criterion when maximal displacement is equal to: a): 0.15 mm, b):
0.25 mm, c): 0.45 mm.

5. Final remarks and general conclusions

The walls of the buildings are designed in a way to reduce the incidence of a locally
significant tensile stresses. The specificity of these structures leads to observations which
indicate that the typical failure mechanism is in most cases initiated in the mortar interface as
a result of shearing and relatively small tension. An approach presented in this chapter for the
formulation of these types of problems, e.g. constitutive modeling of mortar interfaces with
condition for cracks initiation and its further propagation (using also the so-called cohesive
finite elements) and modeling of the bricks as an elastic material, is in most cases sufficient,
cf. the results presented in Section 3. The use of this method of analysis, in the context of
modeling of the experimental tests carried out on the compression/tension of brick panels by
Page, leads to qualitatively correct results in all cases of interface (bed joints) orientation with
respect to the support when an angle differs from #=0.0° and §=90.0°. In these two cases
the constraint on compression should decide about the fracture of the panel, but no such
constraint is included in the model. Accordingly, in Section 4 the extended constitutive model
for bricks, with yield condition limiting the brick compressive strength, is proposed. Because
in modeling of spatial masonry elements the plane stress assumption was adopted, the
simplest possible plasticity yield condition H-M-H was used and its parameters were chosen
so that it complies with uniaxial and biaxial compression. This condition was also modified
by the inclusion of isotropic strain hardening/weakening. In case of bricks the typical brittle
materials relationship between the stress and strain state was assumed (e.g. after crack
initiation a slight hardening takes place, after which constant weakening of the material
occurs, until complete failure). For such re-formulated constitutive model the numerical
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solutions to the problem of panel compression/tension tests for #=0.0° and 8=90.0° were
found again. Thanks to that re-formulated constitutive model, it was possible to determine
limitation for the failure surface shown in Fig. 3.3 in the region of dominant compressive
stresses (see. Fig. 4.2). Such formulated model was successfully used to solve a problem of
compressive crushing of nine-layer brick wall.

However, it seems that further theoretical studies on the constitutive model of interface
between masonry components, that would take into account the restriction of compressive
stress in the mortar layer as well, should be carried out, since, depending on the relative
compression strength of the mortar and brick, the initiation of the failure due to compression
may be present in both elements.
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