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Abstract

Heterogeneous architectures and programming techniques will be very

important in the development of exascale HPC applications. Adapting

heterogeneous programming techniques to scientific programming is not

always straightforward. Here we present an in-depth analysis of an as-

trophysical application used for performing an all-sky coherent search for

periodic signals of gravitational waves in narrowband detector data. The

application was first ported to the PowerXCell8i architecture and then

on the basis of achieved performance it was again redesigned and pro-

grammed in a heterogeneous model. Moreover presented heterogeneous

techniques could be easily adopted for other scientific computational prob-

lems involving FFT computations.

1 Introduction

Nowadays using specialized hardware architectures or accelerators for specific
computational problems is very common. For large scientific codes it usually
means that special programming techniques have to be applied to offload some
of the computationally intensive parts of the application on given hardware.
Such techniques are usually called heterogeneous computing.

In this work we present an in-depth analysis of an astrophysical application
used for performing an all-sky coherent search for periodic signals of gravita-
tional waves in narrowband detector data. The application was ported to a
prototype hybrid platform based on the IBM PowerXCell8i architecture. The
resulting implementation can be compiled and used as a standalone x86-64 ap-
plication, standalone Cell application or hybrid x86-64/Cell application. The
IBM Cell processor was designed to bridge the gap between general purpose
processors and specialized computer architectures like GPUs. The architecture
was already extensively described i.e. in [14], [18] and [19]. Supercomputer
architectures like Roadrunner [5] or Nautilus [9] utilize the IBM PowerXCell8i
processor as an accelerator for calculations running on x86-64 cores. One of
the programming techniques available for such heterogeneous architectures is
the IBM DaCS library which has proven to be useful in several scientific ap-
plications developed for the Roadrunner and Nautilus supercomputers. The
described application is one of the codes implemented with the use of DaCS for
execution on Nautilus.
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The application itself and its reference setup is briefly discussed in Chapter 2.
A detailed description of the programming techniques used for implementation
of both the PowerXCell8i and hybrid versions of the code is presented in Chap-
ter 3. In this chapter we also show how the custom designed and implemented
data conversion mechanism improves the overall performance of the hybrid ap-
plication. In the last chapter we discuss the results and formulate the conclusions
and perspective of code development on described computer architectures.

2 Compute problem

2.1 Scientific background

A gravitational wave is a physical phenomenon which arises from Einstein’s
theory of general relativity and is defined as a fluctuation in the curvature
of spacetime which propagates as a wave, traveling outward from the source.
Gravitational waves are radiated by objects whose motion involves acceleration.
This class of objects include binary star systems composed of white dwarfs,
neutron stars, or black holes. Compared to standard methods used for observing
the universe, like visible light or radio telescope observations, gravitational waves
have two important unique properties. First of all gravitational waves can be
emitted by a binary system of uncharged black holes without presence of any
type of matter nearby. Secondly gravitational waves can pass through any
intervening matter without being scattered significantly. Both of these features
allow researchers to explore astronomical phenomena which have never before
been observed by humans. The observations of gravitational waves are usually
done by ground-based interferometers. Big research projects like LIGO [2] or
VIRGO [7] usually involve operationally running interferometers and produce a
significant amount of observational data. This data is subject to further analysis
by computer codes developed by research groups involved in those projects. The
main computational tasks to be performed on those observational data sets are
usually described by algorithms for searching of periodicity or quasiperiodicity.

2.2 Compute algorithm

In this work we present an in-depth analysis of an astronomical application used
for performing an all-sky coherent search for periodic signals of gravitational
waves in narrowband data from a detector. The search is based on the maxi-
mum likelihood statistics called the F -statistics as proposed by P.Jaranowski,
A. Królak and B.F.Schultz [17]. The computer code developed by the Polgraw
group [4] was used in an operational manner for analysis of observational data
from the NAUTILUS [9] and VIRGO [7] detectors. The algorithm implemented
in the code was designed for gravitational wave signals generated by rotating
neutron stars. The mathematical description of the algorithm was given in pre-
vious works of the code authors ([17],[15],[16],[8]). Here we will just shortly
describe the most important parts of the code. The simplified flowchart of the
code is presented in Fig. 1.

The code begins with reading the observational data sets and setting appro-
priate parameters for the searching algorithm. After that an outer loop across
the sky begins. The very first step in this loop is an ampiltude and phase
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Figure 1: Flowchart of the application.

demodulation. The following step, the so-called resampling of the signal, is per-
formed in two stages: a Fourier interpolation and a spline interpolation. The
most computationally expensive part of the whole code is a loop over spindown
which can have a length between 0 and 1000 depending on the signal currently
analyzed. This loop consists of four main steps:

1. Phase demodulation (2nd part) - double precision sin/cos computa-
tions, double precision complex multiplications

2. FFT computations - double precision 1 dimensional complex forward
transforms of size N = 524288

3. Interbinning step - interpolation algorithm, double precision complex
subtractions and divisions, double precision real square root computations

4. Finding and saving signals - nonlinear optimization for finding a max-
imum, saving the resulted signals with values below threshold

3 Methodology

The very first attempt to accelerate the execution of the described application
was to port some of its functional parts to the Synergistic Processing Units
(SPUs) of the PowerXCell8i processor. In order to select appropriate parts of
the application the programmer usually has to perform the following tasks:

• compile, run and measure the performance of the application on a general
purpose architecture (i.e. x86-64)

• compile, run and measure the performance of the application on the PPU
of the PowerXCell8i processor,

3



• identify the most computationally intensive parts of the application,

• check the suitability of the selected parts for execution on SPUs.

Unfortunately the usual result of the first two tasks listed above is that the
application’s performance is much higher on the single core of the x86-64 archi-
tecture than on the PPU, which is related to the fact that the Power Processing
Unit of the Cell processor was not designed and optimized for computations.
This was also valid for the described application. Executions on the PPU were
approximately 3 times slower than on a corresponding single core of the x86-
64 chip. This observation is of crucial importance to the overall performance
of the application on the Cell processor even if some of its parts were already
optimized for executions on SPUs. One of the ways to overcome this issue is to
use a heterogeneous programming model where only the well optimized parts
of the application are executed on the Cell processor whereas the application
itself is running on an x86-64 core. In this chapter we present the performance
results of the application ported to the Cell processor. Since not all of the
parts/algorithms are well suited for execution on the SPUs we decided to use a
heterogeneous environment to increase the overall performance. This is briefly
described in the second section of this chapter.

3.1 SPU implementation

We have identified 3 functional parts of the application that were especially
well suited for execution on the SPU architecture: the 2nd part of phase de-
modulation, FFT computations and the interbinning step. However to achieve a
certain level of granularity for computations on the SPUs we needed to redesign
the whole program. We decided to make use of the available RAM memory
(8GB for each IBM QS22 Cell blade) and perform all 3 functional parts in
seperate loops over spindown. The new resulting flowchart of the program is
presented in Fig. 2.

This small change turned out to be very important for the final performance
of the application on the Cell chip. Here we will describe the effort we have
made to optimize the code for this architecture in detail.

We have implemented a parallel version of the phase demodulation and in-
terbinning step on the SPUs with the use of the libspe2 library [12]. We have
used a double buffering scheme for DMA transfers between Local Store of the
SPUs and main memory. We have then compared the resulting performance
with the use of 8 SPUs (one PowerXCell8i chip).

The FFT step was initially implemented with the use of the Fastest Fourier
Transform in the West (FFTW) library [13]. We have decided to use the same
library in our implementation since FFTW was already ported to the Cell pro-
cessor by a group of programmers at IBM Austin Research Laboratories.

A performance comparison between a single core AMD Opteron 2216 pro-
cessor and a single PowerXCell8i chip for the described functional parts is pre-
sented in Fig. 3. It should be also mentioned that all computations involved
in the algorithm are based on double precision arithmetic. Therefore the maxi-
mum performance rate that could be achieved on one PowerXCell8i chip is 102.4
GFlops. The single core of the corresponding AMD Opteron 2216 processor has
a maximum performance rate of 9.6 GFlops.
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Figure 2: Flowchart of the redesigned application.

Figure 3: Performance of the described functional parts of the algorithm on the
Cell architecture (blue - single core x86-64, red - PowerXCell8i)

We were able to speed up few parts of the application with the use of multi-
ple SPUs. However not all steps of the implemented algorithm could be ported
and optimized on the Cell architecture. One example is the so-called "Finding
signals" step based on the maximum likelihood statistics. Moreover as we men-
tioned before computational performance of the PPU core is very poor, thus
usually the fragments of the code that are not accelerated on SPUs slow down
the overall performance. In particular the "Finding signals" step takes in aver-
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age 2.67 sec. on the Cell and 0.5 sec. on a single core of the x86-64 architecture
chip. The final result we obtained was approximately 3.24 speedup of the 8
SPU version compared to a single core x86-64 version.

3.2 Hybrid implementation

The observation that some of the parts of the application have much better per-
formance on the x86-64 architecture encouraged us to prepare a heterogeneous
version of the code where we use the PowerXCell8i processor as an accelerator
to compute only the functional parts of the application that were optimized for
execution on multiple SPUs. For implementing such a scheme we have chosen
to use a hybrid library developed by IBM [1].

The Data Communication and Synchronization (DaCS) [1] library and run-
time was designed to support the development of applications for heterogeneous
systems based on the PowerXCell8i and x86-64 architectures. The DaCS API
provides an architecturally neutral layer for application developers. It serves as
resource and process manager for applications that use different computing de-
vices. With the use of specific DaCS functions we can execute different remote
processes and initiate data transfers or synchronization between them.
One of the main concepts of DaCS is a hierarchical topology which enables ap-
plication developers to choose between a variety of hybrid configurations. First
of all it can be used for programming applications for the Cell processor by
exploiting its specific hybrid design. In such a model developers use DaCS to
create and execute processes on the PPU and SPUs and to initiate data transfers
or synchronization between those processes. It should be stated that develop-
ers can choose between a few other programming concepts for Cell processor
and that the DaCS model is for sure not the most productive and efficient one.
However the DaCS library is much more interesting as a tool for creating hybrid
applications that use two different processor architectures, in this case: AMD
Opteron and PowerXCell8i. In such a model DaCS can support the execution,
data transfers, synchronization and error handling of processes on three different
architectural levels: x86-64 cores, PPUs and SPUs. Additionally the program-
mer can decide to use DaCS with any available Cell programming model on
the level of PPU process. PPU process can execute SPU kernels implemented
within optimized libraries or created originally by developers with the use of
programming models like libspe2 [12], Cell SuperScalar [11] or OpenMP [6].
The DaCS library has a much wider impact on high performance computing
since it was designed to support highly parallel applications where the MPI li-
brary is used between heterogeneous nodes and the DaCS model is used within
those nodes. It is presented schematically on Figure 4. Such programming
model was used for application development on the Roadrunner and Nautilus
supercomputers ([10],[3]).

The resulting heterogeneous scheme of the application is presented in Fig. 5.
The application is executed on the x86-64 architecture. The initialization of
the DaCS library is performed in the very beginning of the code together with
the allocation of specific memory regions reserved for synchronized data trans-
fers between hybrid processes. At this time the corresponding Cell process is
executed on the PPU via the DaCS library and hangs its execution waiting
for proper signals. The application parts performed on the Cell processor are
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Figure 4: Scheme of multi-level DaCS programming model for heterogeneous
architectures.

only those that presented good performance and were optimized for execution
on SPUs (the demodulation step, FFTs and the interbinning step). It should
be stated here that such an implementation introduces memory transfers be-
tween both processes. The size of such data transfers is reaching 1 GB per each
outer loop step and thus the performance rate of the interconnect is of crucial
importance for the overall performance of the application.

Figure 5: Flowchart of the Hybrid DaCS version of the application.

We have used two heterogeneous systems for testing purposes. Both of them
were composed of one IBM LS21 blade and two IBM QS22 blades and they
differ in the type of interconnect used for data transfers between those blades.
The basic development system installed at ICM uses Gigabit Ethernet. The
other system is a node of IBM’s triblade cluster (RoadRunner-like prototype
system) located at Rochester, USA and uses PCI for data transfers. Like we
have assumed the performance of data transfers used for moving data from
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x86-64 to the Cell architecture turned out to be very important for the overall
speedup of the application. On Gigabit Ethernet the maximum speedup was
approx. 1.5. First measurements made on PCI showed that the performance
gain from the hybrid approach is rather small reaching a maximum speedup
of 3.56 compared to the previously mentioned 3.24 result in the non-hybrid
Cell version of the application. Thus we decided to take a closer look at the
performance of the DaCS data transfers on PCI. Those data transfers always
involve DMA operations followed by byte swapping applied to the binary data
being sent (different endianness of processing devices). In the DaCS library
you can decide to turn the byte swapping functionality on and off. We have
measured that the byte swapping operation limits the performance of the data
transfers over PCI to approx. 280 MB/s. Transfers that don’t involve this step
can reach performance of more than 1100 MB/s. Following this observation
we have decided to implement an optimized version of byte swapping on the
Cell processor itself which resulted in much better data transfer performance
reaching up to 900 MB/s for big data sizes. Such a high performance level was
achieved thanks to a number of Cell programming techniques, mainly: parallel
processing on SPUs and SIMD vector processing. Our custom implementation
of the byte swapping step is universal and could be used as library by other
applications. The following Fig. 6 shows the performance gain of data transfers
for different data sizes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

2
15

2
16

2
17

2
18

2
19

2
20

2
21

2
22

2
23

2
24

2
25

2
26

2
27

2
28

2
29

2
30

PCIe, BS
PCIe, NBS

PCIe, PXCBS

Figure 6: DaCS data transfer performance with optimized byte swapping library
(blue) compared to non-byte swapping (green) and DaCS byte swapping (red)
versions. Data size in bytes is depicted on the x-axis. Performance measured in
GB/s is depicted on the y-axis.

The application described in this work achieved a speedup of 4.5 with the
use of our optimized byte swapping technique and this performance level is our
final result. Moreover in our opinion it is the highest performance level that
could be achieved on the corresponding computer architectures.
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4 Results and Conclusions

We have successfully implemented a heterogeneous version of the presented ap-
plication on RoadRunner-like prototype systems. The application described in
this work achieved the highest speedup of 4.5 with the use of a custom opti-
mized byte swapping technique and IBM DaCS programming model. Methods
used for the implementation can also be adopted and used in many different
scientific applications, especially those involving large FFT computations. The
main disadvantage in programming applications for heterogeneous systems is
usually related to the necessity of creating few programs dedicated for differ-
ent computational devices. Therefore our future work on the presented topic
will be addressing the development of a heterogeneous parser library for Fourier
computations. Such a tool could be used with minor code modifications within
scientific codes that make use of the FFTW library. All the important heteroge-
neous programming issues like data transfers and byte swapping can be hidden
behind the library interface. The overall performance of such a heterogeneous
tool will be based on the DaCS model and most importantly on heterogeneous
techniques developed and used in this work.
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