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1. INTRODUCTION

When tracking a ballistic missile, whether of short or long range, it is frequently neces-

sary to determine where the missile originated and where it is expected to land. This process

requires extrapolating the track backwards or forwards in time and then characterising the

resultant uncertainty domain on the earth’s surface. The nature of the extrapolation and the

coordinate conversions involved are outside the scope of the present paper, which concen-

trates instead on providing an answer to the question: does the predicted impact point fall

within an area of interest? (here termed defended area for brevity).

It can be appreciated that a systematic answer needs to be provided in probabilistic terms,

since the predicted track state and covariance between them define an uncertainty domain.

Merely examining whether the predicted state (i.e. centroid) itself falls within the defended

area is hardly satisfactory, and the same comment applies to using (say) the 95% track uncer-

tainty ellipse (although a binary yes/no answer may be acceptable in some circumstances).

The track impact domain is usually assumed to be Gaussian in nature and this assumption

is maintained here, although it is acknowledged that conversions from the native tracking

coordinates into latitude and longitude (or east and north relative to some defined location)

may result in a non-Gaussian distribution.

A straightforward and obvious way of extracting a probability of impact is to generate

numerous random variates from within the impact distribution and determine the proportion

of these variates that fall within the defended area, assumed closed. This method is simple to

program but — in common with many Monte Carlo techniques — slow to converge. In fact,

the uncertainty (variance) associated with the resulting probability is given by the equation

(Appendix A):

σ2
P =

P (1− P )

N
,

where P is the probability value and N is the number of variates; the rate of convergence is

thus of the order of 1/
√
N .

The present paper proposes an alternative approach, stemming from the recognition that

what is sought is simply the quantity

P =

∫∫

A

G(x, y) dxdy, (1)
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where G(x, y) stands for the bivariate probability density characterising the track state and

uncertainty, and A is the area encompassed by the defended area, assumed closed. This

quantity is what is estimated by the above Monte Carlo method, as a substitute for more

formal (and typically complex) methods for evaluating a double integral.

An alternative method for calculating a double integral over some planar area is to invoke

Green’s theorem in the plane, which equates an area integral with a contour integral around

its boundary. This approach is examined in Section 2.

A third alternative to the evaluation of equation (1) is direct numerical integration over the

two-dimensional area A, and suitable techniques are provided in [5]. It can be appreciated,

however, that for an area with a complex boundary, such an approach may well be compli-

cated to program and potentially time-consuming in computational terms. Direct numerical

integration is not, therefore, considered further here.

2. ANALYSIS

From [4], page 522, Green’s theorem in the plane is of the form

∫∫

A

(

∂F2

∂x
− ∂F1

∂y

)

dxdy =

∮

C

(F1dx+ F2dy) ,

where F1 and F2 are functions of x and y, A is a finite area and the contourC is the boundary

of that area, traced anti-clockwise∗.

Now suppose that the left-hand integral needs to be over the function

G(x, y) =
1

2πσxσy
exp

{

−1

2

(

x2

σ2
x

+
y2

σ2
y

)}

,

standing for the bivariate normal distribution, in coordinates centred at the track impact

state (i.e. centroid) and aligned with the principal axes of its covariance. The transfor-

mation from more general two-dimensional track-based coordinates, whether east-north or

longitude-latitude, is discussed in Appendix B.

Set F1 = 0 and F2 such that

F2 =

∫ x

G(x, y)dx.

Therefore,

P =

∫∫

A

G(x, y)dxdy =

∮

C

F2 dy, (2)

using the definition from equation (1).

Repeat the process with F2 = 0 and

F1 = −
∫ y

G(x, y)dy,

so that

P =

∫∫

A

G(x, y)dxdy =

∮

C

F1 dx. (3)

∗That is, the region A is on the left when advancing in the direction of contour integration.
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Add equations (2) and (3) to give

P =

∫∫

A

G(x, y)dxdy =
1

2

∮

C

(F2 dy + F1 dx) . (4)

Now, from the above definitions of F2 and F1:

F2 =
1

2πσxσy
e−y2/2σ2

y

∫ x

e−x2/2σ2

x dx,

F1 = − 1

2πσxσy
e−x2/2σ2

x

∫ y

e−y2/2σ2

y dy.

Therefore, the required area integral becomes:

P =
1

4πσxσy

∮

C

[

e−y2/2σ2

y

{
∫ x

e−x2/2σ2

x dx

}

dy − e−x2/2σ2

x

{
∫ y

e−y2/2σ2

y dy

}

dx

]

.

Both internal integrals are of the same form and may be written

∫ ξ

e−τ2/2α2

dτ = α
√
2

∫ ξ/α
√
2

e−θ2

dθ,

≡ α
√
2N

(

ξ/α
√
2
)

,

after a change of integration variable and defining the functionN(µ) as follows:

N(µ) =

∫ µ

e−θ2

dθ.

Therefore,

P =

√
2

4πσxσy

∮

C

[

σxe
−y2/2σ2

yN
(

x/σx
√
2
)

dy − σye
−x2/2σ2

xN
(

y/σy
√
2
)

dx

]

. (5)

Now suppose that the continuous closed contour C can be expressed in polygonal form and

consider one linear section from (a1, b1) to (a2, b2), with associated contribution Pi. Change

to parametric coordinates over this line interval, such that

x = a1 + t (a2 − a1) ,

y = b1 + t (b2 − b1) ,

and where t ∈ [0, 1].
Therefore,

Pi =

√
2

4πσxσy

∫ 1

t=0

[

σx (b2 − b1) e
−y2(t)/2σ2

yN
(

x(t)/σx
√
2
)

− σy (a2 − a1) e
−x2(t)/2σ2

xN
(

y(t)/σy
√
2
)

]

dt,

=

√
2

4πσxσy

[

σx (b2 − b1)

∫ 1

t=0

e−y2(t)/2σ2

yN
(

x(t)/σx
√
2
)

dt

− σy (a2 − a1)

∫ 1

t=0

e−x2(t)/2σ2

xN
(

y(t)/σy
√
2
)

dt

]

.
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To proceed further, it is necessary to obtain an analytic expression forN(µ), which is readily

supplied by equation 2.33(1) on page 108 of reference [2], namely:
∫

e−(ax
2+2bx+c)dx =

1

2

√

π

a
exp

(

b2 − ac

a

)

ERF

(

x
√
a+

b√
a

)

, a 6= 0,

where ERF(.) is the error function∗. In the present case, b = c = 0 and a = 1, so

N(µ) =

√
π

2
ERF(µ).

Substituting this into the above expression for Pi:

Pi =
1

4
√
2πσxσy

[

σx (b2 − b1)

∫ 1

t=0

e−y2(t)/2σ2

y ERF
(

x(t)/σx
√
2
)

dt

− σy (a2 − a1)

∫ 1

t=0

e−x2(t)/2σ2

x ERF
(

y(t)/σy
√
2
)

dt

]

. (6)

This sectional integral may be evaluated numerically and the total integral P then obtained

as

P =
∑

i

Pi, (7)

summing over the boundary line segments in anti-clockwise order.

The example below compares the results of using equation (7) with the Monte Carlo

method, for a simple five-sided polygonal shape. An example bounded area is shown in

Figure 1, in conjunction with a representative Gaussian track probability domain, having

σx = 0.7, σy = 0.5 in arbitrary units.
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Fig. 1. Example of defended area and track probability distribution

∗Provided in C by the math function of the same name.
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Here, 60,000 sample variates have been generated, with each such variate colour-coded de-

pending on whether it is inside or outside the defended (blue-bounded) area∗. Note that, for

convenience, the origin of the coordinate system has here been chosen at the track centroid

and with axes aligned with the principal axes of the track covariance.

From an inspection of Figure 1, it can be anticipated that the actual impact probability

is likely to be small, since most of the track distribution falls outside the defended area.

In fact, the Monte Carlo method estimates that P ≈ 0.0272, with associated uncertainty

6.6× 10−4 (see Section 1). Applying the boundary integration method of the present section

gives P = 0.027227, which is gratifyingly close.

A somewhat more definitive comparison can be made if the Monte Carlo analysis is re-

peated over a much longer total sample size (here 6 million), but with intermediate proba-

bilities and associated uncertainties calculated at every increase of 40,000. The results are

shown in Figure 2, with the error bars reflecting a one-sigma uncertainty in the associated

probability estimate.
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Fig. 2. Comparison of Monte Carlo method with equation (7)

It can be seen that the probability estimates for the two methods are comparable, although

the slow convergence of the Monte Carlo method is also evident.

3. CONCLUSIONS

This paper provides a method for determining the probability that the impact point of

a track falls within a defended area, by integrating a function around the boundary, here as-

sumed of polygonal form. This method is more complex to program but offers improved com-

putational efficiency compared to the more straightforward Monte Carlo technique, which

counts the proportion of random variates falling within the area.

∗Several efficient numerical techniques are available on the internet to determine whether or not a point falls

within a two-dimensional closed polygon.
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A defended area defined in terms of curved sections can be accommodated by means

of a polygonal approximation, or else the integral given by equation (5) can be numerically

evaluated to any desired accuracy.
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A. DISCRETE BINARY RANDOM SEQUENCE

This section determines the uncertainty associated with the impact probability P , based

on the following operational sequence:

1. Initiate a counter C to zero.

2. Generate a random sample vector zi from within the distribution.

3. If such a vector zi falls within the defended area, increment the counter C by unity.

4. Once N samples have been generated, determine the ratio P = C/N .

Examining the above sequence from a Kalman Filter perspective ([1]), it is evident that a

‘measurement’ is provided at step 3, and this will take the form of zero (if zi falls outside

the defended area) or unity (if inside). Therefore, if the uncertainty σm associated with this

single-sample measurement can be determined, the uncertainty associated with P follows

directly:

σP =
σm√
N
. (8)

It remains to determine σm and it turns out that its value is related to P itself.

The logic can be formalised by introducing the quantity ζi, which is the individual result

of each comparison of the sample track with the defended area. The quantity ζi will take

either a value of zero, when the sample is outside the defended area, or unity if it is inside.

The result of a large number of such samples is then a binary sequence — a stream of ones

or zeros — and ζi is a Bernoulli random variable ([6], chapter 2 or [3], chapter 3). Since it is

the proportion of samples falling inside the defended area that is of interest, by definition the

expected value of ζi will be P . That is,

E{ζi} ≡ ζ̄ = P.
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The other main quantity that is required is the standard deviation σm associated with ζi,
which is given by

σ2
m =

1

N

∑

(ζi − P )2 .

If this is expanded out,

σ2
m = P 2 +

1

N

∑

(

ζ2i − 2Pζi
)

. (9)

Now suppose that out of the N samples, there are Mi that fall within the defended area and

Mo that fall outside. Therefore, P =Mi/N .

Also, since ζi takes only binary values,

∑

ζ2i =Mi and
∑

ζi =Mi.

Substituting these into equation (9):

σ2
m = P 2 +

Mi

N
− 2P

Mi

N
,

= P 2 + P − 2P 2,

= P (1− P ),

which is the result sought.

B. TRANSFORMATION TO PRINCIPAL AXES

It is assumed that the track state and covariance have already been mapped to some con-

venient earth-surface-based, two-dimensional planar coordinates, here defined in terms of the

vector z = [ξ, η]T . Thus, the probability density characterising the track state and uncertainty

is assumed to be of the following form:

G(ξ, η) =
1

2π
√

|P z|
exp

{

−1

2
(z − z0)

T
P−1

z (z − z0)

}

,

where z0 = [ξ0, η0]
T stands for the track centroid and P z for the associated covariance

matrix.

The aim is to define a coordinate shift and rotation from ξ, η to x, y such that the trans-

formed matrix P ′ is of diagonal form. That is, set

z − z0 = Rx, ⇒ x = RT (z − z0) , (10)

where x = (x, y) and R is a rotation matrix defined as

R =

[

cosψ sinψ

− sinψ cosψ

]

for some rotation angle ψ.

Therefore, require

Q−1 ≡ (Rx)T P−1
z (Rx)

c© Authors and Poznańskie Towarzystwo Przyjaciół Nauk 2018, sait.cie.put.poznan.pl



72 Paul F. Easthope

to be in diagonal form.

Given the properties of rotation matrices, and combined with the equality (AC)
−1

=
C−1A−1 for any two matrices A and C , it is not difficult to show that

Q−1 =
(

RTP zR
)−1

,

so that it is sufficient to define R such that the product RTP zR is in diagonal form. That is,

require
[

Qxx 0

0 Qyy

]

=

[

cosψ − sinψ

sinψ cosψ

][

Pξξ Pξη

Pξη Pηη

][

cosψ sinψ

− sinψ cosψ

]

,

=

[

(

Pξξ cos
2 ψ − Pξη sin 2ψ + Pηη sin

2 ψ
)

(Pξη cos 2ψ − (Pηη − Pξξ) sinψ cosψ)

(Pξη cos 2ψ − (Pηη − Pξξ) sinψ cosψ)
(

Pξξ sin
2 ψ + Pξη sin 2ψ + Pηη cos

2 ψ
)

]

.

The rotation angle ψ is then obtained by setting

Pξη cos 2ψ − (Pηη − Pξξ) sinψ cosψ = 0,

which implies that

tan 2ψ =
2Pξη

Pηη − Pξξ
.

With this value of ψ, the diagonal elements of the covariance matrix Q in the transformed

coordinates are given by

Qxx = Pξξ cos
2 ψ − Pξη sin 2ψ + Pηη sin

2 ψ,

Qyy = Pξξ sin
2 ψ + Pξη sin 2ψ + Pηη cos

2 ψ.

In the present context, it is immaterial which is the ellipse semi-major and which the semi-

minor axis.

Note that in order to make use of equation (6), it is necessary to map each vertex on the

polygon from ξ, η coordinates to x, y using equation (10).

ABSTRACT

This paper discusses a simple method for determining the probability that the predicted impact point

of a track falls within a defended area, by integrating a function around the boundary of that area. The

proposed method is compared to a more direct but computationally intensive Monte Carlo technique.

OKREŚLANIE PRAWDOPODOBIEŃSTWA ZAKOŃCZENIA TRAJEKTORII W CHRONIONYM

OBSZARZE: ZASTOSOWANIE TWIERDZENIA GREENA NA PLASZCZYŹNIE

Paul F. Easthope

W artykule przedyskutowano prosta̧ metodȩ określania prawdopodobieństwa przynależności przewidy-

wanego punktu zakończenia trajektorii do wnȩtrza obszaru chronionego poprzez całkowanie pewnej

funkcji w pobliżu granicy tego obszaru. Zaproponowana metoda jest porównana z bardziej bezpośrednia̧,

lecz bardziej wymagaja̧ca obliczeniowo metoda Monte Carlo.
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