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1. INTRODUCTION

The proliferation of cheap Unmanned Aerial Systems (UAS), also known as Unmanned
Aerial Vehicles (UAVs), poses significant challenges for Ground Based Air Defence (GBAD)
systems. Individual UAS are inherently difficult to detect, track, classify and identify and
these challenges are exacerbated if UAS are employed in swarms.

Swarm technology and its applications are now sufficiently advanced that they have been
reported in readily available open-source literature (see, for example, [12], [1]). The accessi-
bility of this information may provide a vector for further development by adversaries and it
is likely to be only a matter of time before such swarms are used with malign intent.

The emphasis of this paper is primarily upon the development of tracking algorithms able
to cope with swarms of UAS, since the simulation of such potential threats has already been
addressed ([12], [6]), while the tracking of such swarms represents an emerging challenge.
Section 2 provides background information on existing categories of UAS and discusses in
more detail why they provide a challenge for tracking systems; this background material is
also beneficial from the simulation point of view. Section 3 outlines a simple UAS simulation
that is sufficient to demonstrate the tracking logic described in Section 4.

2. UAS BACKGROUND

UAS are classified by their mass. For example, the masses of Class∗ 1 UAS are less than
150 kg and Class 2 UAS masses are between 150 and 200 kg. It is convenient to further
subdivide Class 1 UAS as shown in the following table.
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Class Mass

Nano < 500 g

Micro 500 g to 2 kg

Mini-light 2 kg to 10 kg

Mini-heavy 10 kg to 20 kg

Macro 20 kg to < 150 kg

The work described below is principally concerned with UAS of less than 10 kg (mini-light),
and the factors relating to this choice are discussed below.

Even the smallest of these classes of UAS can carry a camera and may retail for less than
US$200. It is possible to purchase a nano UAS, carrying a 14 Mpixel camera and capable of
flying for 20 minutes, for less than US$700. (Whereas, mini-heavy UAS airframes might cost
US$60,000). Nano and micro classes of UAS might be expected to be under manned control
for their whole flight, and an alternative name for UAS is Remotely Piloted Air Systems
(RPAS). If the UAS carries a camera and video can be relayed in real-time, then the pilot
need not have direct line of sight to the target. The smallest and cheapest UAS maximum
flight time may be less than 5 minutes, but for the slightly more expensive nano and micro
UAS, flight times of 20 to 30 minutes are more typical. Ranges may be as low as 2 km,
determined by the range of the radio control. Altitudes will usually be less than 1,000 feet
and airspeeds of the order of tens of metres per second ([2]).

By comparison, mini-heavy UAS may be under manual control for their whole flight but
may also incorporate a degree of autonomy. For example, it may be possible to instruct
them to fly autonomously to a desired location via waypoints, using the Global Positioning
System (GPS) or alternatives to navigate. The mission endurance is high, perhaps as much
as 20 hours, and a maximum range of 100 km might be achieved with a cruising speed of
20 ms−1 and a maximum speed of 30 ms−1. Operating altitudes could be 15,000 feet or
higher. With this size of vehicle, a wider range of payload options is available and these
payloads might be powered by an onboard generator ([3]). This class of UAS is larger and
more readily detectable than smaller classes.

UAS may also be classified by airframe and method of motive power which includes:
fixed wing, rotary wing, rocket-powered and hybrid. It will become clear from examining
this list that UAS can have a wide range of flight dynamics and may even be capable of
changing dynamics in flight. For example, rotary wing UAS are capable of stopping flying,
perching, and then returning the powered flight during a sortie. The different sub-categories
lend themselves to different missions and multiple independent UAS may be present in the
battlefield at any one time ([10]).

The smaller classes of UAS are physically small and have low acoustic, optical, infra-
red and radar signatures. The flight characteristics and piloting options can readily facilitate
screening of the UAS from sensors using either terrain or the built environment; indeed,
environments such as urban canyons may be particularly challenging

There are a number of reasons why it may be desirable for an adversary to use a swarm
of UAS:

• To spread the mass of the mission functionality across a number of different platforms.
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For example, one or more UAS may collect reconnaissance information, while other
UAS in the swarm may share responsibility for air-to-ground and ground-to-air com-
munications.

• To increase the weapons load and/or the variety of weapons.
• To make the attack more robust (i.e. less susceptible to the attack failing if some

platforms are negated).
• To make a deliberate show of strength.
• And, while there are many others, perhaps the most significant reasons are to saturate,

out-flank or out-manœuvre defences.

Equally important as the reasons for using a swarm is the fact that swarms are now affordable.
Furthermore, even when the cost of an attack is multiplied by the number of UAS in a swarm,
extremely high exchange ratios might be possible.

There does not appear to be a universally accepted definition of the numbers of UAS that
constitute a swarm. Most dictionary definitions of ‘swarm’ simply refer to ‘large numbers’.
One factor that might limit numbers in a swarm is the ability to control many UAS at one
time, although greater degrees of autonomy mitigate the control problem. The US Office of
Naval Research (ONR) has already demonstrated the ability to launch and recover 30 UAS
at one time ([1]) while Intel, in conjunction with Ars Electronica Futurelab, demonstrated
in November 2015 the ability to control 100 UAS concurrently in a performance artwork,
requiring a high degree of control ([4]).

The presence of potentially large numbers of UAS in a sensor field of regard concurrently
places many challenges on the defence, which may be listed as follows:

• Detection and transition to track:

– UAS of interest have small size and may be built using composite materials,
giving rise to small signatures.

– UAS operators may exploit natural and man-made screening to reduce viewing
opportunities.

– UAS may be eclipsed in flight by other UAS.

• Track maintenance:

– Multiple, and changing, flight dynamics.

– UAS may fly in close formation with degraded radar resolution.

• Classification and identification:

– Determining a reliable head count (the number of UAS).

– Detecting changes in head count.

– Assessing intent and detecting feints.
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– If functionality is spread across the swarm, collateral information from Elec-
tronic Support Measures (ESM) may be limited to only a subset of the swam
members.

• Decision support challenges:

– Short ranges to target can limit the decision-making space.

The overriding challenge is to perform all of the above and leave time to sentence (decide if
the swarm is to be engaged and how), and then to negate the threat. For the purposes of the
present paper, however, the work described here concentrates upon developing a viable track-
ing solution in the situation where a UAS swarm is manœuvring in a more or less coherent
manner.

In view of the foregoing discussion, it is evident that attempting to track UAS swarms
using a radar (or a network of distributed radars) presents severe challenges. For the above-
stated reasons, individual UAS may be seen perhaps only once every several sensor looks,
and if this is combined with quasi-random UAS dynamics, it can be appreciated that a con-
ventional point-target tracking system is likely to produce only sequences of short-lived and
erratic tracks, from which the swarm size and intent may be difficult or impossible to discern.

The approach taken here, as in [6], is to admit that it may not be possible to track each
individual UAS, but that it is nonetheless valuable to be able to extract a stable trajectory
for the swarm as a whole and — where possible — to be able to infer the numbers of UAS
present and their spatial dispersion.

Section 3 provides a brief description of an algorithm capable of simulating simple swarm
behaviour, so far as it is at present understood, while Section 4 defines the tracking filter logic.
The tracking results are summarised in Section 5.

3. SWARM SIMULATION

An earlier paper [6] has already described an algorithm that can simulate at least some
characteristic elements of swarm behaviour. The same logic is used here, and the main ele-
ments are summarised as follows:

The swarm as a whole comprises ten members and is assigned a definite base trajectory to
follow (a deliberately variable, near-random, path is used in the example below). Each UAS
within the swarm is then envisaged to be aware of the distance to all of its neighbours∗; the
individual UAS dynamics are then governed by a linear combination of accelerations toward
or away from neighbours, using an attractive force for more distant ones but a repulsive one
for nearer ones. In addition, the resultant UAS velocity is formed from a weighted linear
combination of its own velocity and that of the swarm as a whole, with a superimposed
randomness to emulate environmental effects such as wind gusts. The net effect is that the
swarm follows its assigned trajectory with some fidelity, while the individual UAS have rather
more wandering paths relative to the swarm centroid. The nature of the simulation algorithm
means that there is no one consistent leader. A more or less constant altitude of 500 m is
maintained and an average speed for the swarm of 20 ms−1.

∗This can be restricted to those ‘ahead’ of it, thus emulating forward vision only.
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Figure 1 shows a top-down view of the swarm trajectory, spanning 1900 s, with motion at
top-left and moving downward. The constituents are initially bunched fairly close together,
with separations typically of the order of 100 m or less, and the individual trajectories tend to
slowly diverge over time.

Radar

Fig. 1. Underlying UAS constituent trajectories

Each individual UAS is assigned a different colour and it can be seen that their trajectories
move toward and away from each other, interleave and so forth; this is deliberately not in-
tended to be ‘formation flying’.

Simulated radar measurements are then provided by the single sensor marked on Figure 1,
located at about 9 km from the trajectory at its closest point, giving normally-distributed polar
range, azimuth and elevation measurements at a rate of 0.1 Hz. The range uncertainty was
fixed at 30 m and the angular uncertainty at 2.2 mrad, thus enabling target resolution in range
(swarm configuration permitting) but typically not resolution in angle.

This radar is assumed to provide whatever individual returns it can obtain on the individual
swarm constituents — there is no attempt to collapse sets of returns at the same time into a
centroid and uncertainty representing that group. The tracking system in Section 4 is thus
intended to work with ‘unclumped’ returns.

To emulate radar sensitivity, each swarm member is assumed to have a mean Radar Cross
Section of 0.01 m2 under Swerling 1 statistics and with a noise floor of 10 dB imposed on
the Signal to Noise Ratio (SNR). Thus, as the range increases, measurements on individual
swarm members become sparser and as a consequence the number of swarm members seen
per look diminishes. At the beginning of the scenario, individual target probabilities of de-
tection are typically above 0.9, whereas toward the end of the scenario the values are nearer
to 0.5 (although in both cases with considerable variation across the target set). Clutter has
not been simulated.

A short section of radar plots spanning about 170 s near the centre of Figure 1 is shown in
Figure 2, using a top-down view. Plot uncertainty is represented by an ellipse, although the
uncertainty axes are approximately the same at this sensor-target range of 12 km.
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Fig. 2. Section of radar measurements at about 12 km from the radar

Again, the colour-coding reflects the UAS identity. This is quite near to the radar, so there are
few missing observations (in contrast to later sections of the scenario). Even though individ-
ual trajectories can be visually identified, it can be appreciated that tracking each constituent
is complicated by their close spacing and irregular motion.

In contrast, Figure 3 shows a longer time segment of plots spanning 420 s at the end of
the trajectory, at about 22 km from the radar.

Fig. 3. Section of radar measurements toward trajectory end

In this case, missing observations give rise to a much more challenging tracking environment
and it can be appreciated that the problems will be exacerbated in the presence of even more
swarm members than the ten used here.

4. TRACKING LOGIC

Tracking the measurements on the UAS swarm described in Section 3 with a point-target
tracker results in numerous disconnected track fragments, with any longer-lived ones exhibit-
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ing significant levels of miscorrelation. Apart from a brief interval toward the start, nearest to
the radar, it would be difficult to discern swarm intent, or to gain an estimate of the number
of constituents.

Reference [6] described a tracking solution for the swarm centroid and dispersion using
particle filter concepts, which seemed a natural fit to the task in hand. However, the resulting
filter proved to be more complex than is desirable, largely due to the need to maintain particle
density under conditions of less than perfect conditions. In contrast, in the present case, a
much simpler Kalman-based filter has proved adequately robust, as well as being able to
support threat count analyses, for example.

The basic concept assumes that the main requirement is to be able to maintain a sta-
ble track on the swarm centroid, despite being given quasi-random radar observations dis-
persed relative to that centroid. Thus, as a baseline, a Cartesian Earth-Centred Inertial (ECI)
constant-velocity model (see, for example, [5]) is defined in three-dimensional space, giving
a 6-dimensional basic state vector∗. Three further state vector components are then added,
representing measurement offsets in range and angle relative to the centroid.

It should be noted that no attempt is made to pre-process each scan of radar data into a
centroid plus dispersion prior to tracking; the aim is to supply the tracking filter with radar
returns from the individual UAS as they occur in time. The filter itself estimates centroid and
dispersion simultaneously.

In index form, the kinematic equations are as follows, with a superscript dot standing for
time derivative:

ẍi = νi, for i = 1, 2, 3, (1)

ζ̇j = −αζj + wj , for j = 1, 2, 3. (2)

Here, x1, x2, x3 stand for the ECI x, y, z position components respectively, while the ζ1,
ζ2, ζ3 states represent measurement offsets from the track position in the range and angle
directions respectively; these are assumed to evolve in time according to a first-order Markov
process with fixed parameter α. For present purposes, α = 0.2; although it is known that
α > 0 is required for filter stability, its actual value does not appear to be critical.

Thus, the nine state vector components are [x1, x2, x3, ẋ1, ẋ2, ẋ3, ζ1, ζ2, ζ3] and the
quantities νi and wj stand for process noise.

The ζi state components relate to the polar radar measurements according to the measure-
ment equations

zk = hk(xi) + ζj + vk, (3)

where h(.) stands for the measurement function converting from Cartesian ECI into polar
coordinates relative to the sensor position, vk is measurement noise and the xi span the state
position components only. Thus, for example, if ζ1 is the tracked range offset relative to the
swarm centroid, then the sensor-target range λ relates to the xi as follows:

λ =
√

(x− rx)2 + (y − ry)2 + (z − rz)2 + ζ1 + vλ, (4)

and where the rx, etc, denote the ECI sensor location components.

∗Three components each of position and velocity.
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With regards to the process noise levels, νi = 0.05 ms−2 works well, while the individual
wj need to be set according to the measured or expected UAS dispersion in the relevant
measurement dimension. It has also been found advantageous to adapt the angular process
noise magnitudes according to the perceived swarm dispersion, which may change slowly
over time; the time-averaged weighted distance measure provides a means to do this, and the
logic is described in Appendix B.

Track initiation uses the first two asynchronous radar measurements in the usual manner
and each subsequent measurement is subject to a gating criterion, using a fixed gate value of
slightly over 99%.

Experience has shown that the formulation of equation (2) ensures prompt responsiveness
to oscillatory or abrupt random variations in the offsets, behaviour which is well-suited to the
present requirements, in which each measurement is likely to appear completely uncorrelated
with its predecessor in time.

The constant-velocity model was chosen largely because this imposes the most constraint
upon track velocities. The constant-acceleration model or the Singer model (both of which are
described in [5]) provide valid general-purpose alternatives, but their less restrained motions
tend to cross-feed into the offset states. The more constrained the centroid tracking model,
the more accurately will the offset states reflect the actual swarm dispersion.

The above tracking model is, as is shown in the next section, capable of tracking the
swarm centroid and inferring the dispersion of the individual UAS simultaneously. A brief
discussion of system observability is provided in Appendix A and sample tracking results are
examined in Section 5.

The response of the above filter to clutter has yet to be assessed. It can be anticipated that
low levels of environmental clutter will merely perturb an existing swarm track, or initiate
a new one if the clutter return is outside the swarm gates. Heavy clutter may well prove
detrimental, although further work is needed to explore its actual effects.

5. TRACKING RESULTS

The resulting track on the UAS centroid is shown in Figure 4, here colouring by track
identity number and with the centroid spatial uncertainties denoted by ellipses.

Fig. 4. Track on UAS centroid

It is evident that despite the irregular overall swarm trajectory and the independent motion of
the constituents, it is possible to track the centroid continuously — even toward the end, when
the measurements are much sparser. Quite stable velocity components can also be extracted,
as shown in Figure 5.
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Fig. 5. East, north and up centroid velocity components

The error bars indicate the associated velocity component uncertainty and it can be seen
that the swarm is maintaining a more or less stable altitude, as intended. The effects of the
measurement sparsity can also be discerned at the end of the trajectory.

Also of interest is the behaviour of the state offset ζ-components, which are shown in
Figure 6.
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Fig. 6. Tracked range and angle ζ offsets

These give some indication of the swarm dispersion relative to the radar, and also clearly
show the effects of decreasing individual UAS visibility as the swarm moves away from the
sensor. Although it is not easy from Figure 6 to discern the number of constituent UAS
present, there are patterns in the data which can be seen more clearly over a shorter time
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period and when colouring and joining by UAS identity. The results are shown in Figures 7
and 8.
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Fig. 7. Tracked range ζ offsets, colouring by UAS identity (detail)
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Fig. 8. Tracked angle ζ offsets, colouring by UAS identity (detail)

The second range offset plot contains the associated one-sigma ζ-uncertainties, showing the
considerable degree of overlap across the target set∗. It is not obvious that the data as shown
could be further processed to reveal the threat count. A more certain tracking model (nec-
essarily dependent on predictable swarm motion) or a more rapid radar revisit rate might
enable such processing to take place, as would more accurate range measurements. Indeed,
the latter capability combined with the above offset tracking may permit the reconstruction of

∗Similar comments apply to the azimuth and elevation offset data sequences.
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individual UAS trajectories even in the complete absence of any angular resolution. This is in
contrast to the more familiar Kalman Filter behaviour in which range and angle uncertainties
tend to cross-feed, typically to the benefit of the latter and the detriment of the former.

In the present case, with regard to threat count, the method proposed in [6] — namely,
to count the number of measurements seen per radar ‘look’ — can be applied here, giving
Figure 9.
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Fig. 9. Count of measurements per radar ‘look’

For about the first 1000 s or so, it can be inferred from the ‘ceiling’ values found over time
that the swarm contains ten constituents. Thereafter, decreasing target observability degrades
the threat count estimates.

The final point of interest concerns a visual estimate of the swarm spatial extent, which
can be obtained by processing the ζ-offsets into ECR coordinates and creating something
akin to an uncertainty (or dispersion) ellipse. The results are shown in Figure 10.

Fig. 10. Tracked swarm dispersion, with superimposed truth trajectories

Here, the individual UAS trajectories are denoted by the thin multi-coloured lines, while the
dispersion ellipses are coloured red. The irregular thin blue line marks the track centroid over
time. It can be seen that the dispersion matrices give a reasonable estimate of the swarm
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spatial extent, although there is some evidence that the centroid is slightly slow in responding
to swarm changes of course. This can be corrected by increasing the process noise levels∗,
although to the detriment of the centroid position and velocity estimates.

6. DISCUSSION

It was assumed at the commencement of the present work that swarms of UAS are now
realisable at low cost and that the ability to track such swarms will become a necessary part
of any surveillance or defensive measures. It was also assumed that swarm members will
obey two basic rules:

1. Avoid collisions with other swarm members,
2. Not become completely detached from the swarm as a whole.

Using currently-available knowledge of the characteristics of speed, altitude and observability
of UAS, a quasi-random model of swarm behaviour was developed and reported in [6]. That
same work also described a particle filter suitable for tracking the swarm.

That work has now been extended to examine whether it is possible to track the swarm
using simpler linear Kalman Filters. Thus, in the present case, the familiar constant-velocity
model follows the swarm centroid, while additional track states respond to the individual
UAS offsets in range and angle relative to that centroid. This tracking model is simpler than
the particle filter proposed in [6] and satisfies the following requirements:

• The position and velocity of the swarm centroid can be tracked, probably sufficiently
well to cue an optical sensor (although this remains to be demonstrated).

• Some indication of the swarm extent can be gained from the additional track states.
• An estimate of number of members in the swarm is obtainable indirectly from the

numbers of measurements achieved per time period.

For the future, it is anticipated that both friendly and unfriendly swarms of UAS and other
types of air platforms will be present concurrently in the sensors field of regard. It is foreseen
that the ability to track swarms will facilitate other data fusion activities of picture compila-
tion and Threat Evaluation and Sensor and Weapon Allocation (TESWA).

It is also worth mentioning that the same form of tracking model (containing highly re-
sponsive offset states) works well in similar contexts where, for whatever reason, point-target
tracking the individual constituents in a cluster becomes difficult or impossible. Such situ-
ations include tracking in the presence of large radar glint errors, or where numerous small
objects have been deployed from a satellite or ballistic missile and thereafter diverge slowly
over time. The more accurately the tracking model can be specified, the better the stability
and representativeness of the offset components, so the technique is not considered suitable
in the presence of abrupt manœuvres or imperfectly-known dynamics.

Future work in this area should involve a more detailed examination of how a UAS swarm
actually appears to a radar, preferably incorporating real data. It is also necessary to assess
how the above tracking model responds to clutter, swarm merging, constituent dispersal and
other real-world phenomena (such as clutter and terrain screening). Alternative swarm sim-
ulation algorithms would also be of interest, but an examination of the open literature in this
context has yet to be carried out.

∗Or by adopting a constant acceleration, rather than constant velocity, model.
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A. OBSERVABILITY

For the purposes of examining the system observability, and the observability of the offset
ζ states in particular, it is convenient to simplify the tracking model to a locally flat Carte-
sian system. In addition, the sensor will be placed at the origin, although retaining polar
measurements in range, azimuth and elevation. That is, the state vector is as follows:

[x, y, z, u, v, w, L, ψ, η] ≡ xk for k = 1, . . . , 9,

the final three being the offset components, and with the associated kinematic model:

ẋ = u, ẏ = v, ż = w,

u̇ = 0, v̇ = 0, ẇ = 0,

L̇ = −αL, ψ̇ = −βψ, η̇ = −γη,
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where a superscript dot implies time derivative and ignoring process noise for the observabil-
ity assessment. The parameters α, β, γ are assumed fixed and not necessarily equal.

A sequence of range and angle measurements are assumed available, with range λ and
polar angles φ and θ relating to the state components as follows:

λ =
√

x2 + y2 + z2 + L,

φ = tan−1
(y

x

)

+ ψ,

θ = sin−1

(

z
√

x2 + y2 + z2

)

+ η.

Since this is a nonlinear kinematic system, the familiar linear observability matrix Ξ relating
a discrete sequence of measurements to the state components (see [7]) is inapplicable. Rather,
recourse can be made to the Lie derivative approach ([8] and [9]), in which observability is
assessed in terms of successive derivatives of the measurement components.

That is, the question is asked, given λ, φ, θ and successive derivatives thereof, can one
determine all of the state components — and the offset states in particular — from the above
measurement and state equations?

It is not difficult to show that L is globally observable, since if the definitionR(x, y, z) =
√

x2 + y2 + z2 is made, then the following differential equation follows:

R
d3R

dt3
+ 3

dR

dt

d2R

dt2
= 0.

Since R = λ − L and the various derivatives of λ are assumed known, a quadratic equation
in L results, which can be solved (at least in principle).

With regards to the angle offsets ψ and η, however, the situation is more complex, result-
ing in transcendental equations with no obvious (let alone straightforward) solutions. Thus,
it has been necessary to revert to an examination of local observability ([8], [9]), with logic
as follows:

Define the column vector

g =
[

λ, φ, θ, λ̇, φ̇, θ̇, λ̈, φ̈, θ̈
]

≡ gj , for j = 1, . . . , 9.

Then, if the 9× 9 matrix

∂G ≡

∂gj
∂xk

is of rank 9, where xk is defined above, the system is locally observable.
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Leaving aside the algebra, the components of vector g are found to be:

g1 = R + L,

g2 = tan−1
( y

x

)

+ ψ,

g3 = sin−1
( z

R

)

+ η,

g4 =
C

R
− αL,

g5 =
(xv − yu)

(x2 + y2)
− βψ,

g6 =
1

√

x2 + y2

[

w −

z C

R2

]

− γη,

g7 =
V 2

R
−

C2

R3
+ α2L,

g8 = −2
(xv − yu) (xu+ yv)

(x2 + y2)2
+ β2ψ,

g9 = −

(xu + yv)

(x2 + y2)
3/2

[

w −

z C

R2

]

+
1

R2

1
√

x2 + y2

[

−Cw − zV 2 +
2zC2

R2

]

+ γ2η,

where

R =
√

x2 + y2 + z2, V =
√

u2 + v2 + w2, and C = xu+ yv + zw

have been defined for convenience.
Carrying out the relevant partial derivatives of gj with respect to xk — a task devolved

to the MapleTM symbolic manipulation package — results in a partially-populated matrix ∂G
(for brevity, the lengthy elements of this matrix are not explicitly listed here). It is then
possible to make use of the rank() command within MapleTM to show that rank(∂G) = 9.
It may be concluded that the system is at least locally observable in the manner defined in [8]
and [9].

B. ADAPTIVE PROCESS NOISE

It was mentioned in Section 4 that more robust tracking is obtained if the process noise
values for the two angular offset states ζ2 and ζ3 are made responsive to the perceived swarm
extent, and the logic for this is described below. A single fixed uncertainty value for the range
offset ζ1 was found to be adequate.

Let the angular process noise magnitude be denoted by w, let d2 stand for the weighted
distance measure (also known as the Mahalanobis distance [11]) and d2 for its recursively-
averaged value. The following sequence of operations is then applied:

• Retain the process noise w from update to update according to the recursive equation

w → Gw + (1−G)wmin, (5)

c© Authors and Poznańskie Towarzystwo Przyjaciół Nauk 2018, sait.cie.put.poznan.pl



62 Paul F. Easthope, Alan Collinson

where G is a gain factor and wmin represents a suitable lower bound (set to 10−5 rad
by default).

• The gain factor G is set equal to the larger of a fixed value Gmin and 1−∆t(1 − d2),
where ∆t is the time step. The use of a lower bound onG prevents the retained process
noise from diminishing too rapidly.

Note that if ∆t = 0, the gain is automatically set at unity, retaining the process noise
unchanged.

• The values of w are bounded above by 5 mrad (by default), to prevent divergence.

The logic behind equation (5) is based on the assumption that, for a stable swarm size, the
uncertainty of the additional track states ζj should decay with time t according to the generic
formula

w(t) = wmin + p e−µ(t−t0),

for constant p and rate of decay µ. The decay factor µ is then made dependent on 1− d2, so
that d2 > 1 gives rise to increased process noise, while d2 < 1 permits it to decay.

Note that the actual weighted distance measure d2 is a random quantity with expected
mean equal to the number of measurement degrees of freedom, m (3 for a radar, 2 for a
passive sensor and so forth). To allow for mixes of sensor types, d2 was defined as

d2 =
1

N

N
∑

1

d2i
m
,

whereN is a measurement counter. This is independent of the number of degrees of freedom
and can be written in recursive form:

d2k = (1− η)d2k−1 + η
d2k
m
,

for update k and where η is the larger of 1/k and 1/200 (to provide some responsiveness to
new information).

The feedback-type mechanism described here provides a balance between responsiveness
and robustness. It is unlikely to be the only solution but various modifications that were
attempted invariably proved detrimental.

ABSTRACT

The proliferation of cheap Unmanned Aerial Systems (UAS) poses some significant challenges for the
Ground Based Air Defence (GBAD) environment. Individual UAS are inherently difficult to detect,
track, classify and identify, but the challenges are exacerbated if UAS are deployed in swarms. It can
be appreciated that small physical size, combined with the extensive use of non-metallic materials, will
render an individual UAS difficult to detect from a radar’s perspective. If such targets are deployed in a
group, then the radar response is likely to consist of intermittent, uncorrelated observations on random
subsets of the swarm as a whole, with no guarantee that observations made on individual constituent
UAS will be consistent from scan to scan.

This paper describes a tracking filter model that is able to simultaneously track the swarm centroid
and the spatial dispersion of constituent UAS, without requiring any pre-processing of radar returns into
clusters.
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Although this paper is primarily concerned with UAS, the authors are aware that other types of
platform may usefully be employed in swarms, for example satellites, and that some large and complex
unitary systems may present swarm-like characteristics to sensors. The principles discussed here may
also be applicable in these other cases.
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W artykule zamieszczono równania określaja̧ce oczekiwane liczby linii przechodza̧cych przez k punk-
tów, zdefiniowanych jako wa̧skie prostoka̧tne obszary o zadanych wymiarach, które można znaleźć
w szerszym kwadratowym obszarze zawieraja̧ce punkty rozmieszczone z rozkładem normalnym. Za-
mieszczono wyniki symulacyjne, stanowia̧ce podstawȩ do oceny prawdopodobieństwa tego, że liniowe
serie pomiarów w środowisku zakłóconym maja̧ charakter losowy.
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