SAQQARA 2007:
PAM XIX [=Reports 2007], Warsaw: PCMA & WUP, 2010
J. Trzciński, K.O. Kuraszkiewicz, F. Welc, Preliminary report on geoarchaeological research in West Saqqara, 194–208
Previous geological research in the area (including sedimentological and petrographical analyses) has demonstrated its usefulness for in-depth archaeological investigations conducted in the necropolis of west Saqqara (Mycielska-Dowgiałło and Woronko 1998: 106–115). An examination of rock layers reveals, among others, the geomorphological processes that shaped the natural environment at the time (Mycielska-Dowgiałło and Woronko 1999: 107–112). The layers which are the effect of these processes and the ancient topography are closely interrelated with archaeological features observed in the examined part of the Saqqara necropolis. Indeed, one observes distinctly the impact distribution of rock units and geomorphological processes exerted on human activities in the necropolis during its functioning (Mycielska-Dowgiałło, Szafranśki and Woronko 1999: 167–178).

In the 2007 season, comprehensive geoarchaeological and geomorphological research was carried out, concentrating on the examination of exposures (sections) from both earlier and current fieldwork. The chief objective of the examination was to identify genetically individual rock layers and to determine their age, as well as reconstruct ancient topography and climate. In the end it proved possible to establish the relations between geomorphology and the geological and archaeological layers in the excavated area.

The present research included the following:
— geomorphological analysis of the excavated area and immediately adjacent ground,
— geological research on exposures in the excavated area (sedimentological, petrographical analyses),
— field documentation of the exposures.

The research was carried out at the southeastern edge of the excavated area (squares 2001, 2002, 2101, 2102; for location of squares on the site plan, cf. Myśliwiec et alii 2004: Pls I, II, IV) in the immediate vicinity of the foundation of the Netjerykhet enclosure wall. Altogether 14 exposures were analyzed in this area [Figs 1, 2]. Two new exposures were also examined in the northern part of the...
Geoarchaeological research carried out in 2007 on layers uncovered in squares 2001, 2002, 2101, 2102, 1804, 1805, 1907 [cf Figs 1–5] was aimed at reconstructing natural morphodynamic processes, ancient climate and processes of anthropogenic transformation of the area in question during the early and late phases, I and II respectively, of the functioning of the so-called Lower Necropolis (for the stratigraphy and preliminary assessment of the chronology of the Lower Necropolis, see Szafranski 1999; Ćwik 2000; Kuraszkiewicz 2007; for earlier geoarchaeological research, see Mycielska-Dowgiallo, Woronko 1998; 1999; Mycielska–Dowgiallo, Szafranski, Woronko 1999).

PHASE I (c. 2700–2600 BC)
In squares 2001 and 2002 [Fig. 1], the area investigated extended from the stone foundation of the Step Pyramid enclosure wall (of Third Dynasty date) in the east to Shafts 63 and 101 (from the Late Old Kingdom) in the west. A sequence of natural strata was revealed, as well as strata of anthropogenic nature (see exposures nos 5, 6, 6a, 7, Figs 1, 2). A thin mud floor (silt, clay and colloid fractions) lay directly on bedrock, which is a local type of Eocene limestone designated as the Saqqara Member of the Maadi Formation (cf. Said 1962: 99, 322). This floor (F1) was uncovered to the east of Shafts 63 and 101 (cf. Welc 2009) [Fig. 6]. The limestone is heavily eroded and weathered on the surface. Above this is a layer of light gray–red sand and very fine gravel (L1). Superimposed is another mud floor (F2), which was whitewashed. Layer L2, found on top of it, is formed of sand and limestone, the latter both fine and medium angular gravel and very fine rounded gravel. This layer is covered with sand of red color rich in iron (Fe$^{3+}$) and quartz gravel with cobbles from 1 to 15 cm in diameter; the layer is strongly cemented with calcium...
carbonate (CaCO$_3$) — this is the so-called lower red layer — L3 (Welc 2009: 176, Fig. 4). The next layer, L4, which is of gray–green color, is composed of local limestone (angular, ranging from gravel to boulder), fine rounded gravel of quartz grains, fragments of crushed mud-brick mixed with sand and fine-grained local limestone. Closing this sequence is the so-called upper red layer (L5), composed of red

Fig. 1. Area adjoining the foundation of the Netjerykhet enclosure wall examined in 2007: dashed line marks edge exposures, numbers with arrows identify individual exposures (Drawing K.O. Kuraszkiewicz, J. Trzcinski)
Fig. 2. Southeastern part of the excavated area covered by geoarchaeological research (exposure numbers from Fig. 1), view from the south (top) and from the north; EWF – Step Pyramid enclosure wall foundation, EW – enclosure wall, WM – Western Massif (Photo J. Dąbrowski, J. Trzciński)
Fig. 5. Part of exposure no. 9 (for location, see Fig. 3), view from the south
(Photo F. W éc)

Opposite page:
Fig. 3. Plan of excavations in the northern part of the necropolis: dashed line marks edge exposures,
numbers with arrows identify individual exposures
(Drawing K.O. Kuraszkiewicz, J. Trzcinski)

Fig. 4. Part of exposure no. 8 (for location, see Fig. 3), view from the east
(Photo J. Trzcinski)
Fig. 7. Sequence of strata in exposure no. 4 in squares 2101 and 2102 (see Figs 1, 2) above Shafts 96, 97 and 98, view from the west: L6 – layer no. 6, L7 – layer no. 7, description of layers in the text; photo shows the section above shaft 98, arrow indicates spot where a fragment of the upper surface of the lamina shown in Fig. 8 was discovered (Drawing F. Węlc, J. Trzciński; photo F. Węlc)

Opposite page:
Fig. 6. Sequence of strata in squares 2001 and 2002 next to the foundation, under their level and under the level of the foundations of the Step Pyramid enclosure wall (Third Dynasty), view from the east (top) and north (bottom): F1 – floor no. 1; L1 – layer no. 1; F2 – floor no. 2 (whitewashed); L2 – layer no. 2; L3 – layer no. 3 (lower red layer); L4 – layer no. 4; L5 – layer no. 5 (upper red layer); M-BW – mud-brick wall; EWF – Step Pyramid enclosure wall foundation; description of layers in the text (Photo F. Węlc)
sand rich in iron (Fe^{3+}) cemented with calcium carbonate (CaCO_3), featuring embedded quartz gravel with cobbles 1–10 cm in diameter and single angular coarse gravel of limestone up to 3 cm in diameter (Welc 2009: 175–177, Fig. 4). Erected on top of this layer is a mud-brick wall aligned E–W and the stone enclosure wall of the Step Pyramid (Welc 2009: 176–177, Figs 5, 6).

PHASE II (c. 2300–2000 BC)
Exposures nos 4a, 4b [Figs 1, 2] in squares 2101 and 2102 show layers L1 through L5 and floor F2 superimposed on bedrock (see description of exposures for Phase I). Directly on bedrock and on top of the fill of shaft 97 there lies layer L6, which takes on a synclinal form, that is, a downward-curving fold with the axis nearer to the northern edge of the shaft [Fig. 7]. The layer is composed of local limestone (rounded pebbles, ranging from gravel to boulder) and rounded mud-brick and tafel fragments. The cementing material is locally layered sand and silt with fine gravel of limestone. In the southern part of exposure no. 4, that is,
above shaft 96, this layer passes horizontally into a laminated sediment with a large content of rounded fine and medium quartz gravel and angular fine and medium limestone (L7). This is also synclinal in form, reaches below the top of Shaft 96 [Fig. 7]. The silty–clayey laminated sediment is of varied thickness of laminas, from 1 to 7 cm, thinning toward the top. The lamina surface is often cracked [Fig. 8]. The maximum number of laminas is about 80.1 Above this there is layer L8 which is much more extensive than layer L7, but the character of the sedimentation is the same [Fig. 9]. The laminas are thinner, from 1 to 2 cm, containing mostly silty grains. The number of laminas are 30 at the most. The laminas thin away to the north, that is, approximately even with the northern edge of Shaft 97. Superimposed is layer L9 of the same extent, made up of yellow–brown sand characterized by horizontal, parallel layering and a large content of rounded fine quartz gravel, as well as angular and flat coarse gravel of limestone spall. Found at the northern end of the described exposure is layer L10 which is discontinuous with layer L9; it is superimposed directly on the synclinal form of layer L6. It is made up of rounded pebbles of quartz, angular limestone spall and chert mixed with sand and silt of yellowish-gray color. The sequence is covered with fine-grained, horizontally layered yellow sand, which has been designated as layer L11. It is on this sand layer that the mud-brick platform was erected.

INTERPRETATION OF GEOARCHAEOLOGICAL RESULTS

PHASE I

Analysis of the profile and mutual stratigraphic relations of the above layers led to a reconstruction of the geodynamic processes that shaped the natural environment reaching indirectly to human activity in the area. Archaeological interpretation of the findings indicates that these processes could have taken place in the first phase of use of the Lower Necropolis, that is, between 2700 and 2600 BC.

At the beginning of this phase the climate appears to have changed from drier and warmer to cooler and wetter (observations confirmed by earlier geoarchaeological research, cf. Mycielska-Dowgiałło, Woronko, 1999: 111; Mycielska-Dowgiałło, Szafrański, Woronko 1999: 178). The kind of weathering observed on the surface of the limestone points to a warm climate characterized by cyclic periods of humidity and dryness with the latter predominating [cf. Fig. 2, top, Fig. 6]. Floors F1 and F2, which are the earliest testimony of human activity in this part of the Lower Necropolis, appeared at this time (Welc 2009: 177). Deposits of evidently rain-flow origin found on top of these floors attest to a climate characterized by frequent but moderate rain. Layers L1 and L2 are the result of short-lived rubble flows of low intensity and extent, caused by rainfall. No evident traces of

1 Deposits of a similar character and form, but of smaller size, can be seen also in the northern part of the exposure, directly above the southern edge of the casing wall of Shaft 96 [Figs 2, 7] and west of Shaft 98 [Fig. 2]; deposits of bigger size were noted in exposures nos 8 and 9 [Figs 3, 4].
erosion of the two layers show that the time
gap between particular water-flows could not
have been extensive.

The structure and lithological composi-
tion of layers found above this leave no
doubt that the water-flows down the slope
became much more intensive in later times.
Proof of this is supplied by the strongly
cemented structure of the *lower red layer*
(L3) [cf. Fig. 6]. The cementing is due to
cyclical watering of the layers coupled with
intensive evaporation. High iron (Fe$^{3+}$)
content suggests intensive weathering of the
primary layers in conditions of a warm and
fairly humid environment. Next, water
started collecting in hollows in the rock
massif, testifying to a distinct intensification
of rainfall in the area. Corresponding to this
phase is layer L4, which is in essence the
bottom of a small reservoir filled with
crushed stone brought there by intensive
mud and rubble flows. The *upper red layer*
(layer L5), which ends the studied sequence
of strata attributed to Phase I is no longer as
strongly cemented structurally as the
lower red layer (L3). It means that the intensity
of rainfall and water-flows lessened over time.
In all likelihood, the latter episode
corresponds to the beginnings or the first
half of the Third Dynasty.

It can be said in conclusion that the climate
during the first phase of the functioning of
the cemetery was characterized by considerable
changeability; furthermore, repeated cycles of dry periods
and periods of intensive rainfall occurred
alternately over a relatively short time. This
reconstruction of events is confirmed by
geoarchaeological research carried out,
among others, in the eastern part of the Nile
Delta, where it was found that in the said
period, that is, around 2600 BC, the level of
water in the Nile fluctuated considerably due
to an unstable climate characterized by
transient periods of high and low rainfall
intensity (cf. De Wit 1993: 317).3

PHASE II

It is difficult to be sure of the climatic
conditions in the time following the Third
Dynasty through the end of the Fifth
Dynasty, because any strata corresponding to
this period were destroyed by the
superstructures of Sixth Dynasty mastabas
(those of Shafts 51, 101, 63, 96, 97, 98).

Observation and analysis of the
stratigraphical sequence in section 4 [Fig. 7]
in square 2102, permitted a provisional
reconstruction of site history at the time of
the end of the Lower Necropolis, which is
put in the Late Old Kingdom and the
beginning of the First Intermediate Period
(see above). The building of the enclosure
wall of the Step Pyramid on the surface of
layer L5 probably stopped for a while the
mud and rubble flows engulfing the Lower
Necropolis.

Layer L6 is connected most likely with
the destruction of the Sixth Dynasty mud-
brick mastabas,4 caused by the extensive

2 Layers L3 and L5 are the result of a redeposition of gravels originating from an active phase of the Nile in the Quaternary period.
Gravels of this kind are present in large areas of central Saqqara and around Abusir: Said 1962: 194; El-Qady, Sakamoto,
Ushijima 1999: 1093. The nearest area with such gravel occurs in the upper part of the southern face of the southern section of
the so-called ‘dry moat’. On this structure, cf., among others, Swelim 1988; 2006; Myśliwiec 2006a.

3 With regard to the entire Near East in a broader time range, that is from 7000 to 4500 BC, this period is referred to as a

4 Earlier damage of tomb structures has also been noted in the necropolis (e.g. phase B in Kuraszkiewicz 2007: 174), but it
seems that the destruction which resulted in the formation of layer L6 was a cataclysm on an unprecedented scale, which
ultimately put an end to the functioning of the Lower Necropolis.
water, mud and rubble streams flowing into this area from the east, that is, from the Netjerykhet complex [cf. Fig. 7]. This would also indicate that the enclosure wall of the Step Pyramid was in a state of disrepair at the time. The water with mud and rubble flows filled the hollows in the rock massif, among others the shafts mentioned above. This is suggested by the synclinal depressions above Shaft 97. These phenomena should be connected with the beginning of a rainy period which occurred most likely in the end of the Old Kingdom and the beginning of the First Intermediate Period. There were evidently no new mastabas erected after the formation of this layer, but at least some of the burial shafts were robbed and left open (this sequence of events is especially well attested in the case of Shafts 97 and 98 in square 2102) [Figs 1, 7].

The next layer L8, of synclinal laminated deposits indicates the existence in the study area of small-sized land-locked reservoirs where accumulations of fine-grained material formed. The fact that these reservoirs were filled with water indicates that the area was heavily watered and its retention capacity did not allow further infiltration of water into the rock massif. Water collected in existing depressions, and sedimentation occurred in stagnant water. Single lamina, consisting of lower silty and upper clayey layers, were the result of one rainfall cycle and the filling of a reservoir with a water suspension [cf. Figs 7, 8]. The thickness of the lamina is indicative of the length and intensity of rainfall, and by the same the intensity of erosion and water-flows. Cracks appeared on the top surfaces of the laminas when the reservoirs dried up, testifying to seasonal periods of intense evaporation. The desiccation cracks are not present in all of the laminas, but they occur a number of times throughout the thickness of the layer. The number of lamina proves the intensity and long-lasting character of rainfall.

Layer L8 is a continuation of layer L7 [cf. Fig. 9]. After the existing depressions were filled, shallow reservoirs appeared in nearby low-lying areas over a much larger extent. Layer L8 reflects this process and the thinner lamina are proof that the area of water-filled reservoirs increased rather than that the intensity of rainfall dropped. On the other hand, the smaller overall number of lamina is proof of a decline in rainfall cycles.

Superimposed on layer L8 is layer L9 of well sorted sand of aeolian origin, that is, transported by winds [cf. Fig. 9]. The dark brown coloring of the layer indicates also very fine material being carried by the winds, while the coarse material in it suggests heavy storms capable of moving also small rubble and stones. A deposit of this kind attests to a drier and warmer climate characterized by no rainfall accompanying its formation.

The erosional dissection of layers L8 and L9 by the deposit designated as L10, which can be interpreted as a mud and rubble stream, suggests a temporary return of flash floods connected with sudden violent rainstorms [cf. Fig. 9]. A stream of this kind ran directly over the synclinal form of layer L6. The surface of the area was subsequently leveled by winds which deposited well-sorted sand. The light color and absence of coarse material are proof of stable aeolian transport conditions and a dry and hot climate.

Layers L6 through L11 can be dated by the brick platform covering them in squares 2101–2102 (on the platform, see Myśliwiec 2002b; 2005a) [cf. Figs 1, 9]. The platform should be dated in all probability to the early Nineteenth Dynasty, hence the maximum time range for the formation of these layers should be assumed as being from the end of the Sixth through of the Nineteenth Dynasty.
Observations of strata making up the exposures of Phase I have led to some general conclusions concerning the functioning of the Lower Necropolis in the hundred years between 2700 and 2600 BC. This regards in particular the unfinished tomb with ramp discovered in the western part of sector 2002 (on this tomb, cf. Myśliwiec 2005a; 2005b; 2006b, Welc 2007). Assuming that the dating of the structure to the end of Second or beginning of the Third Dynasty is correct (Myśliwiec 2005a; 2007; Welc 2007; Welc 2009: 177–178; see also suggestion of a later dating to the close of the Third and early Fourth Dynasty, Kuraszkiewicz 2009: 170), the cessation of work on this hypogeum may be connected with its unfortunate location on the slope and in the line of concentrated flows from the east, from the complex of Netjerykhet. In effect, the planned tomb would have been threatened by frequent flooding and filling with recurring mud and rubble flows.

Pebble long-axis analyses carried out for the upper red layer (L3) and the lower red layer (L5) have contributed important data on the ground relief in the area at the time. The mud and rubble flows which are responsible for the formation of these layers flowed mainly from the east. This means that there was no physical barrier in that direction. This refutes the theory that the so-called Western Massif, the west face of which is found just beyond the enclosure wall, was constructed earlier than the Step Pyramid complex.5

Had such a monumental structure existed in this location before the time of the Third Dynasty, the water-flow pattern in this part of the site would have been different from that recorded by the present research.

In summary, based on the analysis of deposits making up the profile of Phase II, it can be supposed that the Lower Necropolis went out of use mainly due to the effects of climatic changes which took place at the turn of the Old Kingdom and the First Intermediate Period. In the initial phase of these environmental changes, the climate was very humid and characterized by intensive rainfall. An extended period of intensive rainfall resulted in the destruction of the mastaba superstructures and penetration by the rainwater of at least some shafts which remained open after plundering. The waters stagnated in many seasonal reservoirs all over the area of the necropolis.

Under such conditions the necropolis could not have been used for burial purposes any longer. In successive stages, the climate became drier and characterized by heavy winds. No building activities took place within the confines of the study area until the appearance of the mud-brick platform, presumably in the beginnings of the Nineteenth Dynasty. The area of this necropolis started to be used intensively again for burials in the Ptolemaic age (cf. Myśliwiec 2002a; Myśliwiec et alii 2008: 11–13).

5 According to R. Stadelmann, the Western Massif is an independent architectural structure predating the building of the Step Pyramid, cf. Stadelmann 1985. New ceramic analyses have shown, however, that the westernmost projection of the Western Massif was built or at least rebuilt during the reign of Netjerykhet, see T.I. Rzeuska and F. Welc, in this volume.
SAQQARA
EGYPT

REFERENCES

Ćwick, A.
2000 The stratigraphy of West Saqqara. Preliminary remarks, PAM XI [=Reports 1999], 109–117

De Wit, H.E.
1993 The evolution of the Eastern Nile Delta as a factor in the development of human culture [in:] L. Krzyżaniak, M. Kobusiewicz, J. Aleksander (eds), Environmental Change and Human Culture in the Nile Basin and Northern Africa Until the Second Millennium B.C., Poznań, 305–320

El-Qady, G., Sakamoto, Ch., Ushijima, K.
1999 2-D inversion of VES data in Saqqara archaeological area, Egypt, Earth Planets Space, 51, 1093

Horowitz, A.
1979 The Quaternary of Israel, New York: Academic Press

Kuraszkiewicz, K.
2007 Remarks on the development of the Old Kingdom Necropolis, PAM XVII [=Reports 2005], 169–175
2009 More remarks on late Old Kingdom mastabas west of the Step Pyramid, PAM XVIII [=Reports 2006], 165–173

Mycielska-Dowgiałło, E., Woronko, B.
1998 Analysis of mineral deposits in the Northern Wall of Pit I, PAM IX [=Reports 1997], 106–115
1999 Genetic-climatic interpretation of mineral deposits uncovered in section N and sections perpendicular to it, PAM X [=Reports 1998], 107–112

Mycielska-Dowgiałło, E., Szafański, Z.E., Woronko, B.
1999 Reconstruction of morpho-dynamic processes during the last 4700 years period in the archaeological site (Area I) at Saqqara (Egypt), Geoarqueología i Quaternari Litoral. Memorial M.P. Fumanal, Valencia, 167–178

Myśliwiec, K.
2005a Eine geheimnisvolle Rampe und Plattform an der Westseite der Pyramide des Djoser, Sokar 11/2, 6–7
2005b West Saqqara 2004, PAM XVI [=Reports 2004], 152
2007 Saqqara [in:] Seventy Years of Polish Archaeology in Egypt, Warsaw: PCMA, University of Warsaw, 79–81
SAQQARA

EGYPT

Myśliwiec, K., Kuraszkiewicz, K., Czerwik, D. Rzeuska, T.I., Kaczmarek M., Kowalska, A.,
Radomska, M., Godziejewski, Z.
2004 The Tomb of Merefnebef, Saqqara I, Warsaw: ZAŚ PAN and Neriton

Myśliwiec, K. et alii
2008 The Upper Necropolis, Saqqara III, Part I, Warsaw: ZAŚ PAN and Neriton

Rzeuska, T. I., Welc, F.
2010 Some remarks on the Western Massif in the Step Pyramid complex, PAM XIX [=Reports 2007], 209–214

Said, R.

Stadelmann, R.
1985 Die Oberbauten der Königsgräber der 2. Dynastie in Sakkara, Mélanges Mokhtar II
[=BdE 97], Cairo: IFAO, 295–307

Swelim, N.
1988 The Dry Moat of the Netjerykhet complex [in:] J. Baines, T.G.H. James, A. Leahy and
A.F. Shore (eds), Pyramid Studies and Other Essays Presented to I.E.S. Edwards, London: Egypt Exploration Society, 12–22

2006 Dry Moat. The south rock wall of the Inner South Channel [in:] E. Czerny, I. Hein,
H. Hunger, D. Melman, A. Schwab (eds), Timelines: Studies in Honour of Manfred Bietak
[=Orientalia Lovaniensia Analecta 149], Louvain-la-Neuve: Peeters, 363–376

Szafrański, Z.E.
1999 West Saqqara, Observations on stratigraphy. North-west part of area I/E-F (former Pit
I/E-F), PAM X [=Reports 1998], 91–96

Welc, F.

2009 Some remarks on the early Old Kingdom structures adjoining on the west enclosure wall
of the Netjerykhet funerary complex, PAM XVIII [=Reports 2006], 174–179

Polish Archaeology in the Mediterranean 19, Reports 2007
CONTENTS

OBITUARIES
Jadwiga Lipińska .. 13
Joanna Aksamit ... 15
Irena Pomorska .. 17
Anna Świderkówna ... 19

ACKNOWLEDGMENTS .. 21
ABBREVIATIONS ... 25
MAP ... 26

EGYPT

ALEXANDRIA

Grzegorz Majcherek .. 31

The Islamic Graveyard on Kom el-Dikka in Alexandria. Excavations in the 2006/2007 field season
Emanuela Kulicka .. 49

Glass from Area F on Kom el-Dikka (Alexandria)
Renata Kucharczyk .. 56

MAREA

MAREA 2007. Eighth Season of Excavations
Hanna Szymańska, Krzysztof Babraj 71

Conservation Work at Marea in 2007
Barbara Wróńska-Kucy ... 77

MARINA EL-ALAMEIN

Marina el-Alamein. Conservation work in the 2007 season
Stanisław Medeksza et alii .. 81
<table>
<thead>
<tr>
<th>CONTENTS</th>
</tr>
</thead>
</table>

The Commodus Monument from House H21C in Marina El-Alamein
Rafal Czerner, Stanislaw Medeksza .. 98

Glass from Houses 1 and 2 in Marina El-Alamein
Renata Kucharczyk ... 114

Tell El-Balamun
Tomasz Herbich, A. Jeffrey Spencer .. 131

Tell El-Retaba
Tell El-Retaba. Season 2007
Slawomir Rzepka with contributions by Jozef Hudec, Vojtech Gajdos and Kamil Rozimant ... 143

Tell El-Retaba. Ceramic Survey, 2007
Anna Wodzińska .. 152

Tell El-Farkha
Tell El-Farkha. Preliminary Report, 2007
Marc Chlodnicki, Krzysztof M. Cialowicz .. 161

Saqqara
Saqqara 2007. Archaeological Activities
Karol Mysliwiec .. 179

Saqqara 2007. Inscribed Material
Kamil O. Kuraszkiewicz .. 187

Preliminary Report on Geoarchaeological Research in West Saqqara
Jerzy Trzciński, Kamil O. Kuraszkiewicz, Fabian Wélc 194

Some Remarks on the Western Massif in the Step Pyramid Complex
Teodozja I. Rzeuska, Fabian Wélc .. 209

Saqqara 2007: The Pottery
Teodozja I. Rzeuska ... 215

Saqqara 2007: Conservation Work
Zbigniew Godziejewski ... 224

Naqlun
Włodzimierz Godlewski ... 229

Naqlun 2007: Numismatic Note
Barbara Lichocka .. 245

Conservation of a Fatimid Shawl from the Naqlun Cemetery
Barbara Czaja-Szewczak ... 248

Deir El-Bahari
Temple of Hatshepsut at Deir el-Bahari, Season 2006/2007
Zbigniew E. Szafrański ... 251
CONTENTS

COURTYARD OF THE ROYAL MORTUARY CULT COMPLEX
Olga Białostocka .. 269

RECONSTRUCTION WORK IN THE VESTIBULE OF THE CHAPEL OF HATSTEPSUT
Edyta Kopp .. 273

RESTORATION WORK IN THE SOLAR CULT COMPLEX OF THE TEMPLE OF HATSTEPSUT IN DEIR EL-BAHARI
Teresa Kaczer, Mieczysław Michiewicz 278

CONSERVATION AND RESTORATION OF WALL PAINTING IN THE SOUTHERN CHAMBER OF AMUN OF THE HATSTEPSUT TEMPLE IN DEIR EL-BAHARI
Izabela Uchman-Laskowska ... 285

APPENDIX: MATERIAL ANALYSES OF SAMPLES OF ROCK AND PAINTING LAYERS FROM THE SOUTHERN CHAPEL OF AMUN IN THE TEMPLE OF HATSTEPSUT IN DEIR EL-BAHARI .. 292

SHEIKH ABD EL-GURNA (WEST THEBES)

SHEIKH ABD EL-GURNA. HERMITAGE IN TOMB 1152 AND CHAPEL IN TOMB 1151
Tomasz Górecki .. 297

DAKHLEH OASIS

DAKHLEH OASIS. PETROGLYPH UNIT, ROCK ART RESEARCH, 2007
Ewa Kuciewicz, Eliza Jaroni, Michał Kobusiewicz 305

SUDAN

OLD DONGOLA

OLD DONGOLA. KOM A (CITADEL), 2007
Włodzimierz Godlewski .. 313

BANGANARTI

BANGANARTI. ARCHAEOLOGICAL EXCAVATION OF THE SITE IN 2007
Bogdan T. Żurawski .. 327

APPENDIX 1. EXAMINATION OF HUMAN BONES FROM BANGANARTI AND TANQASI, 2007
Karol Piasecki ... 336

APPENDIX 2. CONSERVATION WORKS IN 2007
Dorota Moryto-Naumiuk, Lucyna Piekacz 339

EXCAVATING THE CURTAIN WALL IN BANGANARTI IN 2007
Mariusz Drzewiecki .. 342

FAUNAL REMAINS FROM BANGANARTI, SEASON 2007
Marta Osińska ... 359

SHEMKHIYA

SHEMKHIYA 2006/2007
Bogdan T. Żurawski .. 369
CONTENTS

FOURTH CATARACT (MSDAP)

FOURTH CATARACT ARCHAEOLOGICAL SURVEY BETWEEN EL-AR (SHEMKHIA) AND EL-GAMAMIYA (NOVEMBER-DECEMBER 2007)
Marek Chłodnicki, Anna Longa, Piotr Osypiński 377

ROCK ART RESEARCH ON THE FOURTH CATARACT IN 2007
Eliza Jaroci, Ewa Kuciewicz .. 394

EXCAVATIONS ON TWO KERMA HORIZON CEMETERIES IN EL-GAMAMIYA
Piotr Osypiński ... 400

KERMA HORIZON POTTERY FROM THE CEMETERIES IN EL-GAMAMIYA
 Dobiesława Bańńska .. 406

APPENDIX: EGYPTIAN POTTERY FROM THE CEMETERY AT EL-GAMAMIYA
Teodozja I. Rzeuska .. 415

THE EL-AR P1 CEMETERY (FOURTH CATARACT, SUDAN)
Anna Longa with an appendix by Joachim Śliwa 420

APPENDIX: THE SCARAB FROM EL-AR P1
Joachim Śliwa .. 428

ARCHAEOLOGICAL EXCAVATIONS ON THE TUMULUS CEMETERIES AT EL-AR 7 AND 29 (SHEMKHIA)
Marek Chłodnicki .. 430

EL-SADDA

EL-SADDA. EXCAVATIONS ON THE POLISH CONCESSION (HAMADAB DAM RESCUE PROJECT) JANUARY-FEBRUARY 2007
Piotr Osypiński ... 435

APPENDIX 1. FAUNAL REMAINS FROM THE NEOLITHIC SITE OF EL-SADDA 28
Marta Osypińska ... 448

APPENDIX 2. FAUNAL REMAINS FROM THE POST-MEROITIC CEMETERY OF EL-SADDA 1. SEASON 2007
Marta Osypińska .. 450

APPENDIX 3. PRELIMINARY REPORT ON HUMAN SKELETAL REMAINS FROM THE ARCHAEOLOGICAL SITES IN EL-SADDA
Łukasz Maurycy Stanaszek .. 454

EXCAVATIONS OF A KERMA-PERIOD CEMETERY AT EL-SADDA 4
Michał Sip ... 461

MtoM

EARLY MAKURIA RESEARCH PROJECT: EL-ZUMA EXCAVATIONS. PRELIMINARY REPORT ON THE SECOND SEASON, 2007
Mahmoud El-Tayeb .. 467

POTTERY FROM THE CEMETERY IN EL-ZUMA (2007 SEASON)
Edyta Klimaszewska-Drabot ... 480

ANIMAL BONE REMAINS FROM THE CEMETERY IN EL-ZUMA (2007 SEASON)
Marta Osypińska .. 488
EARLY MAKURIA RESEARCH PROJECT. SEASON 2007
Włodzimierz Godlewski, Joanna Kociankowska-Bożek ... 494

CYPRUS
NEA PAPHOS
Nea Paphos, season 2007
Wiktor Andrzej Daszewski, Henryk Meyza et alii .. 503

SYRIA
PALMYRA
Palmyra. Preliminary report on the forty-fifth season of excavations
Michał Gawlikowski ... 517

HAWARTE
Hawarte: Project for the reconstruction of the painted decoration of the Mithreum
Dobrochna Zielinśka ... 527

TELL ARBID
Tell Arbid. Preliminary report on the results of the twelfth season of Syrian-Polish excavations
Piotr Bieliński .. 537
Technological marks on pottery vessels. Study of evidence from Tell Arbid, Tell Rad Shaqrah and Tell Jassa el-Gharbi (Northeastern Syria)
Anna Smogorzewska ... 555

TELL QARAMEL
Tell Qaramel. Excavations 2007
Ryszard F. Mazurowski ... 565
Early Neolithic wall construction techniques in the light of ethnoarchaeological observations on the architecture of the modern Syrian village of Qaramel
Marcin Białowarczuk ... 586

IRAN
KHONE-YE DIV
Khone-yé Div. Preliminary report on the first season of Irano-Polish excavations
Barbara Kaim, Hassan Hashemi ... 603

INDEX OF SITES .. 613
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AegLev</td>
<td>Ägypten und Levante. Internationale Zeitschrift für ägyptische Archäologie und deren Nachbargebiete (Wien: Österreichische Akademie der Wissenschaften)</td>
</tr>
<tr>
<td>ANM</td>
<td>Archéologie du Nil Moyen (Lille)</td>
</tr>
<tr>
<td>AnnAIHV</td>
<td>Annales de l'Association internationale pour l'histoire du verre</td>
</tr>
<tr>
<td>ASAE</td>
<td>Annales du Service des antiquités de l'Égypte (Cairo: Supreme Council of Antiquities)</td>
</tr>
<tr>
<td>Atilot</td>
<td>Atilot. Journal of the Israel Department of Antiquities</td>
</tr>
<tr>
<td>AV</td>
<td>Archäologische Veröffentlichungen, Deutsches Archäologisches Institut, Abteilung Kairo (Berlin–Mainz am Rhein)</td>
</tr>
<tr>
<td>BAR</td>
<td>British Archaeological Reports (Oxford: Archeopress)</td>
</tr>
<tr>
<td>BASOR</td>
<td>Bulletin of the American Schools of Oriental Research (Ann Arbor)</td>
</tr>
<tr>
<td>BCE</td>
<td>Bulletin de la céramique égyptienne (Cairo: IFAO)</td>
</tr>
<tr>
<td>BCH</td>
<td>Bulletin de correspondance hellénique</td>
</tr>
<tr>
<td>BdE</td>
<td>Bibliothèque d’étude (Cairo: IFAO)</td>
</tr>
<tr>
<td>Berytus</td>
<td>Berytus. Archaeological Studies (Beirut)</td>
</tr>
<tr>
<td>BES</td>
<td>Bulletin of the Egyptological Seminar, Studies in Honor of James F. Romano (New York)</td>
</tr>
<tr>
<td>BIFAO</td>
<td>Bulletin de l’Institut français d’archéologie orientale (Cairo)</td>
</tr>
<tr>
<td>BMMA</td>
<td>Bulletin of the Metropolitan Museum of Art (New York)</td>
</tr>
<tr>
<td>BSAA</td>
<td>Bulletin de la Société archéologique d’Alexandrie (Alexandria)</td>
</tr>
<tr>
<td>CCE</td>
<td>Cahiers de la céramique égyptienne (Cairo: IFAO)</td>
</tr>
<tr>
<td>CRAI</td>
<td>Comptes rendus de l’Académie des inscriptions et belles-lettres (Paris)</td>
</tr>
<tr>
<td>CRIPEL</td>
<td>Cahier de recherches de l’Institut de papyrologie et d’Égyptologie de Lille (Villeneuve d’Ascq: Université Charles de Gaulle, Lille III)</td>
</tr>
<tr>
<td>EtTav</td>
<td>Études et travaux. Travaux du Centre d’archéologie méditerranéenne de l’Académie des sciences polonaise (Warsaw: IKSiO PAN)</td>
</tr>
<tr>
<td>GAMAR</td>
<td>Gdańsk Archaeological Museum African Reports (Gdansk)</td>
</tr>
<tr>
<td>LAA Reports</td>
<td>Israel Archaeological Authority Reports (Jerusalem: Israel Antiquities Authority)</td>
</tr>
<tr>
<td>JNES</td>
<td>Journal of Near Eastern Studies (Chicago)</td>
</tr>
<tr>
<td>JARCE</td>
<td>Journal of the American Research Center in Egypt (Boston–Princeton–New York–Cairo)</td>
</tr>
<tr>
<td>JGS</td>
<td>Journal of Glass Studies (Corning NY: Corning Museum of Glass)</td>
</tr>
<tr>
<td>JJP</td>
<td>Journal of Juristic Papyrology (Warszawa: The Taubenschlag Foundation)</td>
</tr>
<tr>
<td>KMT</td>
<td>KMT: A Modern Journal of Ancient Egypt (San Francisco)</td>
</tr>
<tr>
<td>MDAIK</td>
<td>Mitteilungen des Deutschen Archäologischen Instituts, Abteilung Kairo (Wiesbaden)</td>
</tr>
<tr>
<td>MISHKAH</td>
<td>MISHKAH. Egyptian Journal of Islamic Archaeology (Cairo: SCA and American University in Cairo)</td>
</tr>
<tr>
<td>OBO Series Archeologique</td>
<td>Orbis Biblicus et Orientalis (Freiburg–Göttingen)</td>
</tr>
<tr>
<td>OIP</td>
<td>Oriental Institute Publications (Oriental Institute of the University of Chicago)</td>
</tr>
<tr>
<td>OLA</td>
<td>Orientalia Lovaniensia Analecta (Louvain)</td>
</tr>
<tr>
<td>PAM</td>
<td>Polish Archaeology in the Mediterranean (Warsawa: PCMA)</td>
</tr>
<tr>
<td>PEQ</td>
<td>Palestine Exploration Quarterly (London: Palestine Exploration Fund)</td>
</tr>
<tr>
<td>RDAC</td>
<td>Report of the Department of Antiquities, Cyprus</td>
</tr>
<tr>
<td>SAGA</td>
<td>Studien zur Archäologie und Geschichte Alägyptens (Heidelberg)</td>
</tr>
<tr>
<td>SAK</td>
<td>Studien zur altägyptischen Kultur (Hamburg)</td>
</tr>
<tr>
<td>SDAIK</td>
<td>Sonderschrift des Deutschen Archäologischen Instituts, Abteilung Kairo</td>
</tr>
<tr>
<td>SJE</td>
<td>The Scandinavian Joint Expedition to Sudanese Nubia Publications (Uppsala)</td>
</tr>
<tr>
<td>TOPOI</td>
<td>TOPOI Orient – Occident (Lyon)</td>
</tr>
</tbody>
</table>