
Evaluation of Features for Author Name Disambiguation Using Linear Support
Vector Machines

Piotr Jan Dendek, Łukasz Bolikowski, Michał Łukasik
Interdisciplinary Centre for Mathematical

and Computational Modelling, Univ. of Warsaw
Prosta 69, 00-838 Warsaw, Poland

Email: {p.dendek,l.bolikowski,m.lukasik}@icm.edu.pl

Abstract—Author name disambiguation allows to distinguish
between two or more authors sharing the same name. In
a previous paper, we have proposed a name disambiguation
framework in which for each author name in each article we
build a context consisting of classification codes, bibliographic
references, co-authors, etc. Then, by pairwise comparison of
contexts, we have been grouping contributions likely referring
to the same people. In this paper we examine which elements of
the context are most effective in author name disambiguation.
We employ linear Support Vector Machines (SVM) to find the
most influential features.

Keywords-Name Disambiguation, Support Vector Machines,
classification algorithms, supervised learning, context, bibli-
ographies, linearity, information retrieval, computer science

I. INTRODUCTION

A. Motivation

Author name disambiguation is an important activity (as
defined by Gonçalves et al. [1]) in a digital library. The
ability to distinguish automatically between several authors
named Mark Smith is advantageous both for user interface
and for bibliometrics. For example, knowing the identity
of an author of a document, the author’s name appearing
among the document’s metadata may become a hyperlink to
a page listing other documents written by the same person.
This knowledge can also be leveraged in analyzing author
collaboration network, or identifying influential persons.

The problem of ambiguous names is far from uncommon:
Torvik and Smalheiser [2] have found that about two-thirds
of authors in MEDLINE cannot be unambiguously identified
based solely on a surname and initials.

There were many approaches to the problem. Levin and
Heuser [3] reached 78.5% accuracy in author name dis-
ambiguation by using genetic programming. Han et al. [4]
provided a comparison between Support Vector Machines
(SVM) [5] and Naive Bayes approach using a few basic fea-
tures. Our goal is to explore more features and evaluate their
impact on the effectiveness of author name disambiguation.

B. Framework

In our previous paper [6] we have presented a flexible,
scalable author name disambiguation framework for a digital

library. In the paper we have established a vocabulary briefly
summarized here. A contribution represents a fact that a
certain document was co-authored by a certain person.
Therefore, each contribution refers to exactly one document
and exactly one person. A single document refers to as many
contributions as there are co-authors of the document. A per-
son refers to as many contributions as there are documents
co-authored by the person. The links between documents and
contributions are known to us, i.e., are input to the problem.
What we do not know and want to recreate are the links
between contributions and persons. In other words we want
to find the most likely clustering of contributions, where
each cluster represents a person.

Our workflow is laid out as follows. First, for each input
document we generate a list of associated contributions.
Next, for each contribution we calculate a hash function
of the contributor’s name (for example, the hash function
may lowercase a surname and filter out all diacritic marks).
The preceding actions correspond to the “map” phase of the
map-reduce paradigm. All the contributions with the same
value of the hash are referred to as a shard. In the “reduce“
phase, all the contributions within a shard are clustered into
persons. In order to do that, for each pair of contributions
within a shard, a number of features are calculated. Having
sufficient information, a feature is a function returning a
positive value if the two contributions are likely to refer to
the same person, and a negative value otherwise. In case of
lacking information for either of the inspected contributions,
e.g. absence of e-mail address, a feature outcome is a null
value. Next, a weighted sum of all the feature values is
calculated. The higher the sum, the more likely it is that
the two contributions are made by the same person. Having
calculated all the sums, we run a clustering algorithm which
groups together contributions belonging to the same persons.

To summarize, we have proposed a workflow compati-
ble with the map-reduce paradigm. Three methods in the
workflow are customizable: the hash function, the set of
feature functions with associated weights, and the clustering
algorithm.

2012 10th IAPR International Workshop on Document Analysis Systems

978-0-7695-4661-2/12 $26.00 © 2012 IEEE

DOI 10.1109/DAS.2012.36

440

C. Evaluation plan

In this paper we fix a hash function and a clustering al-
gorithm, define a number of feature functions, and calculate
feature weights yielding the highest quality of results. We
analyze the resulting weights in order to find the most in-
fluential feature functions. Results of this effort can be used
to fine-tune the name disambiguation framework. Also, the
results may be insightful to other researchers constructing
author name disambiguation solutions.

II. FEATURES

Recall that a feature is a function which takes two
contributions and returns a real value from the set [−1, 1]
indicating whether the contributions are likely to refer to the
same person. A feature typically refers to a single aspect
of the contributions’ contexts, such as year of publication
or list of keyword phrases. We divide feature building into
two stages. First, let us propose a set of crude features: a
feature-like functions, which return arbitrarily large integer
values. Next, in order to produce features from crude fea-
tures, in each case we need to decide on a mapping from
the set of integers to the set [−1, 1]. We have investigated
the following crude features:

1) CS – number of common co-author surnames. Exam-
ple: one contribution by a M. Smith was co-authored
by H. Black and A. Johnson and T. White, while
another contribution by a M. Smith was co-authored
by R. Brown and A. Johnson and F. White. The
two contributions have two co-author surnames in
common (Johnson and White), therefore CS for these
contributions will yield 2.

2) EM – number of common co-author e-mails. Similar
to CS, but this time common e-mails are counted.

3) EL – number of common e-mail local parts
in co-author e-mails. For example: co-authors
of the first contribution have the following
e-mails: ljb@abc.edu, tsmith@def.edu,
while co-authors of the second contribution have:
cjones@abc.edu, ljb@ghi.edu. There is one
e-mail local part in common (ljb), thus EL for these
contributions will yield 1.

4) CC – number of common classification codes. Due to
the nature of our test set, we have compared Mathe-
matics Subject Classification (MSC) codes. Each MSC
code is an alphanumerical tag representing a subject
mentioned in an article, e.g. the code 14A25 repre-
sents “Elementary questions in the algebraic geome-
try”, where “15” represents “Algebraic geometry”, “A”
corresponds to “Foundations” and “25” symbolizes
“Elementary questions”. In this article we compare
complete 5-character codes.

5) KP – number of common keyword phrases on the
list of keywords. A keyword phrase (usually comma-

or semicolon-delimited) may contain more than one
word, for example: “name disambiguation”.

6) KW – number of common words on the list of
keywords. Here, unlike in KP, each word is counted
separately.

7) RF – number of common bibliographic references.
8) YR – number of years between publications of the

two documents.
9) CI – one if one of the documents references the other,

zero otherwise.
10) IS – one if ISSNs of the two contributions match, zero

otherwise.

Recall that in our framework the features are calculated
within shards. Since each shard contains contributions with
the same surname (up to diacritics), there was no need to
consider a “same contributor surname” crude feature.

Ultimately, we were interested in scaling the crude fea-
tures to the {−1, 1} set. In order to achieve that, in each
case we have chosen a positive/negative threshold which had
maximized accuracy and sensitivity of a mapping. Most of
the values attained by the crude features were 0, 1, or 2, and
the thresholds were either 0 or 1.

III. FEATURE SELECTION

Figure 1. Distribution of values of the crude feature EM (common author
e-mails), broke down into contribution pairs originating from same persons
and contribution pairs originating from different persons.

441

Figure 2. Distribution of values of the crude feature CS (common co-
author surnames), broke down into contribution pairs originating from same
persons and contribution pairs originating from different persons.

In the further phases only those features could be used,
which returned few null values. This forced us to discard
a couple of good features, most notably EM (common co-
author emails) and EL (common e-mail local parts in co-
author e-mails), since less than one in a thousand contri-
bution pairs had e-mail addresses listed in both documents.
This was unfortunate, since the e-mail-based features, when
present, were the most effective. One or more common
e-mail address meant, in 100% cases, that the two con-
tributions originated from the same person (cf. Figure 1).
Similarly, EL was almost as good an indicator, reaching true
positive value of 96%.

We also had to drop RF (common bibliographic refer-
ences) and YR (number of years between publications of
the two documents) crude features, which occurred in 1%
of all the contribution pairs. Again, RF was a good indicator
when present: 9 or more common bibliographic references
gives certainty that the contributions belonged to the same
person. See Table I for detailed statistics of frequency of
null values, as well as Figures 2 and 3 for distributions of
values of CS and KP respectively.

Ultimately, the following features remained:

∙ number of common co-author surnames (CS)

Figure 3. Distribution of values of the crude feature KP (common keyword
phrases), broke down into contribution pairs originating from same persons
and contribution pairs originating from different persons.

Table I
FREQUENCY OF null VALUES FOR CRUDE FEATURES.

Feature Non-null values null values
Number Percent Number Percent

EM 213 0.07 288796 99.93
EL 213 0.07 288796 99.93
CS 239753 82.95 49256 17.04
CC 289009 100.00 0 0.00
KP 260879 90.26 28130 9.73
KW 260879 90.26 28130 9.73
RF 1556 0.53 287453 99.46
YR 4744 1.64 284265 98.36
CI 289009 100.00 0 0.00
IS 265861 91.99 23148 8.01

∙ number of common classification codes (CC)
∙ number of common keyword phrases on the list of

keywords (KP)
∙ number of common words on the list of keywords (KW)
∙ matching ISSNs (IS)

IV. DATA PREPARATION

We have been granted access to Zentralblatt MATH au-
thority file, which we combined with metadata from the
European Digital Mathematics Library. From this we have
generated a set of contributions for further processing.

442

As it was stated in the previous section, features are
computed for pairs of contributions. Each contributor in Zen-
tralblatt MATH database has a unique personality identifier
assigned, hence by taking a pair of contributions we can
check if two contributions belong to the same person. In
this manner we switch from the problem of clustering to
the one of classification, where each record (or observation)
represents a distinct pair of contributions, containing a vector
of feature values and the final classification: “same” or
“different”. This approach of mapping clustering problem
to classification was used by Wang et al. [7] as a measure
(called salient degree) of a successful clustering. To reduce
the number of created observations, we create them only
from contributions from the same shard. We checked on
our test set that the problem of contributions belonging to
the same person, but having different surnames affects only
1 shard in a thousand (given the total number of about
3000 shards this problem is marginal). Hence we may safely
assume that all the contributions of a single person are put
in the same shard.

We have prepared a set of almost 300 thousand obser-
vations. After choosing only the records in which all the
fields were non-null we have got approx. 200 thousand
observation. Since “same” observations outnumbered “dif-
ferent” (“same” accounted for nearly 75% of observations),
which was highly undesirable, because it could affect the
final classification. Because of this, we have randomly
chosen every third “same” observation thus creating the
final, balanced set of observations.

To sum up, we propose the following mapping from our
problem to the classification one:

∙ each pair of contributors is being treated as an object
∙ the feature vector consists of values of the features

described above
∙ the label equals to -1 if the contributions in the pair

belong to different persons, and 1 if to the same person

V. WEIGHT ASSIGNMENT

In this chapter we describe our approach to the problem
of automatically assigning weights to the features. Basing
on the concept of mapping to the classification problem, we
explain the restriction to linear classifiers and choose linear
SVM to choose weight values.

If we think about the problem of discriminating the pairs
of authors that are the same person from the pairs that
aren’t, we can use one of many classification algorithms that
have been designed. However, if we want to have weights
assigned to the features, our options are narrowed. We are
interested in getting a classifier of the form:

𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛) = 𝑠𝑖𝑔𝑛(

𝑛∑

𝑖=1

𝑎𝑖 𝑥𝑖 + 𝑏𝑖𝑎𝑠)

Such a function corresponds to the labels we described in
the mapping.

Table II
FEATURE WEIGHTS

Feature Weight Assigned
number 1-fold 2-fold 3-fold Average

CS 3.411̇0−13 −4.991̇0−05 1.131̇0−13 −1.661̇0−05

CC 0.99 0.99 0.99 0.99
KP 1.00 0.99 0.99 0.99

KW 3.551̇0−14 4.291̇0−05 6.781̇0−05 3.691̇0−05

IS 1.421̇0−13 −2.941̇0−05 4.061̇0−05 3.751̇0−06

In the function, 𝑎𝑖 elements are the weights we search
for. Bias appears, so that it may consider hyperplanes that
do not contain the vector 0 = (01, 02, . . . , 0𝑛). We can think
of the bias as the weight of the 0-th feature, whose value is
always 1 (for each pair of contributors).

SVM is a classifier that finds a hyperplane separating
vectors belonging to different classes. It tries to maximize
the margin between the hyperplane and the vectors closest
to the separating plane. Therefore, SVM returns parameters
to the function as described. It is an efficient algorithm
when considering the restriction to linear classifiers (when
considering linear kernel as in our approach).

VI. EVALUATION

We have built a classifier using the features described
earlier, it turned out they have an average error of 20.54%
on 3-fold cross-validation, and bias equal to 1.

As we have remarked earlier, since we compare contribu-
tions within a single shard, there is an implicit feature “same
contributor surnames”. Table II presents feature weights
(parameters of the best hyperplanes). It turns out that the
most influential features are common classification codes
and common keyword phrases. This result signifies that if
one uses features examined in this article, then documents
from any given branch of science will most likely be
attributed to the same person, but identities of authors having
several radically different scientific interests may not be
correctly recovered. Generally, the lower is the threshold of
needed similar codes in CC Feature, the more connections
to the same personalities can be obtained. Assuming it is
common for authors to gradually change a topic of interest,
another, more coarse-grained approach is additional top-
down inspection of all three parts of classification code. It
has to be stressed that the purpose of automatic author name
disambiguation is to relieve an expert from a tedious, manual
process. It is not the ambition of the authors to propose an
approach that would outperform a human expert. Therefore,
if an author is active in two substantially different areas and
there are no clues linking the two ”identities”, then neither
a human expert nor our automated approach will be able
to correctly restore the author’s identity based on available
metadata.

In order to explain the rejection of common co-author
surnames let us note that neither does a common co-author

443

surname entail that a pair of contributions belong to the same
person, nor does lack of common co-author surname entail
the opposite.

We performed a number of “sanity checks” in order to
check how stable the results are. The following has been
done:

1) what happens when we set to 0 weights that are
already close to 0: we observed that the error doesn’t
change.

2) what happens when all the features are randomly
changed by a value from a specific interval: the error
for such a new table of objects doesn’t change until
the noise is substantial (e.g. drawn uniformly from
(−1, 1))

3) how the weights change when all the features are
randomly changed by a value from a specific interval:
again, the error has to be taken from the interval close
to (−1, 1) in terms of its size, in order to change the
weights substantially (e.g. the 2 features have values
close to 1 and others close to 0 until we don’t introduce
such a big noise)

VII. FUTURE WORKS

A. Better hash function

Given Zentralblatt MATH authority file, we may look
closer at the relation between surnames and person identities.
Such observations may lead us to a better hash function for
the framework. It would be especially desired to cope with
ambiguous phonetic surname notation.

B. New features

Thanks to combining EuDML dataset (containing e-mail
information) and Zentralblatt MATH dataset (containing
unique person identifiers), we were able to prove importance
of some features. It may be beneficial to merge more
datasets from EuDML and other sources, which would give
opportunity to construct and check more features.

C. Using null values

Our next approach should be able to cope with frequent
appearance of null values. Possible, but less hoped solution
would be indirect, based on accuracy/sensitivity comparison
between major-null features and those proceeded by the
module described in this article. Better solution would use
some preprocessing to deal with null values.

VIII. SUMMARY

In this article we have proposed a weight assignment
process based on linear SVM. Thanks to information from
Zentralblatt MATH authority file we were able to switch
from a clustering problem to a classification problem. This
gave us an opportunity to use optimal, well-tested methods,
thanks to which we have obtained a set of weights for the
chosen set of features.

ACKNOWLEDGMENT

The work is supported by the National Centre for
Research and Development (NCBiR) under Grant No.
SP/I/1/77065/10 by the Strategic scientific research and ex-
perimental development program: ”Interdisciplinary System
for Interactive Scientific and Scientific-Technical Informa-
tion”.

The authors would like to thank Zentralblatt MATH for
providing their authority file for the purpose training and
evaluation of our name disambiguation module.

We would also like to thank the anonymous reviewers for
their insightful comments.

REFERENCES

[1] M. A. Gonçalves, E. A. Fox, L. T. Watson, and N. A. Kipp,
“Societies (5S): A Formal Model for Digital Libraries,” ACM
Transactions on Information Systems, vol. 22, no. 2, pp. 270–
312, 2004.

[2] V. I. Torvik and N. R. Smalheiser, “Author name
disambiguation in MEDLINE,” ACM Transactions on
Knowledge Discovery from Data, vol. 3, no. 3, pp. 1–
29, Jul. 2009. [Online]. Available: http://portal.acm.org/
citation.cfm?doid=1552303.1552304

[3] F. H. Levin and C. A. Heuser, “Using Genetic Programming
to Evaluate the Impact of Social Network Analysis in
Author Name Disambiguation,” in Proceedings of the 4th
Alberto Mendelzon International Workshop on Foundations
of Data Management Buenos Aires Argentina May 1720
2010, ser. CEUR Workshop Proceedings, A. H. F. Laender
and L. V. S. Lakshmanan, Eds., vol. 619. Citeseer, 2010.
[Online]. Available: http://ceur-ws.org/Vol-619/paper2.pdf

[4] H. Han, L. Giles, H. Zha, C. Li, and K. Tsioutsiouliklis, “Two
supervised learning approaches for name disambiguation in
author citations,” Proceedings of the 2004 joint ACM/IEEE
conference on Digital libraries - JCDL ’04, p. 296, 2004.
[Online]. Available: http://portal.acm.org/citation.cfm?doid=
996350.996419

[5] V. N. Vapnik, The Nature of Statistical Learning Theory,
ser. Statistics for Engineering and Information Science.
Springer, 1995, vol. 8, no. 6. [Online]. Available: http:
//www.ncbi.nlm.nih.gov/pubmed/18255760

[6] L. Bolikowski and P. J. Dendek, “Towards a Flexible Au-
thor Name Disambiguation Framework,” in Towards a Digital
Mathematics Library, P. Sojka and T. Bouche, Eds. Masaryk
University Press, 2011, pp. 27–37.

[7] J. Wang, S. Wu, H. Vu, and G. Li, “Text document
clustering with metric learning,” in Proceeding of the
33rd international ACM SIGIR conference on Research and
development in information retrieval. ACM, 2010, pp.
783–784. [Online]. Available: http://59.108.48.12/proceedings/
sigir/sigir2010/docs/p783.pdf

444

