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The primary goal of simulation is to predict the course of the process and the final

properties of the product.

CAs expectations regarding the qual-

ity and precision of products continue

to grow, further advances in materials
engineering are strictly associated with
the use of ‘computer assisted computation
methods. Computer modelling and simu-
lations facilitate the design of engineering
materials and predicting the properties of
these materials with significant reduction
in time and costs. Thus, the literature
contains numerous reports on the subject
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(1-11). Computational support is particu-
larly required in vacuum thermochemical
processing due to its non-equilibrial nature
and transient states in the course of the
processes. In this case, the primary goal

of simulation is to predict the course of
the process and the final properties of the
product, thus ensuring the repeatability of
process outcomes. The vacuum carburizing
model presented in this article is a classic
example of a hybrid model, in which:

* basic phenomena of carburizing low-
and medium-carbon steels are described
by an analytical mathematical-physical
model;

* parameters such as carbon diffusion
coefficient D and carbon transfer coef-
ficient 3 were determined by analysis of
variance and multiple regression on the
basis of experimental data sets;

* phenomena that could not be described
by mathematical equations or for which



no mathematical apparatus was avail-

able were processed by means of data-
mining using neural networks;

* phenomena of formation and dissolu-
tion of carbon deposits were described
by a heuristic model;

material data regarding steels were
collected in a database to eliminate re-
dundant processes and accelerate model
operation.

A MATHEMATICAL-PHYSICAL
MODEL OF THE VACUUM CARBU-
RIZING PROCESS

The mathematical-physical model of the
vacuum carburizing process is based on
six principles defined by the authors of
references [12-14]:

» Carburizing atmosphere in the satura-
tion stage is delivered to the sample
surface in a continuous manner.

» Composition of carburizing atmosphere
remains constant throughout the pro-
cess.

» Carbon atoms are released as a result of
catalytic interaction between the atmo-
sphere and the carburized surface.

» Carbon is transported to the material by
means of diffusion in accordance with
Fick’s equations.

» Carbon diffusion coefficient in austenite
depends on the temperature, carbon
concentration and the presence of alloy
additives.

» Computations are based on a semi-
infinite area.

The development of carbon profiles in
austenite depends both on the phenom-
cna occurring at the gas-metal interface,
and on the diffusion of carbon in austen-
ite. Phenomena occurring at the gas-
metal interface that determine the rate
in which carbon concentration changes
at the surface, including the most impor-
tant catalytic interactions between the
carburizing atmosphere, are reflected in
the mathematical model by atomic carbon
flux I, crossing the interface:

e = =B [eca = (c@),],

where: I — flux of carbon atoms across
the surface of carburized material, ¢, —
concentration of carbon at equilibrium
with the carburizing atmosphere,(¢(t))
,~ current concentration of carbon at the
material surface, 3 — coefficient of carbon
transport across the gas-metal interface.
Carbon transport in austenite has been
described on the basis of Fick’s diffusion
laws. The first law described the flux of
the diffusing component:

Ic = —Dc - gradlc],

where: D, — carbon diffusion coefficient in
austenite; the value depends on the tem-
perature, carbon concentration, and the
content of alloy additives, grad/c/— gradi-
ent of carbon concentration in austenite.
The second law describes the change
in carbon concentration as a function of
time:

= div(grad 1,).

In the case of single-directional diffusion
the above laws can be expressed in the
following manner:

ac]
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The effect of surface phenomena on the
profile of carbon diffusion within austen-
ite is taken into consideration by solving
Fick’s second law at the border condition
resulting from the comparison of equa-
tions (1) and (4):
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Therefore, the problem of determin-
ing the profile of carbon concentrations
within austenite amounts to solving equa-
tion (5) at the border condition (6) and the
initial condition (7):
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COMPUTATIONAL MODEL OF THE
VACUUM CARBURIZING PROCESS

Input computational data included pro-
cess parameters, chemical composition of
the material, carbon carrier gas param-
cters and the geometry of the carburized
surface. Coefficients affecting model
precision are carbon diffusion coefficient
D, activity of carbon in austenite a, car-
bon transfer coefficient § and geometry
coefficient.

Functions describing the relationship
between the carbon diffusion coefficient
DC and temperature or time were pre-
sented in numerous articles [15-24]. The
first studies of the model were based on
the carbon diffusion coefficient formula
proposed by Goldstein [15]. This re-
lationship soon turned out to be insuf-
ficient, and therefore formulas proposed
by Leyens [16], Tibbets [17] and the
empirical equation proposed by Dybowski
in an article dedicated to this issue were
successively used in subsequent studies
[25]. The last equation provided for the
best agreement of the model with actual
profiles within the carburizing process
temperatures of 860- 1010°C.

One of the factors impacting the value
of carbon diffusion coefficient D, is the
activity of carbon within austenite in
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the presence of alloy additives a,, with the
effect of alloy additives on carbon concentra-
tion profile being taken into consideration.
In addition, the cocflicient defining the effect
of alloy additives on the activity of carbon
within austenite a,, allows for the computation
of the maximum solubility of carbon within
austenite, (., at temperature 7 for a particu-
lar material. Therefore, a,, value was included
in the model, making use of the equation
provided in [20].

Experimental data set results were used to
determine the carbon transfer coeflicient f3.
Multiple regression analysis revealed that the
only factor having a statistically significant
impact on the value of the carbon transport
coethicient is temperature, related to the coef-
ficient by equation (8):

f=ae’

where: 3 — carbon transfer coefficient, 7 —
temperature, a,b — coefficients.

For better precision of calculations the
computational model accounted for the effect
of surface geometry on the distribution of
carbon within the carburized layer by intro-
ducing a correction factor pi based on the data
presented in [13]:

(r=(i-H)dx)*"H—(r=(i-1+H)dx)3~H# ]RF

Wi = [(r—(i—1—H)dx)3‘H—(r—(i—2+H)dx)3‘H

where: i — spatial sample of interest in the
Crank-Nicolson method, r — curvature radius,
H, RF — coeflicients listed in Table 1.

COMPUTATION ALGORITHM

The first mathematical algorithm for vacuum
carburizing was by Kotodziejczyk in an article
dedicated to this topic [13]. Model input
parameters include the process, material and
surface gecometry parameters. The material
status is calculated in a matrix consisting of
cells representing spots located within the
material at every 0.01 mm, in time increments
of 0.1 s. Limitations expressed by condition
(10) were set onto the time increment and
computational step to ensure the convergence
and stability of computations. The stability of
partial differential computations means that
errors are not accumulated as the problem is
being solved, while convergence of computa-
tions means that an accurate result is obtained
in the solution.
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Figure 1: Neuron model for predicting the amount of carbide precipitation following the vacuum carburizing

process [29].
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where: D~ carbon diffusion coefficient
calculated for the maximum concentration of
carbon within austenite, Ai— time increment,
Ax— computational step.

Calculations start at the time point t=0
and are continued until the process time
T proc reaches the total time resulting from
the total of segments (steps) defined in input
parameters. The value of the diffusion coef-
ficient during the process depends on sev-
eral factors simultaneously; thus, the equa-
tion describing unidimensional transport of
carbon within austenite becomes non-
linear and impossible to solve analytically.
Therefore, the issue is solved by numerically
using the Crank- Nicolson finite-differences
method [26], as well as the Crout factoriza-
tion and Thomas algorithm.

MODELLING OF FORMATION AND
DISSOLUTION OF CARBIDE PRECIPI-
TATIONS

Carburizing processes carried out above the
limit concentration G, lead to carbide pre-
cipitations. These precipitations are gradu-
ally dissolved in the hold stage; however, the
kinetics of both formation and dissolution
follow individual patterns, strongly related

to the chemical composition of a particu-

lar precipitation. Since the literature lacks
comprehensive information on the kinetics of
the process, the black box data-mining model
was used, as it required no analytical knowl-
edge of the phenomenon of interest. A series

of experimental studies were also conducted
in order to better understand this issue; the
results are presented in publications [27,

28, 29]. A learning data set was developed
on the basis of these results, followed by the
development of a neural network reflecting
the relationships between process parameters
and the properties of the carburized layer,

as was also described in detail in the above
papers. When choosing the network architec-
ture it was assumed that the network should
be extrapolative, i.e. it should possibly cor-
rectly predict cases beyond the learning set.
This assumption prevailed in the choice of
the Multi Layer Perceptron (MLP) networks
due to their capabilities in this respect [30].

Carburizing process parameters were de-
fined as network input parameters, including
carburizing temperature 7 ,, segmentation
and chemical composition of the mate-
rial: concentrations of carbon C, silicone
Si, manganese Mn, chromium Cr, nickel N,
aluminum A/, copper Cu; as well as the point
of consideration X within the material. The
output network signals represented the prop-
erties of the carburized layer: surface carbon
concentration, (; carbon concentration at
distance X from the surface, Cy; as well as the
percentage content of carbides at distance X
from the surface, MeC.

The search for the best network was start-
ed by selecting 2,000 networks with random
numbers of hidden neurons and random
activation functions. Next, each network was
subjected to training to assess its correlations
between predicted values and the actual
learning sets. The training process made use
of back-error propagation methods, including
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Figure 2: Hybrid vacuum carburizing model (SimVac Plus). Carburizing module. bearing rings, levers, etc. The presented
vacuum carburizing models, along with
a momentum factor, the Broyden-Fletcher- neurons, 10 hidden neurons and 3 output the gas hardening model, were included in
Goldfarb-Shanno (BFGS) method and neurons, sigmoid hidden neuron activation the expert system (Fig. 2) that supports the
gradient methods to identify the best learning  function, exponential output neuron activa- technology.

method for each particular network. The sum  tion function and the BFGS training method.
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project is conducted in the framework of a
pilot venture “Support research and develop-
ment on a demonstration scale”.
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Geometry Curvature H RF
Flat — — 0
o Outer 1 1

Cylindrical Inner I X

. Outer 0 1
Spherical Tanor 0 |

Table 1: Values of H and RF for different geometries and curvatures of elements [13].
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