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Context and Animacy Play a Role in
Dynamic Decision-Making

Magda Osman*, Alexandros Ananiadis-Basias™*

Abstract

Perception, judgment, and reasoning are all processes that are sensitive to cues
to animacy (i.e. the presence of signals that indicate an object behaves as if it has
intentions and internal goals). The present study investigated the following question:
Does animacy facilitate decision-making in a dynamic control system? To address
this, the present study used a dynamic decision-making task and compared behavior
in four different contexts (Abstract, Animate-Social, Inanimate-Social, Inanimate-
Non-social). Participants were randomly allocated to one of these contexts, and in
each version they were required to learn to manipulate variables in order to bring the
dynamic system to a desirable state and maintain it at that level. The findings suggest
that it is not animacy per se that facilitates decision-making behavior, but rather the
presence of a context. However, animacy made an impact on the type of strategic
behavior implemented when interacting with the dynamic system. We argue that
context induces general beliefs about causal relationships in dynamic environments
that generalize across animate as well as inanimate contexts.
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Introduction

There are a host of cognitive functions that suggest that we are highly
sensitive to cues that imply animacy. As well as spatial and temporal features,
one of the most reliable cues to infer animacy is whether or not an object
behaves in a dynamic manner (Falmier & Young, 2008; Scholl & Tremoulet,
2000). That is to say, if the object moves in a co-ordinated way that we
recognize as purposeful, then we are likely to infer that it is animate. What
this means is that objects that display actions implying intentionality, and
can therefore be interpreted as goal directed, are in turn highly salient to us
(Goa, Newman, & Scholl, 2009). Some scientists have even suggested that
the reason for this apparent bias is because we have “social brain” (Adophs,
2003; Gobbini, Koralek, Bryan, Montgomery, & Haxby, 2007) which is highly
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tuned to particular properties in the environment that display social-causal
interactions. In fact, social contexts help consolidate complex information
for the same reason that animacy does, and this is because these types of
contexts can be interpreted as goal directed situations (Shafto, Goodman
& Frank, 2011). Therefore, there are many arguments for suggesting that
animacy is an important feature of objects which may even facilitate basic
cognitive functions.

Perception studies suggest that we infer animacy in the movements of
geometric objects (e.g. circle A moving in the same path as circle B), because
the movements imply causal interactions that have a social element (e.g. circle
A “chasing” another circle B) (Gao, Newman, & Scholl, 2009; Schlottmann,
Ray, Mitchell, & Demetriou, 2006). As well as perception, studies examining
memory retrieval (Fernandes, & Moscovitch, 2002; Traxler, Williams, Blozis,
& Morris, 2005) and lexical decision-making (for some languages) (Gennari,
Mirkovi¢, & MacDonald, 2012; Mak, Vonk, & Schriefers, 2002) show that if
the stimuli are judged to be animate (i.e. living vs. non-living things) then
they facilitate performance. In addition, investigations of causal reasoning
have explored the facilitative effects of animacy on induction in children
(Frankenhuis, House, Barrett, & Johnson, 2013) and adults (Zhou, Huang,
Jin, Liang, Shui, & Shen, 2012). These studies also suggest that there is
a reliable improvement in accuracy when inferences are made based on the
presentation of stimuli that imply animacy.

Clearly, there is strong support for a view that the perceived animacy
of objects has a facilitative effect on various cognitive processes (Scholl
& Tremoulet, 2000). More specifically, a stronger inference may be that
cues to animacy play an important role in our cognition because they carry
valuable causal information about the relational properties between objects
we observe in the world (Falmier & Young, 2008). If we can understand the
causal relationship between objects, this in turn would be useful when it
comes to predicting and controlling objects in the world (Osman, 2010). One
area in which this issue is particularly salient is in complex dynamic control
situations. Researchers that are concerned with these contexts have focused
on the kinds of decision making processes that are required to interact with
and control outcomes in them (i.e. Dynamic Decision Making research).
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Dynamic decision making

Dynamic decision-making environments are microworlds that simulate real
life situations in which a complex dynamic system can change as a direct
result of an individual’s actions upon it, a change can occur independently of
the individual’s actions (i.e. autonomously) or as a result of a combination of
the two, (e.g. a pilot flying an aircraft). More to the point, dynamic decision-
making (DDM) is the process by which people manipulate input variables in
such a way as to reach and maintain a desirable change in an output variable.
Crucially, the underlying relationship between inputs and outputs in the
system that the decision-maker interacts with is dynamic (Osman, 2010). For
instance, take a simple context such as changing the value on the thermostat
of your radiator to maintain a warm temperature in your living room. The
room may warm up more or less quickly depending on how old the heating
system is, and where in the world you are (e.g., winter in Finland), as a result
you might be required to regulate (i.e. control) the value on the thermostat
as times goes on. Typically, in DDM tasks participants start with a context
(e.g., heating the home) and are then given a goal (e.g., learn to regulate the
temperature of the sitting room to 18 degrees). They are then tested on their
ability to adapt their knowledge to new goals (e.g., regulate the temperature
to 12 degrees).

For many, the appeal of this research domain is because of its high
validity, because many real world decision-making problems are dynamic
and complex (e.g., Berry & Broadbent, 1984; Mathews, Tall, Lane, & Sun,
2011; Osman, 2010; Selten, Pittnauer, & Hohnisch, 2011). The contexts used
in this research field range from controlling a water purification plant (Burns
& Vollemeyer, 2002), an ecosystem (Vollemeyer, Burns & Holyoak, 1997),
water pump (Gonzalez, 2005), sugar factory (Berry & Broadbent, 1984),
military management (Mathews et al, 2011), to a patient’s health (Osman
& Speekenbrink, 2012). However, to the authors’ knowledge, there have
been no dedicated studies that have compared decision-making behavior
across different contexts, in order to uncover the types of contexts that would
facilitate decision-making behavior in complex dynamic systems.

Moreover, it may in fact be the case that the animacy of the system is
a key factor that facilitates DDM. If the system is perceived as animate, then
people may infer that the system is goal- directed, and therefore, this may
facilitate causal reasoning that in turn leads to improved DDM (Hagmayer,
Meder, Osman, Mangold, & Lagnado, 2010). Furthermore, examining the
impact of the animacy on decision-making has practical implications. If
a complex dynamic system is perceived to be animate, and in turn it is shown
to facilitate DDM, then automated control systems could be couched more
obviously in ways that could invoke perceptions of animacy.
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Present study

Given that there is convergence across many different areas of cognitive
research in suggesting a special status for animacy in cognition, we predict
that decision-making performance should be more accurate for animate
compared to inanimate dynamic systems. If the effect of animacy is strong,
then we might expect an advantage in decision-making performance when
compared with Inanimate contexts (Social, and Non-social). Therefore in
the present study, we compared DDM performance in an Animate-Social
Context, with an Inanimate-Social Context, Inanimate-Non-Social Context,
and a baseline No Context version of our DDM task.

Methods

Participants: Eighty-eight graduate and undergraduate students from
University College London and Queen Mary University of London volunteered
to participate in the experiment for reimbursement of £6 ($9.18) (Mean age
23, SD 7.5). There were four conditions: Abstract [baseline] (n =22, F = 15),
Animate-Social (n = 22, F = 10), Inanimate-Social (n =22, F = 16), Inanimate-
Non-social (n=22, F= 12). All participants were tested individually. For each
condition, participants were randomly allocated, so that half performed tests
in the test phase in the order of Control Test 1 then Control Test 2, and the
remaining half performed Control Test 2 first, then Control Test 1.

Design: The study included four different contexts (Abstract, Animate-
Social, Inanimate-Social, Inanimate-Non-social). But with this exception,
all other aspects of the task were identical in all four conditions. We chose
a non-linear system to examine participants’ ability to make decisions in this
task. Our rational was that if non-linear tasks are difficult to perform (Lipshitz
& Strauss, 1997) for the reason that the type of structure of the system is hard
to learn, then facilitation via context should be easier to detect in measure of
performance when compared to an abstract version of the task. The structure
of the task consisted of three inputs and one output (see Equation 1).

y(t+1) = 1/(1+exp(-1*(y(t) - 30 + 6* |6 - x1(t)| + 5*|4 - x2(t)| + e(t)))
(1)

There were two inputs (x1, x2 as referred in the equation below)
which had a direct effect on the output value when they were manipulated
individually. The third input had no direct effect on the output (y(t)), hereafter
referred to as Null input. In other words, a value selected by the participant
for the third input had no direct consequence on the output value. Instead,
the null input simply revealed the noise term in the equation (e (t)) below;
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the value of which was selected from a normal distribution with a zero mean
and a standard deviation of 4. Participants were naive to the underlying
relationship between the inputs and the output, which can be described in
the following equation, in which y (t+1) is the output value on the next trial.
Each input parameter ranged from 0-10. The system was designed in such
a way that in order to successfully manage the state of the system to the
specific target goal, the optimal manipulation of the inputs required that for
Input 1 values should be selected from a range between 4 and 8, and for
Input 2, values from a range between 3 and 7 should be selected.

The general instruction to participants was that they would have a chance
to play a game on the computer in which they had to learn to control a system
by deciding what things to change from trial to trial. They were also informed
that they would later be tested on their ability to control the system after
they became familiar with it. Figure 1 presents screenshots of a typical trial
as experienced by a participant in the Inanimate-Social version (the picture
in the top right of each screen shot differed according to what condition
participants were in). The task was performed on a desktop computer, using
custom software written in C# for the .NET framework. The task consisted
of a total of 172 trials, divided into two phases. The learning phase involved
60 learning trials and the test phase included two control tests each 40 trials
long, and two prediction tests each of which waw 16 trials long. During
learning participants were required to achieve and maintain a target value
consistently across all 60 trials, and in each control test participants were
presented with a target value to reach and maintain throughout the course
of each test.
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Figure 1. Sequence of actions in a single trial in the task

Materials: Abstract (Baseline version): The cover story for the abstract
version did not contain any context. The inputs were simply labelled as A (i.e.
Input 1) (0-10), B (i.e. Input 2) (0-10), and C (i.e. Input 3) (0-10), and the
output was referred to as variable X (0-100). Participants were instructed to
manipulate the inputs in order to control the output value to a specific level.
Animate-Social Context: The cover story was set within a forensic context.
Participants were told to imagine they were part of a forensic team, and
that they had to interact with a policeman (animate) by varying three types
of non-verbal behavior: Hand Gestures (i.e. Input 1) (Hand) — the amount
of hand gesturing ranged from 0 (no hand gesturing) to 10 (constant hand
gesturing), Eye Contact (i.e. Input 2) (Eye) — the amount of eye contact ranged
from 0 (no eye contact) to 10 (constant eye contact), Smiling (i.e. Input 3)
(Smile) — the amount of smiling ranged from 0 (no smiling) to 10 (constant
smiling). Based on the data that the policeman received (i.e. the levels of
Eye Contact, Smiling, and Hand Gestures on each trial) they would then give
a rating of suspiciousness, which would be presented as a Suspicion value
on the progress screen (i.e. Output value). Inanimate-Social Context: The
cover story was identical to the Animate-Social version with one important
exception. Instead of a policeman, participants were told that a lie detector
machine processed the data on each trial. Thus, in this version the social
context was retained since the variables that participants were manipulating
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(e.g.,Hand gestures, Smiling, Eye-contact) are associated with social exchanges
with other animate objects, but crucially participants were interacting with
an inanimate object (i.e. lie detector). Inanimate-Non-Social Context: The
cover story instructed participants to imagine they were engineers testing
the effectiveness of a new oven on the market. The three inputs referred
to components of the oven (Fan Speed (i.e. Input 1) — the fan speed ranged
from O (not activated) to 10 (constantly operating), Vapor Pressure (i.e. Input
2) — the Vapour Pressure ranged from 0 (no Vapor Pressure) to 10 (constant
Vapour Pressure), and Amplitude (i.e. Input 3) — the Amplitude ranged from
0 (no Amplitude) to 10 (constant Amplitude). Participants were also told that
each of the three variables they could manipulate may have an effect on the
temperature level of the oven. The framing of this context was designed to
remove any social behaviors, and so participants were simply interacting with
an inanimate object.

Procedure: Learning Phase: To begin, during learning participants were
presented with a computer display with three inputs and one output (See
Figure 1, top right panel). In all four conditions for trial 1 only the starting
values of the inputs were set to 0, and the starting value of the output was
pre-set to 80, while the target value for all 60 trials was 10. In all other trials
the output value was not pre-set. Thus, the goal for each condition was the
same, participants were required to reach and maintain the value 10 on each
trial, which was depicted on a scale from 0-100 on a progress screen and
also as a numerical value. At the start of the experiment it was made clear
to participants that they were free to manipulate whichever combination of
inputs they liked, or if they preferred, they need not necessarily manipulate
any inputs on a trial. Once they were satisfied with their decision on a trial,
they pressed a button to move on to the next trial (see Figure 1). The history
of the output values generated across five consecutive trial periods remained
on the progress screen while participants were interacting with the system.
However, the trial history was a moving window of 5 trials long and so the
progress screen was updated on each trial.

Test Phase: This phase was identical to the learning phase in all respect,
with the following exception. Each control test was 40 trials long. In addition,
in Control test 1 the starting value was 80 and participants were required
to control the output value to 10 (i.e. the same as the target value during
learning), and in Control test 2 the starting value was 10 and the target value
was 85. Hence Control Test 2 was a test of transfer of knowledge. There were
two tests of prediction, one presented after each control test. Here participants
were given the values of inputs for a trial and then asked to predict the value
of the output, or were given the value of the output on a trial, and were
asked to predict the value of one of the inputs. For both Predictive Test 1 or
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Predictive Test 2 there were 16 trials, 4 trials to predict each of the following,
Input 1, Input 2, Input 3 and the output. While values for Input 3 could not
be entered into analysis (because the Input was a null variable), they were
still presented in the prediction tests so as not to alert participants that there
was anything peculiar about this input. The presentation of the 16 trials in
each prediction test was randomized for each participant. No feedback was
presented as to accuracy of performance in these tests.

Scoring: Control performance during the learning phase and the control
test phase was calculated to generate an error score; this was the absolute
difference between the achieved output on a trial and the target value.
Thus a lower error score indicated better control of the system. Input-
Manipulation: We used Osman and Speekenbrink’s (2011) simple method
for identifying strategies. The Input- Manipulation method was based on
calculating, for each participant, the proportion of trials across all 60 learning
trials (or 40 trials each, per Control test) in which no input was changed (No-
Manipulation), one input was changed (One-Input) two inputs were changed
(Two-Inputs), and all inputs cues were changed (All-Inputs). For scoring of
predictive performance in the Predictive tests error scores were calculated;
this was based on the difference between the predicted value and the actual
value. Again, a lower error value indicated better predictive accuracy.

Results

This sectionis organized in accordance with the two phases of the experiment:
Learning phase in which control performance and input manipulation were
examined; Test phase in which control performance, input manipulation and
predictive performance were analysed.

Learning Phase: The following analysis compared control performance
during learning of all four conditions (Abstract, Animate-Social, Inanimate-
Social, Inanimate-Non-social). A 6 (Block) x 4 (Condition) repeated measures
ANOVA was conducted, and it revealed that familiarity with the task increased
performance significantly (see Figure 2), in a main effect of block F(5, 420)
= 3.34, p = .006, partial n? = .03. Post-hoc comparisons revealed that there
were significant differences in control performance between each block
(t(87) > 2.5, p < .05), suggesting that control performance was incrementally
improving across blocks. Planned comparisons also revealed that the Animate-
Social condition showed greater accuracy when controlling the output than
the Abstract condition (t(42) = 2.40, p = .02), the Inanimate-Social condition
showed a marginal significant difference in accuracy of control over the
Abstract condition (t(42) = 1.79, p = .08), and Inanimate-Non-social condition
also showed a significant advantage over the Abstract condition in control
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accuracy (t(42) = 2.13, p = .03). No other comparisons were significant. The
findings suggest that learning to control a system without a context impairs
performance as compared to when a context is present.

condition
= abstract
+++ animate social

+«== jnanimate -social
== jnanimate-non-social

B0.00-

B0.007]

40.007]

Mean Control Performance

20.00

D.00 T T T T
1.00 2.00 3.00 4.00 5.00 B.00

Learning Block

Figure 2. Control performance during learning by condition and learning
block (SE +/-)

We also conducted a 4x4 ANOVA using Input-manipulation (No-
Manipulation, One Input, Two Inputs, All inputs) as within-subject factors, and
Condition (Abstract, Animate-Social, Inanimate-Social, Inanimate-Non-social)
as the between-subject factor. There was a main effect of Input-manipulation
method, F(3,252) = 256.39, p = 0.0006, partial n?= .73, indicating that people
used the four types of input manipulations to different degrees. With the
exception of comparisons between No-Manipulation and One-Input, all
other comparisons between types of Input manipulations were significant,
with Bonferroni correction (t(87), p < 0.001) (See Figure 3). The analysis also
revealed the following interactions. There was an Input-manipulation method
x Condition interaction, F(9,252) = 2.22, p = 0.02, partial n?=0.07. Follow up
analyses revealed that those in the Abstract condition employed the Two-
Input strategy less than the Animate-Social (p < 0.05), and the Inanimate-
Non-Social, (p < 0.05). No other analyses were significant.
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Figure 3. Mean choice of input manipulation, during learning and both
Control Tests, by strategy and by Condition (SE 1 +/-)

Testing phase: A 2 (Test) x 4 (Condition) x 2 (Control Test order 1 & 2)
ANOVA was conducted on test performance scores. The analysis showed there
was a significant effect of condition, F(1,84) =5.07, p = .003, partial n? = .15.
Planned comparisons revealed that the Animate-Social condition (Mean
= 13.19, SD = 8.53) was more accurate at controlling the output than the
Abstract condition (Mean = 19.71, SD = 13.90) (t(42) = 4.20, p = .0001). Also,
the Inanimate-Social condition (Mean = 14.03, SD = 9.38) showed a significant
advantage over the Abstract condition (t(42) = 2.92, p =.005), and Inanimate-
Non-social condition (Mean = 15.61, SD = 12.90) also showed a significant
advantage over the Abstract condition in control accuracy (t(42) = 2.47,
p = .01). No other comparisons were significant. Again, consistent with the
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pattern of results in learning phase, in the test phase control performance
was facilitated by the presence of a context.

We conducted a 2x4x4 ANOVA using Test (Control Test 1, Control Test 2,
and Input-manipulation method (No-Manipulation, One Input, Two Inputs,
All Inputs) as within-subject factors, and Condition (Abstract, Animate-Social,
Inanimate-Social, Inanimate-Non-social) as the between-subject factor.
There was no significant difference in the pattern of Input manipulations
in Control Test 1 and Control Test 2, so we collapsed across tests (F<1).
There was a main effect of Input-manipulation method, F(3,252) = 239.10,
p = 0.0002, partial n? = .74. As with the learning phase, here too with the
exception of comparisons between No-Manipulation and One-Input, all
other comparisons between types of Input manipulations were significant,
with Bonferroni correction (t(87), p < 0.001) (see Figure 3). The analysis also
revealed the following interactions. There was an Input-manipulation method
x Condition interaction, F(9,252) = 2.13, p = 0.02, partial n?=0.07. Follow up
analyses revealed that those participants in the Abstract condition employed
the Two-Input strategy less than the Animate-Social, (p < 0.05). In addition,
those in the Abstract condition utilized the One-Input strategy more than the
Animate-Social. No other analyses were significant.

After the main experiment participants were required to predict the
value of each of the three inputs, and the output. However, our analyses
concern the prediction scores for Input 1 and Input 2 and the Output
value. We omitted Input 3 from the analyses because it was a null input.
A 2 (Input 1, Input 2, Output) x 2 (Prediction Test 1, Prediction Test 2) x 4
(Abstract, Animate-Social, Inanimate- Social, Inanimate-Non-social) ANOVA
was conducted. The analyses revealed a main effect of input (see Figure 4),
suggesting that overall, accuracy in predicting the values of the two input
variables and the output variable differed, F(1,84) = 148.17, p = .0003, partial
n? = .65. No other analysis was of significance. Given that there was no
difference between scores for Prediction Test 1 and Prediction Test 2, they
were combined in order to perform post-tests. The analyses revealed that
prediction judgments for the output value were significantly more inaccurate
as compared to predictions for Input 1 t(87) =-8.96, p = .0005, and compared
with Input 2 t(87) = -8.65, p = .0003. In addition, predictions were more
inaccurate for Input 2 as compared to Input 1, t(87) =-2.06, p = .04. No other
analysis achieved the significance level.
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Figure 4. Prediction scores by condition and by input variable (SE +/-)

Manipulation Check: The manipulation check was used to examine if the
four contexts were differentiated on the basis of animacy and social context.
An additional set of 24 undergraduate and postgraduate volunteers (mean
age 28.0, SD = 4.8) from Queen Mary University of London were presented
with just the cover stories for each of the four conditions (Abstract, Animate-
Social, Inanimate-Social, Inanimate-Non-social). The presentation of the
cover stories was randomized for each participant. At the end of reading
each cover story, participants were required to rate the animacy of the object
to be controlled (i.e. Animate-Social= Policeman’s mental state, Inanimate-
Social = Lie-detector, Inanimate-Non-social = Cooker, Abstract = Unspecified).
They responded on a scale from 1 “definitely not alive” to 7 “definitely alive”
(Tremoulet & Feldman, 2000). Participants also had to rate whether an
interaction with the system was social, by which we meant that the cover
story required that people considered their interactions to primarily involve
a human agent. They responded on a scale from 1 “not at all social” to 7
“definitely social”. The mean responses to both questions are presented in
Figure 5. We submitted the ratings into an ANOVA with 2 (Rating of Animacy,
Rating of Sociality) x 4 (Abstract, Animate-Social, Inanimate-Social, Inanimate-
Non-social) ANOVA being conducted. There was a significant main effect of
condition, F(2,69) = 138.75, p =.0003, partial 2= .85. There was no significant
difference in the pattern of responses between the two types of ratings. With
the exception of comparisons between Abstract and Inanimate-Non-social, all
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paired t-test comparisons were significantly different in ratings for Animacy
as indicated in Figure 5 (p < .001). Similarly, for ratings for Sociality, there was
no difference between Abstract and Inanimate-Non-social contexts, whereas
all other comparisons were significant (p< .005).
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Figure 5. Mean rating of Animacy and Sociality by condition (SE +/-)

Discussion

The present study sought to investigate the faciliatory effects of animacy on
dynamic decision-making. The second objective of this study was to compare
decision making performance across different contexts in the same non-
linear system. To this end, the study revealed a robust context effect that was
preserved across both learning and test phases of the experiment.

In summary, having measured control performance we found no evidence
to suggest that animacy per se facilitated performance, however, the findings
clearly showed that in learning and in test contextualized versions of the DDM
task facilitated performance. In addition, strategic behavior during learning
and test indicated that those in the Abstract condition (without context)
manipulated fewer combinations of inputs than those in contextualized
conditions, particularly the Animate- Social condition. This suggests that
animacy impacted on the type of strategy that participants implemented.
However, when measuring predictive accuracy, the findings of this study
suggest that this was insensitive to the context and animacy manipulations.
Participants were more accurate when predicting cause to effect (i.e. input
value, given an output value) then predicting effect to cause (i.e. output value,
given input values). A prosaic explanation for this pattern of results may be
that the range of values for the inputs was between 0-10, and so the scope
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for error was smaller than for estimating the output value, which could range
from 0-100. In the remainder of this discussion we consider two questions.

In dynamic decision-making tasks why might animacy effect performance
less than context? To begin, we are confident, based on our manipulation
checks, the cover stories were distinguishable on the basis of animacy and
sociality, and they led in the direction we expected. Therefore, we would
expect that in the main study participants were initially sensitive to the type
of context they were in, at least with respect to reading the cover story and
the instructions. However, it may be the case that when it then came to
interacting with the system, over time other more general factors became
more salient than the animacy of the system. In other words, the presence of
a context that could invoke general prior knowledge could be utilized more
effectively than any specialized knowledge concerning the animacy of the
objective being controlled. There is good evidence to suggest that people
recruit prior experiential knowledge in order to perform complex decision
making and problem solving tasks (Lane, Mathews, Sallas, Prattini, & Sun,
2008; Mathews et al, 2011).

This type of knowledge may include general causal beliefs about how
components of a system interact with each other (Bechlivanidis & Lagnado,
in press). In addition, it may well be the case that this type of knowledge
is likely to be more effective, given that the specific causal relationships
between inputs and outputs in the systems used in the present study were
artificial. We constructed a system in which performance could legitimately
be compared across all four contexts we devised, which was necessary for
the purposes of this study. As a consequence, prior knowledge about the
types of relations referred to in the animate context used in the present study
was unlikely to be applicable to solving the task, as compared to a general
understanding about the way in which inputs and outputs may behave in
contexts that contain non-linear relationships. However, with respect to
this point, the findings do suggest that there was a specific and consistent
difference, both in learning and test, between the Animate-Social and the
Abstract contexts. Here we speculate that people may have more prior
experience of non-linear relationships in animate than inanimate contexts,
and as a result people are more interactive with non-linear systems, which
may explain why participants showed a consistent tendency to manipulate
more inputs than when there is no context present. Putting it another way,
the general reluctance to manipulate multiple inputs at a time in the abstract
context may reveal that participants were more tentative and perhaps more
conservative in their approach to the system.

Why does context matter in dynamic decision-making tasks? One reason
may in fact be that contexts facilitate the intake of causal knowledge, and so
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there is a deeper issue concerning how people interact with DDM tasks which
facilitate causal knowledge. Controlling a dynamic environment requires
intervention-based decisions, which involves planning the choice of which
input to manipulate and estimating the likely output from that intervention
(Hagmayer, et al, 2010; Rottman, & Keil, 2012). The role of causal knowledge
in DDM research is only a recent research issue, but gaining in momentum
(Hagmayer, et al, 2010; Hagmayer & Osman, 2012; Rottman, & Keil, 2012).
These theorists converge on the view that people’s predictions and choice
of actions in dynamic environments are founded on their causal knowledge
of the relationships between inputs and outputs (Lagnado, Waldmann,
Hagmayer, & Sloman, 2007; Glymour, 2003; Sloman, 2005). Therefore, the
presence of a context facilitates the uptake of causal knowledge, which in the
case of the present study is all the more impressive, given that participants
were required to learn to control a dynamic non-linear system. However, it
is also important to bear in mind that the relationship between context and
the underlying causal structure of the system used in the present study was
completely arbitrary. Despite the fact that great efforts were made to make
the contexts themselves, any facilitation that did occur must have been based
on participants associating their experience with manipulating the inputs to
the available real world concept that the task provided, which the abstract
condition did not offer. This association appeared to be so significantly strong
that it impacted on the types of strategies that were developed to control
the system. Given this implication, if participants are indeed sensitive to the
context, then presumably DDM performance should suffer if the underlying
causal system contradicts the context that the system is couched in. For
instance, in a case where an input-output variable had a negative linear
relationship, but the context implied a positive linear relationship (e.g.,
turning the bath tap, in order to fill the bath). Finally, a more general point that
can be made here is that if context matters, then our ability to successfully
control systems in the real world may be determined by how effectively we
can utilize causal knowledge.

Conclusion

There are several compelling demonstrations of the facilitatory effects of
cues to animacy (e.g., dynamics) on performance in a variety of cognitive
processes; however this has not been explored in the context of dynamic
decision-making. The present study was the first of its kind to directly
compare decision-making performance in a non-linear dynamic system across
avariety of contexts. The findings reveal that there was a general performance
advantage when the system was couched in a context, regardless of whether
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or not it was animate. In addition, the pattern of strategic behavior in the
system indicates that animacy encourages greater interaction than when the
system is devoid of context. The present study proposes that the facilitatory
effects of context in dynamic decision-making can be explained on the basis
of general causal beliefs that people bring to bear to help them co-ordinate
their actions in a dynamic system.
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Abstrakt (in Polish)

Postrzeganie, osqd i rozumowanie to procesy wykazujace wrazliwos¢ na sygnaty
wskazujgce na personifikacje ich zrédta (animacy - np. gdy nieozywiony obiekt zacho-
wuje sie tak, jakby posiadat wole i intencje). To studium poswiecone jest pytaniu, czy
personifikacja (animacy) utatwia podejmowanie decyzji w dynamicznych sytuacjach?
Aby odpowiedzie¢ na to pytanie, porownywane jest zachowanie w dynamicznych
sytuacjach zachodzgce w czterech rodzajach kontekstu: Abstrakcyjnym, Spoteczno-
personifikacyjnym, Spoteczno-niepersonifikacyjnym oraz Niespoteczno-niepersonifi-
kacyjnym. Uczestnicy eksperymentu byli przypadkowo ulokowani w tych kontekstach
i w kazdym przypadku musieli uczy¢ sie manipulowac zmiennymi decyzyjnymi aby
doprowadzi¢ kontrolowany system do pozqdanego stanu, a nastepnie stan ten utrzy-
mac. Badanie wykazato, ze to nie personifikacja per se utatwia podejmowanie decy-
zji, ale raczej charakter kontekstu. Niemniej personifikacja odgrywa istotng role przy
uktadaniu strategii kontrolowania dynamicznych systemow. Autorzy twierdzq, ze to
kontekst umozliwia tworzenie przekonania co do przyczynowych relacji istniejacych
w dynamicznym otoczeniu, zarowno w odniesieniu do spotecznego jak i niespotecz-
nego otoczenia.

Stowa kluczowe: dynamiczne podejmowanie decyzji, personifikacja (animacy), kon-
tekst, zwiqzek przyczynowy.
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